импульсный блок питания для чего он нужен

Импульсные блоки питания.Что к чему и от чего))

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

В последнее время мне задавалось некоторое количество вопросов по теме стабилизации напряжения.Или о том как светодиоды надо запитать.
Хочу изложить свой теоретический взгляд на взаимодействие компонентов в схеме блока питания.
В блоке питания есть микросхема.Она, в сути, является мозгом устройства.Управляет силовым ключом, либо встроенным внутрь нее, либо внешним.Силовой ключ очень быстро открываясь и закрываясь накачивает напряжение в дроссель.На выходе появляется напряжение, это напряжение надо отследить.И если напряжение на выходе достигнет нужного нам значения-надо сообщить об этом управляющей микросхеме.Она, услышав эту новость, уменьшит время открытия силового ключа.Накачка в дроссель уменьшится и на выходе напряжение начнет падать.Но схема, отслеживающая напряжение на выходе, опять сообщит микросхеме, что напряжение падает ниже нам нужного и микросхема снова увеличит время открытия силового ключа.

Схема отслеживающая, что творится на выходе блока питания, будет нами названа ОС(обратной связью).
Обратная связь эта та часть блока питания, играясь с которой, мы можем получить на выходе блока питания нужные нам вольты.
Вариантов ее схемотехники несколько.В низковольтных блоках питания, которые мы покупаем в китае и лепим в авто, обычно обратная связь это делитель напряжение(два резистора в средней точке которых должно получится определенное напряжение при нужных нам вольтах на выходе БП.)
Например микросхема ждет что на ее ножке обратной связи должно быть 1.25 вольта.На выходе БП 5 вольт.В средней точке делителя 1.25.Ура микросхема будет точно держать в узде дроссель, уменьшая или увеличивая скважность на силовом ключе так что бы на ее ножке обратной связи было всегда 1.25.
Блоки питания от сети делают тоже самое.Разница только в том что там микросхема другая.Но суть и смысл остается тот же в принципе.(различие в том что нам надо отделить физически высоковольтную часть блока от низковольтной.Значит и обратную связь надо как-то сделать так, что бы она смотрела, что там у нас на выходе низковольтном и сообщала инфу микросхеме, стоящей в высоковольтной части.
Для этого можно применить оптопару.Зачастую так и сделано.схема обратной связи смотрит на напряжение и через моргули на светодиоде, внутри оптопары, сообщает через фототранзистор, в той же оптопаре, нужные данные на высоковольтную часть БП.А именно на ножку обратной связи микросхемы.
Схема управляющая светиком оптопары сделана несколько иначе чем делитель.Зачастую на TL431.
Вот вам ссылка что нашел в инете с наскока, то и даю vprl.ru/publ/tekhnologii/…_zver_quot_takoj/9-1-0-17
Если разобрались, то думаю поняли, что делитель там тоже есть.Все с него начинается, только делитель сначала сообщает ТЛке данные, а она уже через оптопару дает отчет управляющей микросхеме.
Значит играясь делителем на выходе БП мы опять же можем напряжение опускать или поднимать…
Теперь о силе тока.Описанное мной ранее относилось к контролю напряжения.Но если мы сделаем обратную связь с контролем силы тока-получим токовый драйвер.Управляющей микросхеме важен сигнал на ее ножке, а что там на выходе, в реале, ее мало волнует.Значит отследим силу тока и как только сила тока станет выше чем нам надо-тут же отправим сигнал микросхеме, как будто у нас превышение напряжения.Глупая микросхема решит, что напряжение выше нормы и начнет его сбрасывать.А у нас то ток.Вот мы ее и накололи ха-ха.
Как отследить ток?По падению напряжения на шунте.Например берем резистор в 0.1 Ом и зная сколько было до него и сколько после-мы легко высчитываем нужные нам цифры.Например ОУ (операционный усилитель)
Легко отследит что у нас упало на резисторе и обманет БП.
Вот пример:
e-a.d-cd.net/1c6246as-960.jpg схема стабилизатора напряжения
h-a.d-cd.net/f56246as-960.jpg схема стабилизатора тока.
Тоже нарыл тут.Сдается это поделие Андрея Голубева.
Но нам не поделка важна а сам смысл.Почувствуйте разницу между этими двумя схемами.

Так же можно наколоть и сетевой блок питания.Как мы раньше уже убедились принцип один и тот же.
Не забываем что никто не отменял мощность.А она равна произведению напряжения на силу тока.А значит наш БП может выдать больше напряжение, но уже ниже силу тока.Мы тут с himiks общались и просто цифра от туда в голове засела.Например сетевой импульсный блок питания 12 вольт 2 ампера может выдать и 24 вольта но уже 1 ампер.Потому что он 24 Ватта.И он каким был таким и остался.Главное что бы выходная часть не развалилась от перенапряжения, конденсаторы не бабахнули))Разумеется так сильно поднимать не стоит-но процентов на 50-70 можно.
Ну и так же по падению на шунте его можно наколоть и заставить поработать драйвером.Ха-ха.

А почему же тогда есть микросхемы, которые именно под драйверы используют, а есть под стабилизаторы напряжения?Да просто там в микросхеме драйвера сам шунт и операционник уже встроены в ее потроха, только и всего.
Хотелось бы еще о стабилизаторе напряжения поговорить, особенно большая и больная тема, когда в авто от 10-14 и до 16 вольт, а на выходе нам надо 12 вольт.Что бы 100500 км говноленты светодиодной на авто накрутить и радоваться)))
Сложность в том что там надо и повышать и понижать в одном устройстве.А обычно блоки питания такого плана или повышают или понижают, но не все вместе.
Есть способ выкрутиться.воспользуемся топологией SEPIC (single-ended primary inductor converter)
Что первое нашел то и даю.
meta-kot.livejournal.com/14245.html?thread=15525
Там кстати есть схема стабилизатора и тока и напряжения.

И вот еще что нашел.
Интересный способ обмануть судьбу.Я вот как-то увидел TPS63061 и на ее основе s7v7f5.И подумал, а зачем там столько кондеров, и почему дроссель изолирован от нагрузки.И закралась подозрительная мыслишка, которая мне позволила найти вот этот рисунок.
radiokot.ru/forum/downloa…81ab400c2698604a238ba4be3
(нет что бы даташит изучить))не наш метод)
Разумеется что там сам принцип.Нет делителя на обратной связи.И я бы еще ввел защиту от низкого напряжения на той же TL431.Если внимательно прочитали писанину выше.То сами догадаетесь где делитель и как сделать защиту по просадкам входного напряжения.))

Ну а это так, для общего понимания.Если хочется вникнуть глубже-читаните open.e-voron.dp.ua/stabil…ov-na-mikrosheme-ms34063/ (там примеры для МС34063).Главное что бы крышу не снесло))Но полезное для себя найдете.Тем более, что суть и смысл остаются актуальными для любых микросхем такого плана.
Эх как-то без картинок получилось…
Ладно ща найду для чисто поржать…

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Вот так же может начать выглядеть и ваш БП, если вы не зная теории, полезете к нему с практикой.
А если это сетевой БП то все манипуляции производите с выключенным из сети БП.А то и сам мастер, в вашем лице, может принять такой вид.Входная часть такого блока находится под напряжением в 300 вольт.Не прикасайтесь пальцами к компонентам блока питания, находящимся в высоковольтной части.Не буду напирать на проверку отсутствия заряда в питающем конденсаторе, если сетевой БП не исправен и вы лезете к нему с ремонтом, значит вы и так уже все знаете и понимаете.(я предупредил, так что все на ваш страх и риск)

Источник

Как работает импульсный блок питания

Подробно рассмотрим, как работает импульсный блок питания (ИБП) любого типа. Сегодня такие компоненты являются основными источниками электрической энергии любой электронной аппаратуры. Аудио аппаратуру мы в счет не берем. Там по-прежнему доминируют линейные или трансформаторные блоки питания.

Концепция ИБП известна давно. Однако реализация ее стала возможной относительно недавно. Этому способствовало появление управляемых полупроводниковых ключей с требуемыми характеристиками. В первую очередь речь идет о полевых транзисторах MOSFET. Сегодня MOSFET вытеснили практически все другие управляемые полупроводниковые приборы в области преобразователей электрической энергии малой и средней мощности. В преобразователях большой мощности лидирующие позиции занимают IGBT транзисторы, а также некоторые виды тиристоров.

Главное и неоспоримое преимущество импульсных блоков питания по сравнению с линейными (трансформаторными) БП – это значительно меньший вес и габариты при равных мощностях. Для сравнения можно взять импульсный блок питания компьютера мощностью 500 Вт и только один трансформатор мощностью 500 ВА. Разница, особенно по массе, будет ощутима.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Существует много схем ИБП. Однако все они сводятся к тому, чтобы снизить в первую очередь массу и габариты трансформатора. Почему именно трансформатора? Потому что он является самым громоздким, тяжелым и дорогим элемент блока питания.

Чтобы хорошо представлять, как работает импульсный блок питания, сначала рассмотрим классическую схему линейного БП.

Схема линейного блока питания

Основные задачи любого промышленного БП заключаются в снижении переменного напряжения 220 В (230 В) до требуемой величины, затем его выпрямление, сглаживание и стабилизация.

Поэтому любая схема линейного бока питания обязательно содержат как минимум следующие элементы: трансформатор, выпрямитель, фильтр, узел стабилизации. Назначение каждого элемента было более полно рассказано здесь.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Теперь, глядя на составляющие функциональной схемы линейного БП, давайте рассуждать, какие элементы приводят к росту его массы и веса. В качестве выпрямителя чаще служит диодный мост. Снизить его размеров не даст особого эффекта. Да и реализовать этот будет затруднительно.

Узел стабилизации может быть реализован по-разному. Поэтому на нем мы тоже сэкономить мало что сможем. Остаются только два элемента: фильтр и трансформатор. Фильтр представляет собой электролитический конденсатор большой емкости. Но изменение его параметров, как мы увидим далее, не позволит получить сколь-нибудь ощутимый выигрыш. Остается исследовать возможности способы минимизации трансформатора.

Основная задача его заключается в передаче мощности со стороны источника высокого на сторону низкого напряжения. При этом необходимо обеспечить гальваническую развязку высоковольтных с низковольтными цепями. Гальваническая развязка необходима для преимущественного большинства устройств по условиям безопасности, как персонала, так и низковольтного оборудования. А трансформатор, как никакой другой элемент выполняет эти и другие условия. При этом он имеет максимальный коэффициент полезного действия, достигающий 99 %. По этой причине ему до сих пор не могут найти альтернативу, за что приходится расплачиваться повышенной массой и размерами в целом БП.

Безтранформаторные источники питания

Конечно, всегда возникал вопрос: а можно ли вообще обойтись без трансформатора? Здесь ответ неоднозначный. И можно и нельзя. Более того, существуют безтрансформаторные источники питания. Для снижения напряжения применяют конденсатор. Конденсатор характеризуется реактивным сопротивлением при работе в цепях переменного тока. Именно это свойство благополучно используется. Однако реактивное сопротивление конденсатора зависит обратно пропорционально от его емкости. Поэтому с увеличением нагрузки необходимо применять конденсатор большей емкости, что очень сказывается на его размерах. Кроме того возрастает его цена, поскольку он должен быть рассчитан на 400…450 В. Помимо всего прочего, использование реактивного сопротивления негативно влияет на качестве электроэнергии питающей сети. Снижается коэффициент мощности cosφ. Но самый главный недостаток заключается в отсутствии гальванической развязки. Это исключает применение подобных схем в преимущественном большинстве радиоэлектронной аппаратуре.

Как снизить массу и габариты трансформатора

Так вот, мощность любого узла ИБП определяется всего двумя параметрами: напряжением и током.

P = U∙I.

Полная мощность трансформатора (Т) также определяется произведением тока на напряжение. Поэтому давайте рассмотрим, как зависят габариты Т от величины приложенного U и протекающего I. Возможно, здесь у нас получится на что-то повлиять.

Напряжение или, точнее говоря, ЭДС данного электромагнитного устройства определяется частотой приложенного напряжения f, количеством витков w и магнитным потоком Φ.

E = 4,44∙f∙w∙Φ

Коэффициент 4,44 уберем для упрочения, поскольку он соответствует синусоидальной форме тока. В импульсных блоках питания, где форма сигнала имеет вид прямоугольника, это коэффициент имеет другое значение.

Магнитный поток представляет собой произведение магнитной индукции B на площадь поперечного сечения сердечника магнитопровода Sс.

Давайте поразмыслим над этой формулой с интересующей нас позиции. Размеры Т определяются размерами его сердечника и обмотками. Упрощенно говоря, мы можем вполне обосновано сказать, что габариты сердечника зависят от площади поперечного сечения сердечника (магнитопровода) Sс. А габариты обмотки зависят от числа витков w.

Теперь становится очевидно, что для сохранения прежней величины электродвижущей силы E при снижении числа витков w и площади поперечного сечения Sс, а соответственно и габаритов трансформатора, необходимо повышать или частоту или индукцию или эти два параметра одновременно.

Преимущественное большинство сердечников промышленных трансформаторов выполняются из электротехнической стали. Такая сталь имеет индукцию насыщения порядка 1,7 Тл. Это довольно большое значение индукции. Выше только у чистого железа, обладающего максимально возможной индукцией из всех магнитных материалов, и составляет чуть более 2 Тл. К сожалению, чистое железо не пригодно к использованию в электромагнитных устройствах вследствие сильных потерь энергии при перемагничивании.

Альтернативные магнитные материалы

Также в ряде стран применяется пермаллой. Пермаллой имеет несколько меньшую индукцию, чем электротехническая стать, но обладает большим электрическим сопротивлением. Благодаря чему снижаются потери на вихревые токи, а соответственно и потери холостого хода.

Относительно недавно на рынке в доступной цене появились аморфные и нанокристаллические сплавы. Они обладают высоким электрическим сопротивлением, при этом индукция их приближается к электротехническим сплавам. Кроме того они обладают рядом положительных свойств, превосходящих другие магнитные материалы. Но на этом мы здесь останавливаться не будем.

Однако индукция известных на сегодняшний день магнитных материалов и сплавов не достигает величины, значительно превосходящей индукцию электротехнической стали, то есть более 1,7 Тл. Поэтому сейчас невозможно существенно снизить габариты электромагнитного устройства за счет применения новых магнитных материалов. Поэтому остается единственный способ, который даст ощутимое снижение массы и размеров – это повышение частоты f переменного тока.

Как работает импульсный блок питания электронных устройств

Мы знаем, что в сети 220 В или 230 В f равна 50 Гц, отсюда возникает вопрос: как ее повысить? А делается это следующим образом. Сначала переменное напряжение 220 В, 50 Гц выпрямляется с помощью обычного диодного моста. Затем оно сглаживается электролитическим конденсатором большей емкости. Далее сглаженное напряжение снова преобразуется в переменное, но уже значительно большей частоты. В современных импульсных блоках питания она составляет порядка единиц мегагерц. И уже это высокочастотное напряжение подается на обмотку трансформатора. Это позволяет значительно снизить его размеры при сохранении прежнего значения электродвижущей силы. Затем сниженное напряжение со вторичной обмотки снова выпрямляется, сглаживается, и стабилизируется.

Постоянное напряжение преобразуется в переменное с помощью инвертора. Транзисторы инвертора работают в ключевом режиме, что приводит к появлению значительных импульсов тока. Поэтому на входе первого выпрямителя обязательно устанавливают дроссель для снижения уровня пульсаций тока, вызванных работой инвертора. Кроме того, для борьбы и электромагнитными импульсами, ИБП полностью экранируют.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Именно по причине этих пульсаций ИБП не применяются в аудиотехнике. В первую очередь это относиться к усилителям звука. Они вместе с полезным аудиосигналом могут усилить и помехи или пульсации, создаваемые полупроводниковыми приборами, работающими в ключевом режиме. В конечном итоге это негативно отобразится на качестве звука.

Сечение провода тр-ра по-прежнему рассчитывается на аналогичный ток. Однако в качестве магнитопровода электротехническая сталь не применяется, поскольку на высоких частотах возникают сильных потери энергии, вызванные действием вихревых токов. Поэтому применяют магнитные материалы с максимально высоким электрическим сопротивлением. К ним относятся ферриты и различного рода магнитодиэлектрики.

ШИМ-контроллер

Работой полупроводниковых приборов инвертора управляет ШИМ-контроллер. ШИМ-контроллер может выполняться в виде отдельной микросхемы или в едином корпусе с полупроводниковыми ключами. Для поддержания заданного уровня напряжения на нагрузке в не зависимости от изменения ее параметров и других воздействующих факторов, необходимо изменять параметры широтно-импульсной модуляции. За это отвечает ШИМ-контроллер, который получает сигнал по обратной связи. В качестве элемента, образующего обратную связь применяется оптопара. Может применяться и другой радиоэлектронный элемент, как правило, способный осуществить гальваническую развязку.

Теперь должно быть понятно, как работает импульсный блок питания. Его схема состоит из входного фильтра, входного выпрямителя, сглаживающего входного фильтра, инвертора, импульсного трансформатора, выходного выпрямителя и выходного фильтра.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

В качестве входного фильтра применяется дроссель. Сглаживающими фильтрами служат электролитические конденсаторы большей емкости.

Мощный импульсный блок питания?

Значительно повысить f удается только в относительно маломощных ИБП с точки зрения силовой электроники. В преобразователях электрической энергии большой мощности – десятки, сотни и тысячи киловатт, сколь существенно увеличить частоту не получится. Это вызвано отсутствием транзисторов или тиристоров, способных быстро переключать большую нагрузку, сохраняя при этом приемлемый уровень потерь энергии. Максимум удается повысить f до тысячи герц, 400 Гц, а то и вовсе ниже. К тому же возникают трудности с охлаждением таких преобразовательных установок.

Потери в полупроводниковых ключах зависят от приложенного к ним напряжения, протекающего I и частоты переключения. С ростом f потери энергии в полупроводниковых ключах сильно возрастают. Поэтому существенно снижается коэффициент полезного действия всей преобразовательной установки. Отсюда данный способ пока что не находит применения для мощных преобразователей и является малоэффективным.

Но и здесь был найден выход. Все усилия были направлены в сторону уменьшения размеров и веса обмоток. В преобразователях она может достигать нескольких тонн. Если получится существенно уменьшить ее размеры, тогда можно домотать некоторое количество витков и за счет этого снизить габариты магнитопровода при сохранении прежнего значения электродвижущей силы.

Масса меди обмоток mо зависит от суммарной длины одного витка lв, их числа w, площади поперечного сечения Sв и удельного веса меди γм.

mо = lвwSвγм.

Длина витка lв определяется его диаметром dв, поэтому можем переписать предыдущее выражение следующим образом:

mо = πdвwSвγм.

В свою очередь диаметр dв определяет индуктивность Т. Поэтому его мы уменьшить не можем, поскольку это в конечном итоге повлечет за собой уменьшение ЭДС, а это не допустимо.

Также нельзя снизить удельный вес меди. Остается снижать площадь поперечно сечения витка.

Она в свою очередь зависит от величины протекающего I и допустимой плотности тока j.

Sв = Ij.

Величину тока мы также снизить не можем, поскольку она определяет мощность трансформатора при заданном значении электродвижущей силы. Остается только один способ – увеличить допустимую плотность j.

Сверхпроводники

Благодаря применению жидкого азота снижается сопротивление проводника. Это позволяет повысить j почти в 30 раз, не перегревая его. А соответственно снизить площадь поперечного сечения обмоточного провода, что в свою очередь приводит к снижению веса электромагнитного устройства.

Подытожим сказанное выше. Для снижения массы и габаритов ИБП малой и средней мощности повышают частоту подводимого напряжения к обмоткам трансформатора за счет специальных схемных решений. В силовых преобразователях такой способ пока что трудно реализуем по причине отсутствия полупроводниковых ключей с приемлемыми коммутационными характеристиками. Единственный рациональный способ заключается в использовании сверхпроводящих обмоток.

Теперь, я надеюсь, Вам стало понятно, как работает импульсный блок питания и почему он имеет такую структуру.

Источник

Описание работы и устройство импульсного блока питания

Импульсные источники питания (ИИП) заполонили мир. Кажется, что они применяются везде, полностью вытеснив традиционные. На самом деле, этот вопрос неоднозначный.

В обзоре речь пойдет именно об импульсных блоках питания (ИИП) – преобразователях переменного сетевого напряжения в постоянное. Следует отличать такие устройства от импульсных стабилизаторов (стабилизируют входное постоянное напряжение) и преобразователей DC/AC или AC/AC (например, 12VDC/220 VAC, преобразующих напряжение автомобильной бортсети в 220 вольт), хотя в этих устройствах применяются похожие принципы.

Отличия импульсного блока питания от обычного трансформаторного

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

В первую очередь растут размеры и масса трансформатора. Для повышения тока надо увеличивать сечение обмоток, но главный вклад в массогабаритные характеристики вносит сердечник. Не вдаваясь в физические подробности, можно отметить, что эту проблему можно обойти, увеличив частоту, на которой происходит трансформация. Чем выше частота, тем меньшим сердечником можно обойтись. Не зря в авиации и кораблестроении используются электросети на частоту 400 Гц. Многие элементы получаются гораздо легче и компактнее. Но в быту негде взять повышенную частоту. 50 Гц в розетке – все, что доступно потребителю. Поэтому блоки питания на большие токи строят по другому принципу. В них переменное напряжение сети выпрямляется, а затем из него «нарезаются» импульсы более высокой (до нескольких десятков килогерц) частоты. За счет этого трансформатор получается маленьким и легким без потери мощности. Это главное, чем отличается любой импульсный блок питания от обычного.

Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.

В видео-сравнение линейного и импульсного блоков питания.

К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.

Среди минусов импульсных источников также надо упомянуть генерацию помех в питающую сеть и «замусоренность» выходного напряжения высокочастотными составляющими.

Какие бывают виды и где применяются

Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:

Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.

Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.

Также можно разделить ИИП по схемотехнике:

В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.

Структурная схема и описание работы основных узлов ИБП

Структурная схема импульсника сложнее, чем у трансформаторного источника. Для понимания принципа работы импульсного блока питания в целом, надо разобрать функционирование каждого узла в отдельности.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Входные цепи

Входные цепи предназначены для защиты сети от перегрузки при неисправности БП и от импульсных помех, возникающих при работе устройства. В качестве примера можно рассмотреть фильтр и защиту промышленного компьютерного ИИП.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Плавкий 5-амперный предохранитель перегорает при превышении номинального тока при аварийной ситуации в БП. Для защиты от повышения напряжения предусмотрен варистор V1. В штатном режиме он не влияет на работу устройства. При скачке в сети от открывается, его сопротивление резко увеличивается, ток через варистор возрастает. Это вызывает перегорание предохранителя.

Терморезистор с отрицательным коэффициентом сопротивления THR1 сначала имеет большое сопротивление и ограничивает ток, идущий на зарядку конденсаторов фильтра высоковольтного выпрямителя. Потом термистор прогревается проходящим через него током, его сопротивление падает, но к тому моменту емкости уже будут заряжены. Конденсаторы CX1, C11, C12, CY3 и синфазный дроссель FL1 защищают сеть от синфазных и дифференциальных помех.

Высоковольтный выпрямитель и фильтр

Высоковольтный выпрямитель обычно строится по традиционной мостовой двухполупериодной схеме и особенностей не имеет. Если в преобразователе применяется полумостовая схема, то фильтр выполняется из двух емкостей, включенных последовательно – так формируется средняя точка с напряжением, равным половине питания.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Иногда параллельно конденсаторам ставят резисторы. Они нужны для разряда емкостей после выключения питания.

Инвертор

Преобразование постоянного напряжения в импульсное происходит с помощью инвертора на полупроводниковых ключах (часто на транзисторах). Открываясь и закрываясь, ключи подают в обмотку импульсы напряжения. Таким методом получается своеобразное переменное напряжение (однополярное), которое может быть трансформировано в напряжение другого уровня обычным способом.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Самая простая схема преобразователя постоянного напряжения в импульсное – однотактная. Для ее реализации нужен минимум элементов. Недостаток такого узла – при росте мощности резко растут габариты и масса трансформатора. Связано это с принципом действия такого преобразователя. Он работает в два цикла – во время первого транзистор открыт, энергия запасается в индуктивности первичной обмотки. Во время второго запасенная энергия отдается в нагрузку. Чем больше мощность, тем больше должна быть индуктивность, тем больше должно быть витков в первичной обмотке (соответственно, увеличивается количество витков во вторичных обмотках).

От этого недостатка свободна двухтактная схема со средней точкой (пушпульная). Первичная обмотка трансформатора разделена на две секции, которые через ключи поочередно подключаются к минусовой шине. На рисунке красной стрелкой показано направление тока для одного цикла, а красной – для другого. Минусом является необходимость иметь удвоенное количество витков в первичке, а также наличие выбросов в момент коммутации. Их амплитуда может достигать двойного значения от напряжения питания, поэтому надо применять транзисторы с соответствующими параметрами. Сфера применения такой схемы – низковольтные преобразователи.

Выбросы отсутствуют, если инвертор выполнен по мостовой схеме. Из четырех транзисторов составлен мост, в диагональ которого включена первичная обмотка трансформатора. Транзисторы открываются попарно:

Обмотка подключается к плюсу питания то одним выводом, то другим. Минусом является применение 4 транзисторов вместо двух.

Компромиссным вариантом считается применение полумостовой схемы. Здесь коммутируется один конец первичной обмотки, а второй подключен к делителю из двух емкостей. В этой схеме также отсутствуют выбросы напряжения, но применено всего два транзистора. Недостаток такого решения – к первичной обмотке прикладывается только половина питающего напряжения. Вторая проблема – при создании мощных источников емкость конденсаторов делителя растет, и их стоимость становится нецелесообразной.

Если ИИП построен по схеме с регулировкой параметров методом широтно-импульсной модуляции (ШИМ), то в большинстве случаев ключи приводятся в действие не напрямую от микросхемы ШИМ, а через промежуточный узел – драйвер. Связано это с повышенными требованиями к прямоугольности управляющих сигналов.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

В схемах всех преобразователей используются как полевые, так и биполярные транзисторы, а также IGBT, сочетающие свойства обоих типов.

Выпрямитель

Трансформированное во вторичные обмотки напряжение надо выпрямить. Если требуется выходное напряжение выше +12 вольт, можно применять обычные мостовые схемы (как и в высоковольтной части).

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Если напряжение низкое, то выгодно применять двухполупериодные схемы со средней точкой. Их преимущество в том, что падение напряжение происходит только на одном диоде для каждого полупериода. Это позволяет сократить количество витков в обмотке. Для этой же цели используют диоды Шоттки и сборки на них. Недостаток такого решения – более сложная конструкция вторичной обмотки.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Фильтр

Выпрямленное напряжение надо отфильтровать. Для этой цели применяются как традиционные емкости, так и индуктивности. Для используемых частот преобразования дроссели получаются небольшими, легкими, но работают эффективно.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Цепи обратной связи

Цепи обратной связи служат для стабилизации и регулировки выходного напряжения, а также для ограничения тока. Если источник нестабилизированный, у него эти цепи отсутствуют. У устройств со стабилизацией тока или напряжения эти цепи выполняются на постоянных элементах (иногда с возможностью подстройки). У регулируемых источников (лабораторных и т.п.) в обратную связь включены органы управления для оперативной регулировки параметров.

У компьютерного БП дополнительно имеется схема управления и формирования служебных сигналов (Power_good, Stand By и т.д.).

Как устроен ШИМ контроллер

В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия
шим контроллера блока питания.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Назначение выводов микросхемы указано в таблице.

На выводы 7 и 12 подается напряжение питания +7..40 вольт. На выходе микросхемы установлены два транзистора, которые можно использовать для управления внешними ключами. Коллекторы (выводы 8 и 11) и эмиттеры (10 и 9) выходных транзисторов никуда не подключены. Их можно включать по схеме с открытым коллектором или с открытым эмиттером. Микросхема оптимизирована для управления ключами на биполярных транзисторах, но с использованием немного усложненных схемотехнических решений можно переключать и полевые транзисторы.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

Частоту генератора задают элементы, подключаемые к выводам 5 и 6. Напряжением на выводе 4 ограничивают ширину выходного импульса. Это необходимо для исключения «перехлеста» открытия транзисторов чтобы избежать ситуации, когда оба ключа оказываются открыты. Через этот вывод также можно организовать мягкий пуск БП. Вывод 13 служит для перевода микросхемы в однотактный режим. Если его подключить к общему проводу, импульсы на выводах обоих ключей станут одинаковыми. На выводе 14 постоянно присутствует образцовое напряжение, равное +5 вольтам. Оно может быть использовано в любых схемотехнических целях.

Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.

импульсный блок питания для чего он нужен. импульсный блок питания для чего он нужен фото. картинка импульсный блок питания для чего он нужен. смотреть фото импульсный блок питания для чего он нужен. смотреть картинку импульсный блок питания для чего он нужен.

В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.

Для наглядности рекомендуем серию тематических видеороликов.

Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *