генератор импульсов различных форм

Схемы простых генераторов импульсов

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.

На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100. 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.

Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).

Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Источник

Генераторы импульсов

Генераторы импульсов используют во многих радиотехнических устройствах (электронных счетчиках, реле времени), применяют при настройке цифровой техники. Диапазон частот таких генераторов может быть от единиц герц до многих мегагерц. Здесь приводятся простые схемы генераторов, в том числе на элементах цифровой «логики», которые широко используются в более сложных схемах как частотозадающие узлы, переключатели, источники образцовых сигналов и звуков.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Цифровые микросхемы в генераторах взаимозаменяемы в большинстве случаев и можно использовать в одной и той же схеме как микросхемы с элементами «И-НЕ», так и «ИЛИ-НЕ», или же просто инверторы. Вариант таких замен показан на примере рисунка 5, где была использована микросхема с инверторами К561ЛН2. Точно такую схему с сохранением всех параметров можно собрать и на К561ЛА7, и на К561ЛЕ5 (или серий К176, К564, К164), как показано ниже. Нужно только соблюдать цоколевку микросхем, которая во многих случаях даже совпадает.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Источник

Схемы простых генераторов импульсов

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств.

Простейший генератор импульсов

Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 1). Для этого достаточно соединить вход усилителя с его выходом.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания.

Схемы мультивибраторов

На рис. 2, 3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 2. Схема мультивибратора на транзисторах.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 3. Схема мультивибратора на транзисторах с небольшой перестановкой деталей на схеме.

Использование мультивибраторов

Практические примеры использования мультивибратора приведены на рис. 4, 5.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 4. Схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов.

На рис. 4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей.

Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3.

На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Генератор переменной частоты (рис. 5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора C3 500 мкФ).

Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6.

Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора C3. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Управляемый генератор

Управляемый генератор прямоугольных импульсов показан на рис. 6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 7, возрастает рабочая частота генерации.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 7. Как возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения.

Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100. 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов.

Для контроля работы, сигнал с генератора (рис. 6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 7). Отметим, что стабильность генераторов на RC-элементах невысока.

Схемы генераторов световых и звуковых импульсов

На рис. 8, 9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 8. Схема генератора световых импульсов, собранного на транзисторах.

Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 9. Схема генератора звуковых импульсов собранного на транзисторах.

Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 8) можно включить генератор по схеме на рис. 9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов с пьезокерамическим излучателем

Генератор импульсов (рис. 10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамический излучатель BF1).

Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 10. Генератор импульсов с пьезокерамическим излучателем.

Генератор релаксационных колебаний

На рис. 11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 1).

Устройства (рис. 11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи.

Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации.

В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА.

Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов на лавинных транзисторах

Генераторы импульсов (рис. 12, 13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или аналогах динисторов и лавинных транзисторов (см. рис. 1).

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 12. Схема генератора импульсов на лавинных транзисторах К101КТ1.

Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора.

Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 13. Схема генератора импульсов на лавинных транзисторах К162КТ1.

Генераторы импульсов с использованием индуктивной обратной связи

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 14 [А. с. СССР 728214], 15 и 16.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 15. Схема блокинг-генератора на транзисторе.

генератор импульсов различных форм. генератор импульсов различных форм фото. картинка генератор импульсов различных форм. смотреть фото генератор импульсов различных форм. смотреть картинку генератор импульсов различных форм.

Рис. 16. Схема блокинг-генератора на транзисторе КТ315 с минимумом деталей.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий: никаким иным методом такие дефекты не могут быть выявлены.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *