к чему приводит достижение максимальной плотности электрического тока в проводнике

Нагревание проводников электрическим током

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Почему нагреваются проводники

Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.

Рис. 1. Электрический ток в проводнике нагревает проводник

Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.

Как рассчитать сечение по току?

Табличные значения не могут учесть индивидуальных особенностей устройства и эксплуатации сети. Специфика у таблиц среднестатистическая. Не приведены в них параметры максимально допустимых для конкретного кабеля токов, а ведь они отличаются у продукции с разными марками. Весьма поверхностно затронут в таблицах тип прокладки. Дотошным мастерам, отвергающим легкий путь поиска по таблицам, лучше воспользоваться способом расчета размера сечения провода по току. Точнее по его плотности.

Допустимая и рабочая плотность тока

Начнем с освоения азов: запомним на практике выведенный интервал 6 — 10. Это значения, полученные электриками многолетним «опытным путем». В указанных пределах варьирует сила тока, протекающего по 1 мм² медной жилы. Т.е. кабель с медной сердцевиной сечением 1 мм² без перегрева и оплавления изоляции предоставляет возможность току от 6 до 10 А спокойно достигать ожидающего его агрегата-потребителя. Разберемся, откуда взялась и что означает обозначенная интервальная вилка.

Согласно кодексу электрических законов ПУЭ 40% отводится кабелю на неопасный для его оболочки перегрев, значит:

Потоку энергии 12 А в медном миллиметровом канале будет изначально «тесно». От тесноты и толкучки электронов увеличится плотность тока. Следом повысится температура медной составляющей, что неизменно отразиться на состоянии изоляционной оболочки.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Обратите внимание, что для кабеля с алюминиевой токоведущей жилой плотность тока отображает интервал 4 – 6 Ампер, приходящийся на 1 мм² проводника.

Выяснили, что предельная величина плотности тока для проводника из электротехнической меди 10 А на площадь сечения 1 мм², а нормальные 6 А. Следовательно:

Приведенные выше значения плотности тока действительны для открытой проводки. Если кабель прокладывается в стене, в металлической гильзе или в пластиковом кабель канале, указанную величину плотности тока нужно помножить на поправочный коэффициент 0,8. Запомните и еще одну тонкость в организации открытого типа проводки. Из соображений механической прочности кабель с сечением меньше 4 мм² в открытых схемах не используют.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Изучение схемы расчета

Суперсложных вычислений снова не будет, расчет провода по предстоящей нагрузке предельно прост.

Не забудем о том, что в силу разнообразных обстоятельств порой включаем одновременно больше агрегатов, чем рассчитывали. Что есть еще лампочки и прочие приборы, незначительно потребляющие энергию. Запасемся некоторым резервом сечения на случай увеличения парка бытовой техники и с расчетами отправимся за важной покупкой.

Плюсы и минусы от нагрева электрическим током

Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.

Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.

Основные понятия

Любое металлическое изделие состоит из кристаллической решетки. Через нее проходят электроны, подвижные частицы, из-за чего электричество трансформируется в тепловую энергию. Данное свойство с успехом используется производителями обогревателей и осветительных приборов. Однако в обычных электрических системах перегрев кабеля недопустим, поскольку он со временем приведет к нарушению изоляцию и воспламенению. Поэтому важно подобрать правильное сечение проводников, чтобы те выдерживали допустимые (потенциальные) токовые нагрузки сети.
Для этого учитываются два термина:

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.
Зависимость плотности тока от сечения
Даже если будет подобрано правильное сечение провода, он все равно может перегреться. Причин несколько: слабый контакт в местах соединения или окисления, связанные с недопустимой скруткой алюминиевой и медной жил.

Внимание! Нагрев проводника может быть связан с плохим контактом в местах присоединений или с окислением в точках, где скручены вместе алюминиевые и медные провода. Такое происходит даже при правильном подборе сечения.

Сечение провода

Выбор сечения токопроводящей жилы рассматривают по двум характеристикам:

Нагревание проводников критично для подземных и помещённых в шланговые или трубчатые футляры кабельных линий. Для воздушных линий электропередач (ЛЭП) серьёзное значение имеет потеря напряжения. На комбинированных участках из двух рассчитанных сечений выбирается большее с округлением до стандартной величины.

Важно! При выборе сечения из таблицы или расчётах по формулам необходимо предварительно определиться с условиями эксплуатации.

Iр = Pн/Uн,

Формула справедлива для токов, проходящих через проводник, когда температура уже установилась, и внешние температурные факторы на неё не оказывают влияния. Длительно допустимый ток зависит от: сечения, материала проводника, изоляции и способа прокладки кабеля.

∆U = (U – Uном) *100/ Uном,

Максимальное отклонение должно составлять не более 10%.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.
Таблица нагрузок по сечению кабелей

Плотность тока

Иными словами, плотность тока – это количество тока проходящего через сечение проводника за единицу времени. Единица измерения – ампер на мм квадратный (А/мм2).

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.
Плотность тока

Открытая и закрытая прокладка проводов

Существует два варианта монтажа комнатной проводки:

Названия говорят сами за себя. Провода или кабели прокладываются вдоль стен, по их поверхности. Обычно они защищены кабель каналами или гофрированными шлангами. Крепление осуществляется при помощи специальной арматуры. Такой тип монтажа пригоден для производственных помещений, сараев, гаражей и других зданий, где дизайн не играет особой роли. Провод наружной установки должен выдержать атмосферные воздействия, если он не уложен в трубы или шланги.

Внимание! Минимальные сечения проводов одинаковы для обоих типов прокладки: 1 мм2 – для меди и 2,5 мм2 – для алюминия.

Распределительные коробки, выключатели и розетки устанавливаются на специальные изолирующие прокладки и имеют конструкцию для наружной установки.

Скрытая прокладка проводов подразумевает штробление стен под провод и остальную арматуру. Розетки, выключатели и распределительные коробки конструктивно предназначены для внутренней установки. Они утапливаются в стену до фасадной части. Наружные части имеют эстетический вид. Такая проводка скрыта под штукатуркой и обоями.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.
Таблица токовых нагрузок к сечениям медных и алюминиевых кабелей и проводов

В большинстве случаев для квартир применяют скрытый монтаж. При помощи перфоратора или штробореза в стене или на потолке создают специальные углубления, в которые укладывается кабель. Дополнительно он может быть помещен в гофрированные трубки или рукава. Спрятав кабель, углубления следует заделать при помощи штукатурки.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.
Укладка скрытой проводки в штробах

Условия теплоотдачи

Важным условием тепловой отдачи считается влажная среда, в которой находится кабель. При размещении провода в грунте теплоотвод напрямую связан со структурой и его составом, а также уровнем влажности.

Для получения наиболее точных величин придется проанализировать состав почвы, в зависимости от которого будет разным сопротивление. При помощи таблицы ищут удельное сопротивление. Благодаря качественной утрамбовке данная характеристика может быть уменьшена. Песок и гравий обладают меньшей теплопроводностью по сравнению с глиной, поэтому в идеале провода засыпают последней. Вместо глины можно использовать суглинок без примесей шлака, камней и мусора.

Важно помнить о разных условиях охлаждения кабеля с изоляцией и без нее. В первом случае тепловые потоки, исходящие при нагреве жил, вынуждены преодолевать дополнительный барьер в виде изоляционного слоя.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.
Расположение кабеля в траншее

При подземной укладке кабеля, когда в одной траншее расположено сразу два проводника, процесс охлаждения существенно замедлится, что приведет к снижению допустимые токовых нагрузок.

С точки зрения электрической и пожарной безопасности, определение правильных длительно допустимого тока и сечения кабеля — важное условие, позволяющее исключить перегревы, нарушение изоляции и воспламенение кабельной линии. При расчетах следует быть внимательными и учесть множество дополнительных условий. Определенные корректировки нужны даже для табличных значений.

Источник

Сила и плотность тока. Линии тока

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков ( d q + и d q − ), справедливым будет заключение о том, что сила тока равна следующему выражению:

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

где j представляет собой модуль плотности электрического тока.

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

Основываясь на законе Ома для плотности токов можно записать такое выражение:

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

Источник

Тепловое действие тока, плотность тока и их влияние на нагрев проводников

Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.

Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику во время прохождения по нему тока. То есть электрическая энергия преобразуется в тепловую.

Получение тепловой энергии из электрической широко применяется с давних времен в различной технике. Электронагревательные приборы, такие как обогреватели, водонагреватели, электрические плиты, паяльники, электропечи и т. д., а также электросварка, лампы накаливания и многое другое используют именно этот принцип для получения тепла.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Для любого проводника, в зависимости от параметров окружающей среды, характерно определенное допустимое значение величины тока, при котором проводник заметно не нагревается.

Так, например, для нахождения допустимой токовой нагрузки на провода, используют параметр «плотность тока», характеризующий ток, приходящийся на 1 кв.мм площади поперечного сечения данного проводника.

Допустимая плотность тока для каждого проводящего материала в определенных условиях своя, она зависит от многих факторов: от вида изоляции, интенсивности охлаждения, температуры окружающей среды, площади поперечного сечения и т. д.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Для проводов осветительных и силовых сетей предельно допустимая плотность тока принимается исходя из вида их изоляции и площади поперечного сечения.

Если материалом проводника служит медь, а изоляция резиновая, то при площади сечения, например, в 4 кв.мм допускается плотность тока не более 10,2 ампер на кв.мм, а если сечение 50 кв.мм, то допустимая плотность тока будет всего 4,3 ампера на кв.мм. Если же проводники указанной площади не имеют изоляции, то допустимые плотности тока будут соответственно 12,5 и 5,6 ампер на кв.мм.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

С чем же связано понижение допустимой плотности тока для проводников большего сечения? Дело в том, что проводники с существенной площадью поперечного сечения, в отличие от проводников малого сечения, имеют больший объем проводящего материала расположенного внутри, и получается что внутренние слои проводника сами окружены нагревающимися слоями, которые мешают отводу тепла изнутри.

Если превысить допустимый для проводника ток, он начнет перегреваться, и в какой-то момент его температура окажется чрезмерной. Изоляция обмотки электродвигателя, генератора или просто проводки, может в таких условиях обуглиться или загореться, что приведет к короткому замыканию и пожару. Если же говорить о неизолированном проводе, то он при высокой температуре может просто расплавиться и разорвать цепь, в которой служит проводником.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Превышение допустимого тока принято предотвращать. Поэтому в электрических установках обычно принимают специальные меры с целью автоматического отключения от источника питания той части цепи или того электроприемника, в котором случилась перегрузка по току или короткое замыкание. Для этого служат автоматические выключатели, плавкие предохранители и другие устройства, несущие аналогичную функцию — разорвать цепь при перегрузке.

Из закона Джоуля-Ленца следует, что перегрев проводника может произойти не только из-за превышения тока через его поперечное сечение, но и из-за более высокого сопротивления проводника. По этой причине для полноценной и надежной работы любой электрической установки крайне важно сопротивление, особенно в местах соединения друг с другом отдельных проводников.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Если проводники соединены не плотно, если их контакт друг с другом не качественный, то сопротивление в месте соединения (так называемое переходное сопротивление в месте контакта) окажется выше чем для цельного участка проводника той же длины.

В результате прохождения тока через такое некачественное, не достаточно плотное соединение, место данного соединения будет перегреваться, что чревато возгоранием, выгоранием проводников или даже пожаром.

Чтобы этого избежать, концы соединяемых проводников надежно зачищают, облуживают и оснащают кабельными наконечниками (впаивают или прессуют) или гильзами, которые обеспечивают запас на переходное сопротивление в месте контакта. Такие наконечники можно плотно закрепить на клеммах электрической машины при помощи болтов.

К электрическим аппаратам, предназначенным для включения и выключения тока, также применяют меры по уменьшению переходного сопротивления между контактами.

Источник

Что такое плотность тока

Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения. Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий. Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.
к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.
Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток. Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2. Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки. плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока. В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2. Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом. Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными. Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий. В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля. Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками. Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку. В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

к чему приводит достижение максимальной плотности электрического тока в проводнике. к чему приводит достижение максимальной плотности электрического тока в проводнике фото. картинка к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть фото к чему приводит достижение максимальной плотности электрического тока в проводнике. смотреть картинку к чему приводит достижение максимальной плотности электрического тока в проводнике.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2. В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2. В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S. Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника. Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *