Тайминг trfc что это
Да ты гонишь! Почему на одних конфигурациях оперативка разгоняется выше, чем на других
Разгон памяти, дело добровольное. Как понять, от чего зависит разгон памяти, какие есть тонкости в подборе комплектующих и как «прогнать» память, чтобы было за нее не стыдно!
Изучение, анализ и подбор – три составляющих успеха в разгоне памяти. Чтобы начать разгонять память без погружения в пучины технических знаний, необязательно быть специалистом. Половина успеха зависит от платформы, вторая часть – это правильный выбор ранговости, количество модулей и частот памяти Kingston и HyperX.
Чипсеты Intel
Со стороны Intel производитель предлагает россыпь процессоров от начального до топового уровня — есть из чего выбирать. В качестве основы «синих» систем сейчас присутствует 2 поколения чипсетов и их возможности в плане разгона ЦП и памяти очень тривиальны. Официально Intel считает всего одну модель чипсета пригодной для разгона и это семейство Z 390/490. Все остальные проходят мимо.
Впрочем, из-за этого процесс выбора сведен к простому, казалось бы, выбору, но нет. С Z 390/490 все просто – определились с количеством интерфейсов, разъемов PCIe/USB и т.п. Нашли подходящую материнскую плату и купили. Зашли в BIOS или программу для разгона и попали в новый таинственный мир удивительных открытий. Если разгон не нужен, то покупаем любую подходящую плату. А с третьим вариантом притормозим. Хотя компания Intel официально и не признает разгон памяти на любых версиях чипсета за исключением двух ранее упоминавшихся, но производители стараются открыть пользователям скрытые возможности. В зависимости от модели могут быть доступны настройки (базовые или расширенные) таймингов памяти и делители (только ниже частоты, указанной в спецификации Intel для выбранного процессора). Например, некоторые удачные версии плат на чипсете B460/H470 все же наделены опциями по тонкой настройке таймингов памяти и форсировании режимов Turbo на процессорах, так называемая фиксация PL режимов (перевод работы процессора в постоянно поддержание турбо частоты).
Кстати, о доступных частотах памяти на младших B460/H410/H470: фактически, платы либо самостоятельно выставляют частоту памяти по спецификациям Intel (легко проверить, найдя интересующий вас процессор на сайте ark.intel.com и посмотреть на строку «Типы памяти»), либо при первой загрузке ставится минимальная частота согласно спецификации JEDEC (обычно все настройки поддерживаемых частот записаны в микросхеме SDP). Q470 – чипсет аналог Z490 по периферийным интерфейсам, но без разгона процессора. Оставшийся в списке W480 стоит особняком. Он поддерживает разгон памяти и можно выставить повышенные множители для Dram, однако в продаже плат с ним практически не найти.
Тонкости контроллера памяти и разводки плат
Если бы в компьютерном мире все было бы просто, то жить было бы легче! Увы, или к счастью, это не так. Помимо загрузки вашей головы типами чипсетов для разгона памяти важны и другие характеристики комплектующих. Начать стоит со второй составляющей и это контроллер памяти в процессоре. На последних 5 поколениях этот аппаратный блок напрямую связан с System Agent в ЦП и с шиной. Объективно, несмотря на постоянство в выборе тех. процесса (14 нм и различные улучшения +, ++, +++) компания постоянно улучшает их способности держать более высокие частоты без запредельно высоких напряжений. Вспоминая разгон памяти на процессорах от Kaby Lake до Comet Lake, нельзя отрицать тот факт, что процесс упростился, а финальные частоты выросли. Не последнюю очередь это связано с более тщательным подходом написания таблиц таймингов и субтаймингов в XMP комплектов памяти. Это серьезно упрощает алгоритм материнской платы по первоначально загрузке, хотя некоторые производители вносят либо слишком короткий список таймингов, забывая о вторичных/третичных, либо сильно повышают напряжение на контроллер памяти и системный агент. Такие действия приводят систему в нестабильное состояние, а часто повышенное напряжение перегревает процессор. Поэтому стоит внимательно подходить к выбору комплекта памяти. А помимо ранее озвученных составляющих разгона Dram чуть не упустили из виду правильность разводки слотов.
Топология
Для DDR4 обычно используют два вида разводки слотов — Daisy chain и T-topology.
T-Topology обладают редкие экземпляры материнских плат и приспособлены для лучшего разгона 4 модулей памяти. T-Topology разводка позволяет достичь частот более 4 ГГц сразу на 4 планках Dram, в то время как Daisy chain с 2 модулями добирается в руках пользователей до частоты более 4,5 ГГц.
Daisy chain – разводка оптимизирована для 2 модулей памяти. При условии удачного процессора и хорошо разгоняемой памяти лучше выбирать такие платы с 2 занятыми слотами Dimm. Второй вариант разводки косвенно можно отличить по рекомендациям производителей устанавливать память сначала в последние слоты, которые являются своего рода первыми в очереди в логической цепочке ответвлений от контроллера памяти.
Ранги
С топологиями разводки каналов разобрались, переходим к рангам памяти…
Ранг памяти — это блок или область данных, которые создаются с использованием нескольких или всех микросхем памяти в модуле. Ранг — это блок данных шириной 64 бита. Не стоит путать ранги с расположением микросхем памяти на текстолите. Результаты разгона памяти с двумя рангами довольно печальные, контроллеру памяти и шине тяжело справлять с четырьмя рангами. Максимум, что доступно — от 3466 МГц при CL14 до 3600 МГц при CL16. Единственный плюс от четырех рангов — это внушительный объем оперативной памяти и технология чередования рангами, которая увеличит производительность системы в играх. Узнать о количестве рангов можно из расшифровки модулей на сайте производителя, либо через утилиты Thaiphoon/Aida64/ CPU-Z.
В программе Thaiphoon легко определить производителя микросхем, организацию модуля памяти, ранговость и остальные параметры.
• Manufacturer – производитель микросхем;
• Die Density / Count – Емкость одной микросхемы в Гбитах и кодовое название. Его обычно используют в профильных форумах для ориентации среди различных версий микросхем. Обычно говорят Samsung B-die, либо Micron E-die;
• Composition – организация банков в одной микросхеме памяти (2048 Мбит*8=16 Гбит);
• Capacity – емкость всего модуля памяти, в скобках указано количество микросхем;
• Organization – в этом поле можно точно узнать ранговость вашей памяти (1/2 ranks);
Постепенно, начиная с конца 2019 года, Kingston переходит на использование 16 Гбит чипов памяти. Поэтому емкие комплекты Dram организуются из 16 Гбит микросхем с одноранговой адресацией, емкостью 16 ГБ и двухранговой 32 ГБ.
Промежуточный итог
Вкратце, для материнских плат с разводкой:
Daisy chain — лучший вариант для разгона 2 модулей памяти с одноранговой организацией, чуть хуже планки с двумя рангами. Следующая комбинация, состоящая из 4 Dimm с одним рангом, а далее с двумя рангами.
Для T-topology — для разгона подходят 4 модуля памяти с одноранговой организацией, но можно устанавливать 2 модуля с двумя рангами. Совсем неподходящая комбинация 2 или 4 модуля с двумя рангами.
По уровню разгона согласно мировой статистике: 8 Гб B-die > 8 Гб Micron Rev. E > 8 Гб CJR > 4 Гб E-die > 8 Гб AFR > 4 Гб D-die > 8 Гб MFR > 4 Гб S-die.
Чипсеты AMD
Легко выбрать, сложно разогнать! С платформой AMD AM4 все с одной стороны просто в вопросе выбора чипсета, а с другой — во много раз сложнее. Любой современный чипсет AMD поддерживает разгон памяти и процессора, даже сверхбюджетный A520. Другое дело, что некоторые производители материнских плат урезают в BIOS нужны пункты меню, например, редактор PBO режимов. Но в целом, начиная с B450 разгон возможен в полной мере.
О контроллере
Zen 2/3 поколения Ryzen оснащаются контроллером памяти, ведущий свою родословную со времен Bulldozer. Конечно, в него внесены изменения для DDR4, но контроллер построен на все том же 12-нм техпроцессе. В Zen 3 он не претерпел никаких изменений, однако благодаря новой компоновке ядер Zen 3 лишился одной промежуточной шины IF, что положительно сказалось на времени доступа к ОЗУ.
Почему же разгон на AMD сложнее и требует некоторого объема знаний?
Из-за использования специальной шины Infinity Fabric, которая связывает между собой отдельные блоки в процессоре, именуемые CCX. Infinity Fabric имеет свой собственный тактовый домен, который синхронизируется с физической частотой памяти. Начиная со второго поколения Zen получил дополнительный режим, когда частота IF принимает значение частоты памяти, а также 1/2 MEMCLK, который существенно увеличит частотный потенциал DRAM во время разгона. Идеальным режимом работы IF для максимальной производительности все еще остается соотношение 1:1. Не будем вдаваться в подробности, но для игр соотношение работы памяти и IF 1 к 1 дает несколько вариантов оптимальных частот – это 3600, 3800 МГц. В зависимости от удачи, если вам попадется счастливый билет вытянуть процессор со стабильно функционирующим IF в 4 ГГц, то можем вас поздравить, вы уникальный человек.
Разумным выбором для процессоров Ryzen 3ххх было и остается использование модулей памяти DDR4-3600 или DDR4-3733. Предельная частота шины Infinity Fabric составляла 1800-1867 МГц. Далее переключался делитель, который позволял разгоняться памяти выше, но дивидендов система не получала. Все это касается и новых Ryzen 5xxx серии. Происходит это потому, что вместе с IF синхронно увеличивается частота L3-кеша, тем самым поднимая пропускную способность внутри процессора.
О памяти для AMD
Теперь вы ознакомлены с нюансами работы контроллера памяти, шины IF и L3-кеша, а что же с выбором материнской платы. Как и ранее упомянутые топологии (Daisy chain и «Т»), для процессоров AMD производители выпускают оба типа плат с большим перевесом в сторону Daisy chain. Поэтому оптимальные рекомендации по памяти выглядят следующим образом:
Покупка одноранговой памяти в количестве 2 штук максимального объема для максимального разгона. Чипсет не важен, будь то B550 или Х470/570. Этот совет распространяется на 90% любых конфигураций с процессорами AMD. Совсем неоднозначные результаты разгона достигаются на двухранговых модулях памяти. В промежутке стоит комплект с четырьмя одноранговыми модулями. Завершает парад система с четырьмя двуранговыми планками памяти. Как определить топологию материнской платы под AMD? Спасибо, интернету, все за нас определено. Достаточно пройти по ссылке и найти интересующую материнскую плату.
Вернемся к подбору памяти исходя из топологии купленной материнской платы. Конечно, установив память в систему и запустив программу, мы со 100% уверенностью скажем, сколько рангов в нашей памяти. Но есть инструмент и проще, без покупки «кота в мешке». Заходим на страницу памяти, выбираем интересующие нас параметры (тайминги, цвет, объем, подсветку) и смотрим в описание. Для примера рассмотрим два комплекта Fury X объемом 32 Гб и 64 Гб.
64 ГБ комплект HyperX FURY DDR4 RGB, состоящий всего из 2 модулей создан в двухранговой конфигурации. Об этом нам сообщает надпись 2Rx8.
В случае с аналогичным комплектом, но объемом 32 ГБ организация планок превращается в одноранговый тип (1R). Вот такой простой способ определении рангов, используемых в памяти.
Программы, таблицы, алгоритмы помогающие разгонять память
Для платформы Intel
Не всегда память может стартовать с готовых настроек XMP, особенно высокочастотная. Поэтому сначала начните с применения профиля XMP, но на частоте 3200 МГц. В BIOS обязательно убираем MRC Fast boot. Запишите основные тайминги и откройте программу тайфун, чтобы узнать, с какими чипами имеете дело. Запустите TestMem5 и сделайте непродолжительный тест. Для уменьшения времени грубой настройки не ждите часами, при стабильности в несколько минут можно идти и снижать тайминги. Снижайте и изменяйте их по одному, выискивая нестабильные показатели. Обязательно записывайте значения, какие тайминги были нестабильными. Не пытайтесь выставить предельно низкие тайминги или высокую частоту памяти сразу. С двумя модулями и высокой частотой (более 4 ГГц) CR выставить на 2, если стоит 1. С 4 модулями сразу можно начинать тест на значении CR 2. Изменения таймингов лучше начать с CL и RCD. Многие чипы не «любят» синхронных значений, для них CL всегда будет меньше, чем RCD. RAS сразу пробуйте по формуле RCD+CL+4, до этого значения от него существенная разница, дальше влияние исчезает. CWL =RRD_S, CKE=5, СCDL>=4.
RDRD_DD и похожие значения требуют внимания при использовании всех 4 слотов Dimm. Значение определять опытным путем и тестированием. Это тонкие настройки для стабилизации работы всех 4 планок.
RDWR_SG(DG) и похожие пункты меню в BIOS опускайте до минимальных, но рабочих значений. Для стабильности сделайте +2 к ним.
RFC настраивать можно в самом конце. Его не нужно понижать или повышать сверх меры, просто найдите число в стабильном диапазоне, который обычно бывает от +20 до +40 пунктов от базового.
REFi требует подгонки с тестированием и стандартно проявляет себя по принципу больше — лучше. Находится в зависимости от значения RFC. Последнее описывает статус времени отдыха памяти, а первый – работы.
Тестируйте тщательно, в том числе на холодную и с перезагрузками.
• Asrock Timing Configurator 4.0.4 – просмотр таймингов;
• Asus MemTweakIt 2.02.44 — просмотр таймингов;
• TestMem5 — тест памяти на стабильность и ошибки;
Для платформы AMD
Открываем программу тайфун и смотрим, какие используются чипы памяти. Далее запускаем калькулятор DRAM Calculator for Ryzen и выбираем начальную частоту (начинать стоит с 3200 МГц) и ваши чипы памяти. В обязательном порядке проходимся по таймингам из калькулятора и вручную заносим их в BIOS’е. Скачиваем программы Ryzen Master, TestMem5, опционально Aida64. Ryzen Master нам понадобится для отслеживания таймингов и сопротивлений, TestMem5 для проверки стабильности, а Aida64 для быстрого и сравнительного замера производительности памяти. Если даже с частотой в 3200 МГц система не стартует, то меняем в большую сторону procodt и tRTP, перед этим tRFC2 и tRFC4 выставляем в автоматическом режиме. Успешное прохождение теста TestMem5 позволит вам выбрать два пути дальнейших действий: при небольшом количестве ошибок можно увеличить напряжение на памяти, при отсутствии пробуем поднимать частоту. По достижении частоты 3600 МГц советуем начать ужимать тайминги.
• DRAM Calculator for Ryzen – база готовых наборов для разгона и подбора таймингов памяти;
• ZenTimings — проверка первичных, вторичных и дополнительных таймингов памяти;
• AMD Ryzen Master – официальная программа от AMD для разгона процессоров и памяти;
• TestMem5 0.12 1usmus V3 config – тест памяти на стабильность и ошибки;
• Ryzen Timing Checker – проверка первичных, вторичных и дополнительных таймингов памяти;
Выводы
Разгон памяти – это хождение по минному полю без металлодетектора, основываясь только на собственной обостренном чутье. Чтобы сократить число минут, процесс стоит начинать с выбора правильной материнской платы, подходящего комплекта памяти и опыта других людей. Коллективный разум и десятки тысяч часов, проведенных в поисках оптимальных комбинаций настроек и параметров, плавно заполонили FAQ. Допустим, вы прекрасно понимаете, какие комплекты памяти подходят для daisy chain или Т-топологии материнских плат. Отличаете 1 и 2 ранговую память. Научились определять производителя микросхем, но немаловажно будет отметить существование QVL листов совместимости у производителей материнских плат. Однако, не найдя требуемого комплекта памяти, не расстраиваетесь. Опыт, ошибки, внимательность позволят вам через n-ное число часов найти те самые настройки, при которых и 2 различных комплекта Kingston (2 ранговых) общим объемом в 96 ГБ будут стабильно работать в неподходящей материнской плате.
Для получения дополнительной информации о продуктах Kingston Technology обращайтесь на официальный сайт компании.
Про тайминги популярно
Про тайминги популярно.
Статья рассказывает о таймингах и их применении, и призвана детально объяснить значение этого термина.
В форумах, да и в статьях, посвященных обзорам компьютерных комплектующих с собственной оперативной памятью, нередко видишь упоминания про тайминги. Их огромное количество. Поначалу у новичка даже глаза разбегаются. А опытный человек часто просто оперирует понятиями, иногда совершенно не догадываясь, что они означают. В данной статье я постараюсь восполнить этот пробел.
Про тайминги популярно.
Статья рассказывает о таймингах и их применении, и призвана детально объяснить значение этого термина.
В форумах, да и в статьях, посвященных обзорам компьютерных комплектующих с собственной оперативной памятью, нередко видишь упоминания про тайминги. Их огромное количество. Поначалу у новичка даже глаза разбегаются. А опытный человек часто просто оперирует понятиями, иногда совершенно не догадываясь, что они означают. В данной статье я постараюсь восполнить этот пробел.
Итак, алгоритм считывания данных из памяти таков:
1)выбранный банк активируется подачей сигнала RAS;
2)данные из выбранной строки передаются в усилитель, причем на передачу данных необходима задержка (она называется RAS-to-CAS);
3)подается сигнал CAS для выбора слова из этой строки;
4)данные передаются на шину (откуда идут в контроллер памяти), при этом также происходит задержка (CAS Latency);
5)следующее слово идет уже без задержки, так как оно содержится в подготовленной строке;
6)после завершения обращения к строке происходит закрытие банка, данные возвращаются в ячейки и банк перезаряжается (задержка называется RAS Precharge).
Как видите, для совершения некоторых операций системе нужны задержки, иначе она не успеет считать выбранные данные или, например, перезарядить банк. Эти задержки и называются таймингами.
Заглянув в BIOS
Для оперативной памяти существует громадное количество задержек. Достаточно заглянуть в любое описание памяти. Но основные можно увидеть в диагностической утилите CPU-Z или в BIOS. Познакомимся поподробнее с каждым из них. Для разгона, конечно, нужно уменьшить время задержек, поэтому чем их значения меньше, тем быстрее работает система. Впрочем, о разгоне поговорим позже. В разных источниках названия могут меняться, поэтому надо смотреть на краткое обозначение.
Возьмем, для примера, скриншот из программы CPU-Z.
RAS# to CAS# Delay (Trcd)
Число тактов, необходимых для поступления данных в усилитель. (п.2 алгоритма) Другими словами, это временной интервал между командами RAS и CAS, поскольку архитектура SDRAM не позволяет подавать их одновременно.
RAS# Precharge (TRP)
Время, необходимое на перезарядку ячеек памяти после закрытия банка (п.6)
Row Active Time (TRAS)
Время, в течение которого банк остается открытым и не требует перезарядки. Изменяется вместе со следующим параметром.
Это основные тайминги, которые позволяет выставить большинство материнских плат. Однако поясню и другие.
DRAM Idle Timer
Время простаивания открытой страницы для чтения из нее данных.
Row to Column (Read/Write) (Trcd, TrcdWr, TrcdRd)
Данный параметр связан с параметром RAS-to-CAS (Trcd) и является как бы его уточнением, поскольку вычисляется по формуле Trcd(Wr/Rd) = RAS-to-CAS delay + rd/wr command delay. Второе слагаемое определяет задержку на выполнение записи/чтения. Но эта величина нерегулируемая, и изменить её нельзя. Поэтому её часто именуют просто RAS-to-CAS Delay.
Перечисленные параметры могут показаться нагромождением букв и цифр, но я уверяю, если вы заглянете хотя бы в один даташит (ближе к его концу), то быстро во всем разберетесь.
Тайминги видеокарт
В начале статьи я не зря упоминал про устройства с собственной оперативной памятью. Таковым явяется и видеокарта. И у этой памяти тоже есть тайминги достаточно заглянуть в раздел Timings популярной программы ATI Tray Tools.
Здесь возможностей для их изменения гораздо больше. Однако при заглядывании в даташит мы можем серьёзно озадачиться:
Здесь приведены ключевые, по мнению разработчиков памяти, параметры.
Поначалу кажется, что разработчики программы так не думают. Например, в ней нет тайминга tDAL, и ни в одном даташите нет таймингов tW2R, tR2R. Здесь я постараюсь объяснить значения таймингов для твикера и для даташита. Тайминги могут повторяться с приведенными выше. Их обозначения могут дополняться. Итак, начнем.
Write Latency (tWL)
Количество тактов, необходимое для произведения операции записи в память.
CAS Latency (tCL)
Задержка данных перед выдачей на шину. Подробнее см. выше. на пункт CAS Latency оперативной памяти.
CMD Latency
Задержка между подачей команды на память и ее приемом.
Strobe Latency
Задержка при посылке строб-импульса (селекторного импульса).
Activate to Read/Write, RAS to CAS Read/Write Delay, RAW Address to Column Address for Read/Write (tRCDRd/tRCDWr)
Повторюсь здесь еще раз. Для видеокарт это объяснение справедливей.
Данный параметр связан с параметром RAS-to-CAS (Trcd) и является как бы его уточнением, поскольку вычисляется по формуле Trcd(Wr/Rd) = RAS-to-CAS delay + rd/wr command delay. Второе слагаемое определяет задержку на выполнение записи/чтения. Но эта величина нерегулируемая, и изменить её нельзя. Поэтому её часто именуют просто RAS-to-CAS Delay.
Row Precharge Time, Precharge to Activate, RAS# Precharge (tRP)
Время перезарядки ячеек после закрытия банка.
Activate to Precharge, Row Active Time (tRAS)
Время, в течение которого банк остается открытым и не требует перезарядки.
Activate to Activate, Row Active to Row Active (tRRD)
Задержка между активациями различных рядов
Auto Precharge Write Recovery + Precharge Time (tDAL)
Загадочный даташитный тайминг tDAL вызывал в формуах много споров, что он обозначает, однако в одном из документов JEDEC черным по белому написано следующее:
Write to Read Turnaround Time for Same Bank (tW2RSame Bank)
Аналогичная предыдущей процедура, отличающаяся от нее только тем, что действие происходит в том же банке. Особенность задержки в том, что процедура записи, естественно, не может быть больше промежутка до перезарядки банка (tWR), то есть заканчиваться во время перезарядки.
Read to Read Turnaround Time (tR2R)
Задержка при прерывании операции чтения операцией чтения из другого банка.
Row Cycle Time, Activate to Activate/Refresh Time, Active to Active/Auto Refresh Time (tRC)
Время для автоматической подзарядки. Встречается в даташитах.
Auto Refresh Row Cycle Time, Refresh to Activate/Refresh Command Period, Refresh Cycle Time, Refresh to Active/Refresh Comand Period (tRFC)
Минимальный промежуток между командой на подзарядку (Refresh) и либо следующей командой на подзарядку, либо командой на активацию.
Memory Refresh Rate
Частота обновления памяти.
Практика
Итак, мы рассмотрели основные тайминги, которые могут чаще всего встретиться нам в программах или даташитах. Теперь, для полной картины, я расскажу, чем полезны тайминги в разгоне.
Я же решил исследовать влияние таймингов на своей системе.
Итак, вот она:
Процессор | Intel Celeron 1100A Tualatin 1100@1580 |
Материнская плата | JetWay i815-EPDA |
Память | 512Mb (2×256) PC133 NCP (FSB:DRAM=1:1) |
Видеокарта | GeCube RadeOn 9550 Ultra (400/400) |
Блок питания | Power Master 250W FA-5-2 |
Жесткий диск | WD W800JB 80Gb 8Mb cache |
Операционная система | Windows XP SP2 |
Система была оставлена «как есть». Видеокарта также не разгонялась. Испытания проводились в двух тестовых пакетах и в одной игре:
- 3DMark 2001 patch 360, так как оценивает разгон каждого элемента системы, а не только видеокарты
«Оверклокерская» для своего времени память NCP и сей раз не дала промаху и позволила запуститься на частоте 143МГц с таймингами 2-2-2-7! Но поменять последний параметр (Tras) память не дает ни по какому поводу, только с уменьшением частоты. Впрочем, это не самый важный параметр.
Как видите, понижение таймингов дает прирост производительности около 10%. И если на моей системе это не так заметно, то на более мощной различие уже становится очевидным. А если поменять еще тайминги на видеокарте, где разгон часто упирается не в память, а как раз в задержки, то труд будет более чем оправдан. А что именно меняете, теперь вы уже знаете.