испытания на ударную вязкость kcv и kcu в чем отличие
Испытания на ударную вязкость kcv и kcu в чем отличие
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Метод испытания на ударный изгиб при пониженных,
комнатной и повышенных температурах
Metals. Method for testing the impact strength at low,
room and high temperature
Дата введения 1979-01-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР
В. Н. Данилов, д-р техн. наук; М. Н. Георгиев, канд. техн. наук; Н. Я. Межова; Л. Н. Косарев, канд. техн. наук; Е. Ф. Комолова, канд.техн. наук; Б. А. Дроздовский, канд. техн. наук; В. Г. Кудряшов, канд. техн. наук; П. Д. Одесский, канд. техн. наук; В. И. Гельмида, канд. техн. наук; В. И. Змиевский, канд. техн. наук
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета стандартов Совета Министров СССР от 17.04.78 N 1021
3. Стандарт полностью соответствует ИСО 83-76 и ИСО 148-83
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначение НТД, на который дана ссылка
Номер пункта, раздела
5. Ограничение срока действия снято по решению Межгосударственного совета по стандартизации, метрологии и сертификации (протокол 3-93 от 17.02.93)
6. ПЕРЕИЗДАНИЕ (октябрь 1993 г.) с Изменениями N 1, 2, утвержденными в октябре 1981 г., марте 1988 г., (ИУС 12-81, 6-88)
Информация об отмене документов приведена из издания: официальное издание, М.: Издательство стандартов, 1982 год. Примечание «КОДЕКС».
Настоящий стандарт распространяется на черные и цветные металлы и сплавы и устанавливает метод испытания на ударный изгиб при температуре от минус 100 до плюс 1200 °С.
Метод основан на разрушении образца с концентратором посередине одним ударом маятникового копра. Концы образца располагают на опорах. В результате испытания определяют полную работу, затраченную при ударе (работу удара), или ударную вязкость.
Под ударной вязкостью следует понимать работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора.
(Измененная редакция, Изм. N 1, 2).
1. МЕТОД ОТБОРА ОБРАЗЦОВ
1.1. Форма и размеры образцов для испытания должны соответствовать указанным в таблице и на черт. 1-3.
Вид кон- центра- тора
Радиус концен- тратора
R
Глубина надреза
(пред. откл. ±0,1)
Глубина концен-
тратора (пред. откл. ±0,6)
Высота рабочего сечения
* При контрольных массовых испытаниях допускается изготовление образцов с предельным отклонением ±0,10 мм.
Образец с концентратором вида U
Образец с концентратором вида V
Образец с концентратором вида Т
(усталостная трещина)
Допускается использовать образцы без надреза и с одной и двумя необработанными поверхностями, размеры которых по ширине отличаются от указанных в таблице.
Область применения образцов указана в справочном приложении 1.
Испытание образцов типов 4, 14, 18 проводят по требованию потребителя для изделий специального назначения.
Для цветных металлов и сплавов все это должно быть указано в нормативно-технической документации на продукцию.
При вырезке заготовок металл образцов должен предохраняться от наклепа и нагрева, изменяющих свойства металла, если не предусмотрено иное в нормативно-технической документации на продукцию.
1.1; 1.2. (Измененная редакция, Изм N 2).
1.3. Риски на поверхности концентраторов видов U и V, видимые без применения увеличительных средств, не допускаются.
1.4. Концентратор вида Т получают в вершине начального надреза при плоском циклическом изгибе образца. Способ получения начального концентратора может быть любым.
Число циклов, необходимое для получения трещины заданной глубины, должно быть не менее 3000.
Контроль прогиба образца осуществляется с помощью индикаторов часового типа по ГОСТ 577-68 или других средств, обеспечивающих погрешность измерения прогиба не более 0,05 мм на базе длины образца.
1.6. Тип и число образцов, порядок проведения повторных испытаний должны быть указаны в нормативно-технической документации на конкретную продукцию, утвержденной в установленном порядке.
1.4-1.6. (Измененная редакция, Изм. N 1, 2).
2. АППАРАТУРА И МАТЕРИАЛЫ
Допускается применять копры с другой номинальной потенциальной энергией маятника. При этом номинальное значение потенциальной энергии маятника должно быть таким, чтобы значение работы удара составляло не менее 10 % от номинального значения потенциальной энергии маятника. До 01.01.91 допускается использовать копры с такой номинальной потенциальной энергией маятника, чтобы работа удара составляла не менее 5 % от номинальной потенциальной энергии маятника. Номинальное значение потенциальной энергии маятника должно быть указано в нормативно-технической документации на конкретную продукцию.
Основные размеры опор и ножа маятника должны соответствовать указанным на черт. 4. Для копров другой конструкции допускаются иные радиусы закругления ребра опоры и скорость движения маятника от 4,5 до 7,0 м/с.
( Измененная редакция, Изм. N 2).
2.2. Термостат, обеспечивающий равномерное охлаждение или нагрев, отсутствие агрессивного воздействия окружающей среды на образец и возможность контроля температуры.
2.3. Смесь жидкого азота (ГОСТ 9293-74) или твердой углекислоты («сухого льда») с этиловым спиртом. Применение в качестве охладителя жидкого кислорода и жидкого воздуха не допускается.
Массовая доля кислорода в жидком азоте в процессе охлаждения образцов в термостате не должна быть более 10%.
Ударная вязкость стали и металлов: что это такое, испытание, с какой целью определяют удельное обозначение
Иногда самый прочный материал, например, чугун, становится хрупким при воздействии определенных механических внешних нагрузок, в то время как мягкий алюминий (все мы гнули алюминиевые ложки в детском саду) в ряде случаев оказывается более приспособленным, не крошится и не ломается. В статье мы расскажем, почему так происходит, а также поговорим про испытания металлов на ударную вязкость – что это такое, характеристика для стали, в каких единицах измеряется и на что влияет.
Что такое ударопрочность и как её измеряют
Представим ситуацию. По дороге с быстрой скоростью едет автомобиль. Он постоянно на протяжении всего пути испытывает вибрации и осевую нагрузку на ряд деталей, подвеску. При этом все хорошо, все узлы работают правильно. Затем водитель не справляется с управлением и попадает в яму. Запчасти выходят из строя, так как внутренние напряжения и силы, во-первых, увеличиваются, во-вторых, получаются разнонаправленными.
Прочность в данной ситуации оказалась низкой, так как она деформировалась, вышла из строя. Так как разные сплавы неодинаково переносят механические и химические влияния, то для различных целей (автомобилестроение, станкостроение, обыкновенные штамповочные детали, гвозди и пр.) необходимо применять различные металлы.
Обозначение ударной вязкости – какую способность материала характеризует: что так называют
Определимся с терминологией. это способность воспринимать и поглощать кинетическую энергию. Часто такая приложенная сила ведем к разрушениям, но по отношению к этому веществу – только к пластичным или непластичным деформациям.
Обычно испытания проводятся в лаборатории опытным путем. Заготовки одинаковых размеров в нейтральных условиях (чтобы больше не оказывалось ни температурного, ни иного влияния) подвергают нагрузкам, увеличивая их. Затем наблюдают за поведением металла. Проверяют подверженность противодействию, поэтому последней проверкой является та, от которой на опытном образце появились трещины, отломалась часть.
Второй вариант – математические вычисления. Это более точный процесс, то при этом необходимо руководствоваться многочисленными нюансами – от размеров, угла приложения силы, до воздействий извне.
В чем измеряется и как обозначается
Физическое обозначение КС. Этими буквами подписывается параметр на схемах и чертежах, а также подставляется в формулы ударной вязкости. Единица измерения ударной вязкости в системе интернациональных – кДж/м2, но чаще используется значение, выраженное в Дж/см2.
Сейчас будет уместно привести формулу, по которой производится математический расчет.
Это упрощенный алгоритм вычисления, в то время как в лабораторных условиях учитываются толщину и массу, степень термической обработки, а также экспериментируют с другими показателями.
От чего зависит ударная вязкость и испытание материалов на удельное значение: зависимость от температуры
Первый параметр, который сильно меняет результаты исследований – это температурные условия. Еще раньше было известно, что при нагреве сплавы становятся более мягкими, податливыми к деформированию, именно по этой причине при ковке используют термообработку. А вот при очень низких градусах или при большом перепаде повышается хрупкость.
В связи с этим обычно определяется оптимальный температурный режим – те максимальные и минимальные значения эксплуатации, во время которых можно достичь лучших показателей. Затем постепенно исследователи снижают градусы вплоть до минуса 80 или 100. В каждый из этапов остывания заготовки подвергают проверке.
Получается диаграмма, согласно которой можно определить хладноломкость, ломкость, прочность, температуру пластичных деформаций. Второе значение – это химический состав компонентов – наличие легирующих веществ и величина углерода. согласно этому всю сталь разделяют на марки.
Если деталь подвергалась сварочному присоединению, то велика вероятность образования мартенсита. Такая металлическая микроструктура игольчатого типа может привести к снижению прочности. И последний показатель, который исследователи меняют, – это скорость проведения деформаций. От быстроты напряжений и их последовательности также зависит результат.
Испытание материалов на ударную вязкость: что это за процедура
Не все предметы можно подвергать тестированию. Так как есть идеально выверенный до тысячной эталон килограмма, так и в лабораторию поставляются только одинаковые, созданные по ГОСТ подопытные экземпляры. Они могут быть трех типов:
Есть несколько разновидностей процедур. Ее выбор зависит от того, с какой целью определяют ударную вязкость материала. От этого будет выбрано тестирование:
Маятниковый копер
Это один из наиболее регулярных экспериментов, поэтому мы опишем его начиная с подготовительного этапа, заканчивая оценкой. Первое и важное правило – все экспериментальные бруски должны быть полностью идентичны по размерам, а также следует их изготавливать одновременно, при одинаковых условиях – как с точки зрения химического состава сплава, так и со стороны металлообработки. Результативность может быть оценена по одной из характеристик:
Отбор образцов
Вся технология изготовления заготовок для опытов прописана в соответствующем нормативном документе – ГОСТ 7565. Следует полностью ориентироваться на нормативы в нем, но иногда поступает особый технический заказ, например, когда предопределены особые условия эксплуатации детали. Тогда можно проделать процедуру по требованиям, однако, важно, чтобы температурный режим оставался в границах неизменности кристаллической решетки.
Определение: в чем измеряется ударная вязкость металла
Первые испытания с маятником были предложены Жоржем Шарпи, именно по этой причине его метод используется до сих пор и назван его именем. Его мысль заключалась в следующем: надрез увеличивает чувствительность. Проверка сопровождается охлаждением окружающих условий, а вместе с тем переходом металла от пластичного состояния в хрупкое.
Метод Шарпи
Он заключается в двух последовательных действиях:
Соответственно приведем формулу по Шарпи КС = К / F, где:
Алгоритм проведения (схема) испытания на ударную вязкость
Методы определения ударной вязкости
Важны следующие нюансы:
Определение ударной вязкости и размерности металла при пониженных температурах
Мы уже объяснили, что после проведения ряда тестов, образуется определенная диаграмма. Кривая имеет два порога – минимум, хрупкость, которая наступает из-за переохлаждения, и максимум – когда нагрев изменяет кристаллическую решетку сплава.
Другие испытания
Вместо маятника может использоваться молот. Помимо ударной прочности заготовки из стали и металла требуется проверить на растяжку и кручение, на излом. Все это дает полную комплексную картину о том или ином материале для строительства.
Таблица с показателями
Каждый раз проводить эксперименты не требуется, так как большинство из них уже произведено. Достаточно только пользоваться предложенными ГОСТами. Вот показатели различных наиболее распространенных марок:
Сталь | Толщина проката | Ударная вязкость, Дж/см2, не менее | ||||
---|---|---|---|---|---|---|
KCU | KCV | |||||
Ст3пс | 3,0 — 5,0 | — | 49 | — | 9,8 | |
Ст3сп | 5,1 — 10,0 | 108 | 34 | — | ||
Ст3Гпс | 10,1 — 26,0 | 98 | 29 | — | ||
Ст3Гсп | 26,1 — 40,0 | 88 | — | — | ||
Для Ст3кс — не нормируется |
Определение порога хладноломкости
Для этого требуется продолжить проверки по методу Шарпи и зафиксировать ту отрицательную температуру, при которой увеличивается хрупкость. Порог не является моментальным, обычно он состоит из двух температурных точек – максимальной и минимальной.
Обработка полученных результатов
После тестирования будут получены либо разрушение, либо деформация. В первом случае это требуется зафиксировать, а затем продолжить тесты, но с использованием небольших усилий. А во втором следует подвергнуть итоги математическим вычислениям по указанной выше формуле.
В статье мы рассказали, как обозначается ударная вязкость и как ее узнать. В качестве завершения темы посмотрим видео:
На сайте компании «Рокта» вы сможете узнать о других свойствах металлов, а также найти широкий перечень оборудования для ленточного пиления. Переходите в наш каталог, чтобы узнать больше.
Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.
Испытания на ударную вязкость
Образцы для испытания на ударную вязкость
ГОСТ 9454 предусматривает испытания образцов трех типов:
Образцы с V-образным надрезом являются основными и их и используют при контроле металлопродукции для ответственных конструкций (транспортных средств, летательных аппаратом др.), а образцы с U-образным надрезом применяют при приемочном контроле металлопродукции; образцы с Т-образным надрезом предназначены для испытания материалов, работающих в особо ответственных конструкциях.
Методика проведения испытания
В зависимости от вида концентратора в образце (U, V, Т) в обозначении ударной вязкости вводят третий индекс, согласно виду концентратора: KCU, KCV, КСТ. Испытание на ударную вязкость проводят на копрах маятникового типа, как показано на схеме.
Если запас потенциальной энергии маятника обозначить через GH, то работа, затраченная на деформацию и разрушение образца, равна разности энергии маятника в его положениях I и II (до и после удара), т. е.:
Выразив высоту маятника в положении до и после удара через силу маятника l и углы α и β, получим выражение для определения работы, затраченной на деформацию и разрушение образца:
где α — угол начального подъема маятника; β — угол подъема маятника после разрушения образца, фиксируемый на шкале 3. Масса груза и длина маятника известны. Угол α является величиной постоянной. Зная угол β по результатам испытаний, определяют работу К и ударную вязкость КС.
Определение ударной вязкости при пониженных температурах
Для охлаждения металла применяются камеры холода, источником низкой температуры в которых, может являться жидкий азот или спирт.
Самое простое устройство для охлаждения стали – емкость, наполненная керосином и сухим льдом. Определенная пониженная температура достигается изменением количества сухого льда в смеси.
Определение порога хладноломкости стали
Также, испытания на ударную вязкость проводят и при повышенных температурах
Ударная вязкость (сопротивление хрупкому разрушению)
При создании высокотвердых, прочных материалов необходимо учитывать такое их свойство как вязкость или сопротивление хрупкому разрушению, определяющее способность материала пластически деформироваться в условиях динамических нагрузок.
Хрупкий тип разрушения — самый опасный, так как трещина возникает мгновенно, в течение долей секунды, быстро растет, превращаясь в так называемую магистральную трещину. В случае линий трубопровода магистральная трещина может пройти вдоль нескольких труб за считанные секунды.
Особое внимание на возможность сталей сопротивляться хрупкому разрушению уделяют при расчете металлоконструкций, предназначенных для эксплуатации в условиях северных широт, так как низкие температуры способствуют охрупчиванию металла. В ходе инженерных расчетов используют такой критерий, как ударная вязкость, которая количественно описывает сопротивление материала хрупкому разрушению.
Ударная вязкость
Ударная вязкость показывает, сколько нужно энергии (работы) для разрушения образца заданного поперечного сечения. Испытание для определения ударной вязкости относится к динамическим и осуществляется с помощью маятникового копра. Принцип действия заключается в падении бойка с определенной высоты на испытываемый стандартный образец металла. После чего, основываясь на разнице энергий бойка до и после удара, определяется работа, потраченная на разрушение образца. Чтобы полученные на разных образцах значения можно было сравнивать, их приводят к площади сечения испытываемого образца.
Образцы для испытаний стандартизованы и имеют вид стержня с квадратным сечением площадью 1 см2. В середине образца на одной из сторон наносят искусственный концентратор напряжений, имеющий три варианта исполнения:
При испытаниях на ударную вязкость оценивают также поверхность разрушения образца и определяют соотношения доли вязкой и хрупкой составляющей в изломе. Такой анализ выполняется либо визуально, либо с применением цифровых методов текстурного анализа, реализованных в анализаторе изображений Thixomet.
Если металл после испытания на ударную вязкость при нормальных климатических условиях показывает хрупкий излом, то его эксплуатация при пониженных температурах недопустима.
Критическая температура хрупкости
Как уже отмечалось выше, температура окружающей среды и, соответственно, самого металла, оказывает существенное влияние на его сопротивление хрупкому разрушению. Это явление называется хладноломкостью, и обусловлено переходом металла из вязкого состояния в хрупкое при снижении температуры.
На основании полученных результатов строят график зависимости доли вязкой составляющей от температуры. Точка перегиба на получившейся кривой соответствует критической температуре хрупко-вязкого перехода Тхр. Чем выше ее значение, тем выше склонность металла к хрупкому разрушению.
Почему металлы имеют различную хрупкость?
Помимо низких температур и высокой скорости нагружения к хрупкому разрушению могут приводить следующие факторы:
Испытание на ударный изгиб («impact test»)
Ударная вязкость («impact elasticity») – одна из важнейших характеристик конструкционных сталей. Данная характеристика определяется при испытании на ударный изгиб и показывает величину работы, которую нужно потратить, чтобы разрушить стандартный образец с надрезом на специально разработанном для данного испытания оборудовании – маятниковом копре.
Измеряется ударная вязкость в кгc/см2 или в Дж/см2, данная размерность показывает отношение работы, потраченной на разрушение испытываемого образца, к площади его поперечного сечения.
Одним из основных критерием качества сталей является способность сопротивления хрупкому разрушению, эта способность качественно выражена в величине ударной вязкости.
Хрупкое разрушение – наиболее опасный вид разрушения конструкции. Его опасность заключается в том, что оно происходит без каких-либо предвестников (например, без пластической деформации). А рост трещины происходит практически мгновенно, скорость распространения трещины при хрупком разрушении приблизительно равна скорости звука в металле. Более подробно о механизме хрупкого разрушения будет рассказано в других статьях.
Теперь, когда вы поняли насколько важна такая характеристика как ударная вязкость, поговорим об образцах для испытания. Так как трещина в металле начинает расти от места скопления микротрещин (когда размер скопления достигает критического уровня), которые обязательно присутствуют в реальных конструкциях, то на образцах для испытания делают искусственный дефект – надрез. Существует два основных типа образцов для испытания на ударную вязкость, которые различаются типом надреза.
Первый тип – образец с полукруглым надрезом, который обозначают латинской буквой «U» и называют образцом «Менаже» в честь ученого, предложившего данный тип образца. Радиус у основания надреза 1 мм.
Второй тип – образец с острым надрезом, который обозначается латинской буквой «V» и называют образцом «Шарпи», также назван в честь ученого, который его предложил и впервые использовал. Радиус у основания надреза 0,25 мм. Тип образца во время экспертизы металла выбирается, исходя из нормативных документов.
Ударная вязкость состоит из двух составляющих – из работы зарождения и работы распространения трещины. Отсюда вытекает логичное умозаключение, что ударная вязкость на образцах «Шарпи» существенно меньше, чем на образцах «Менаже», за счет меньшей работы зарождения трещины.
Кроме типа надреза на величину ударной вязкости прямое влияние оказывает температура испытания. С понижением температуры испытания ударная вязкость снижается, как и меняется характер разрушения образца с вязкого (со значительно степенью пластической деформации), на хрупкий (с практически полным отсутствием пластической деформации). Переход от вязкого к хрупкому разрушению с понижением температуры обусловлен таким явлением, как хладноломкость. Хладноломкость выражена в существенном увеличении предела текучести и снижении относительного удлинении с понижением температуры и характерна для металлов с объемноцентрированной кристаллической решеткой (Fe, Cr, Mo и другие).
Внешний вид образцов после испытания на ударный изгиб, проведенного нашей компанией, представлен на фото. Хорошо видно различие между образцами, разрушенными по разным механизмам. Вязкий излом с матовой поверхностью и следами пластической деформации в зоне разрушении. И хрупкий излом с блестящей поверхностью и без следов деформации – ровный скол, будто бы образец был разделен острым ножом. Есть еще и промежуточный вид – смешанное разрушение, в котором присутствует и вязкая, и хрупкая составляющая.
Доля вязкой составляющей является второй характеристикой, после ударной вязкости, которая определяется при испытании на ударный изгиб. Долю вязкой составляющей определяют визуально, изучая строение излома образца после испытания, измеряют ее в %.
Критическая температура хрупкости – очень важный критерий при оценке качества сталей, который показывает до какого момента сталь разрушается преимущественно по вязкому механизму. Использование стали при температурах ниже критической температуры хрупкости нежелательно.
Россия в значительной степени северная страна, где отрицательные температуры сохраняются в течение длительного времени. Освоение полярных и при полярных территорий, богатых природными ресурсами, с одновременным усложнением архитектурной конфигурации возводимых сооружений, ставит задачу по разработкам сталей с высоким уровнем сопротивления хрупкому разрушению. О способах повышения ударной вязкости в сталях я расскажу в следующих статьях.