Транзистор cs48n75 mosfet чем заменить в гироскутере
Сгорела плата контроллера двигателей гироскутера, пару мосфетов вылетело, маркировка LL0N8Fb (может конечно LLON8Fb)
нужны либо характеристики, либо аналоги (гугль ничего не дает, за исключением пары ссылок на таобао)
может кто знает
P/s/ наряжение питания 36В
Вот сам же и напишу сюда:
порылся по инету,
транзистор STP110N8F6 (хотя читал под хорошим увеличением и там явно LL и b на конце — видимо китайский шрифт такой )))
Комментарии 22
Тоже смотрю коротыш на контактах аккума словил? ).
А вышли только ключи? Драйвера целы?
на рассыпухе, вроде норм драйвера.
люблю такие посты с вопросами, которые решаются сами собой))))
Десятки аналогов, зачем менять на ту же непонятную китайщину?
на ту же и не надо…
но надо параметры знать чтобы аналог подобрать:
Как минимум: предельные напряжение, и ток втч импульсный, сопротивление канала, напряжение отпирания. Ну еще не помещает емкости затвора, стока итд…
я ставлю IRF1407, пока не вернулся ни один из пары десятков.
н-каналы:
110N7Fb
P75NF75
100N8Fb
FBM85N80
CS48N78
RU6888R3
IRFB3607
спасибо большое.
уже нашел что за транзистор на самом деле это (порывшись на просторах) STP110N8F6
дальше уже творческий процесс подбора аналогов…
ваш список на вооружение )
главное меняйте все три сразу на каждый вывод
там всего 2 транзистора
я ставлю IRF1407, пока не вернулся ни один из пары десятков.
н-каналы:
110N7Fb
P75NF75
100N8Fb
FBM85N80
CS48N78
RU6888R3
IRFB3607
Мощнее с той же емкостью и сопротивлением затвора
какое питание у сабжа? думаю, имея напряжение питание и мощность дрыгателя, подобрать аналог вполне реально. Или даже повкуснее аналог
Если на деталь нет даташитов, да и сама деталь моложе 5 лет, то Я делаю проще — нахожу пару тройку магазинов в алиэкспресс, промышляющие радиоэлектронным ЗИПом, пишу им в директ что я ищу — заинтересованные магазины в течении дня это находят и как только я даю понять что готов купить — создают лот на 3.5шт этого наименования. Профит!
а самому подумать насчет замены никак?!
Смотри в сторону подобных низковольтных транзисторов и желательно с минимальным Rdson.Ты бы хоть указал, каким напряжением питаются потроха твоего ГС.
Транзистор cs48n75 mosfet чем заменить в гироскутере
Наименование прибора: CS48N75
Тип транзистора: MOSFET
Максимальная рассеиваемая мощность (Pd): 85 W
Предельно допустимое напряжение сток-исток |Uds|: 70 V
Предельно допустимое напряжение затвор-исток |Ugs|: 25 V
Пороговое напряжение включения |Ugs(th)|: 4 V
Максимально допустимый постоянный ток стока |Id|: 68 A
Максимальная температура канала (Tj): 175 °C
Общий заряд затвора (Qg): 64 nC
Время нарастания (tr): 11 ns
Выходная емкость (Cd): 360 pf
Сопротивление сток-исток открытого транзистора (Rds): 0.0084 Ohm
CS48N75 Datasheet (PDF)
0.1. cs48n75.pdf Size:998K _thinkisemi
CS48N75 PbCS48N75Pb Free Plating Product70V,68A N-Channel Trench Process Power MOSFETGeneral Description The is N-channel MOS Field Effect Transistor CS48N75designed for high current switching applications. Rugged EAS CS48N75(TO-220 HeatSink)capability and ultra low RDS(ON) is suitable for PWM, load switching especially for E-Bike controller applications. Features DS
8.1. cs48n78.pdf Size:751K _thinkisemi
CS48N78 PbCS48N78Pb Free Plating Product70V,80A N-Channel Trench Process Power MOSFETGeneral Description The CS48N78 is N-channel MOS Field Effect Transistor CS48N78designed for high current switching applications. Rugged EAS (TO-220 HeatSink)capability and ultra low RDS(ON) is suitable for PWM, load switching especially for E-Bike controller applications. Features D
9.1. cs48n80.pdf Size:748K _thinkisemi
CS48N80 PbCS48N80Pb Free Plating Product70V,87A N-Channel Trench Process Power MOSFETGeneral Description The CS48N80 is N-channel MOS Field Effect Transistor designed for high current switching applications. Rugged EAS CS48N80capability and ultra low RDS(ON) is suitable for PWM, load (TO-220 HeatSink)switching especially for E-Bike controller applications. Features
9.2. cs48n88.pdf Size:754K _thinkisemi
CS48N88 PbCS48N88Pb Free Plating Product70V,92A N-Channel Trench Process Power MOSFETGeneral Description The CS48N88 is N-channel MOS Field Effect Transistor CS48N88designed for high current switching applications. Rugged EAS (TO-220 HeatSink)capability and ultra low RDS(ON) is suitable for PWM, load switching especially for E-Bike controller applications. Features D
9.3. cs48n18.pdf Size:781K _thinkisemi
CS48N18 PbCS48N18Pb Free Plating Product70V,158A N-Channel Trench Process Power MOSFETGeneral Description CS48N18The CS48N18 is N-channel MOS Field Effect Transistor (TO-220 HeatSink)designed for high current switching applications. Rugged EAS capability and ultra low RDS(ON) is suitable for PWM, load switching especially for E-Bike controller applications. DSGFea
Справочник по MOSFET транзисторам
N-канальные MOSFET транзисторы одноканальные
Корпуса для поверхностного монтажа
20V, 4A, 43 mOhm, 3 nC Qg, 2.5V drive capable, SOT-23
20V, 6.4A, 21 mOhm, 8 nC Qg, 2.5V drive capable, SOT-23
25V, 5.7A, 24 mOhm, 3.6 nC Qg, SOT-23
30V, 2.7A, 100 mOhm, 1.0 nC Qg, SOT-23
30V, 5.2A, 27 mOhm, 3.6 nC Qg, SOT-23
30V, 3.3A, 77 mOhm, 3 nC Qg, 2.5V drive capable, SOT-23
30V, 6.3A, 34 mOhm, 7.5 nC Qg, 2.5V drive capable, SOT-23
40V, 3.6A, 56 mOhm, 2.6 nC Qg, SOT-23
60V, 1.2A, 460 mOhm, 0.4 nC Qg, SOT-23
60V, 2.7A, 92 mOhm, 2.5 nC Qg, SOT-23
100V, 1.6A, 220 mOhm, 2.5 nC Qg, SOT-23
Все транзисторы являются Trench MOSFET транзисторы и предназначены для применения в импульсных источниках питания.
20V, 8.5A, 11.7 mOhm, 14 nC Qg, 2.5V drive capable
25V, 8.5A, 13 mOhm, 4.3 nC Qg
30V, 8.5A, 16.2 mOhm, 11nC Qg, 2.5V drive capable
30V, 8.5A, 16 mOhm, 4.2 nC Qg
Все транзисторы являются Trench MOSFET транзисторы и предназначены для применения в импульсных источниках питания.
20V, 40A, 2.5 mOhm, 52 nC Qg, 2.5V drive capable
30V, 16A, 7.1 mOhm, 9.6 nC Qg
30V, 12A, 12.4 mOhm, 5.4 nC Qg
30V, 24A, 7.8 mOhm, 7.3 nC Qg
30V FETky, 40A, 4.3 mOhm, 13 nC Qg
30V, 40A, 3.8 mOhm, 15 nC Qg
30V, 40A, 3.5 mOhm, 41 nC Qg, 2.5V drive capable
Все транзисторы являются Trench MOSFET транзисторы и предназначены для применения в импульсных источниках питания.
20V, 20A, 4.4 mOhm, 22 nC Qg, SO-8
25V, 25A, 2.7 mOhm, 35 nC Qg, SO-8
20V, 27A, 2.45 mOhm, 130 nC Qg, 2.5V drive capable
30V, 8.5A, 21mOhm, TSOP-6
30V, 11A, 11.9 mOhm, 6.2 nC Qg, SO-8
30V, 14A, 8.7 mOhm, 8.1 nC Qg, SO-8
30V, 14A, 8.5 mOhm, 8.3 nC Qg, SO-8
30V, 18A, 4.8 mOhm, 17 nC Qg, SO-8
30V, 21A, 3.5 mOhm, 20 nC Qg, SO-8
30V, 21A, 3.3 mOhm, 30 nC Qg, SO-8
30V, 24A, 2.8 mOhm, 44 nC Qg, SO-8
30V, 9.9A, 14.6 mOhm, 11 nC Qg, 2.5V drive capable
30V, 8.5A, 20mOhm, 2.5V drive capable, TSOP-6
40V, 18A, 5 mOhm, 33 nC Qg, SO-8
60V, 12A, 9.4 mOhm, 26 nC Qg, SO-8
80V, 9.2A, 15 mOhm, 31 nC Qg, SO-8
80V, 10A, 13.4 mOhm, 27 nC Qg, SO-8
100V, 7.3A, 22 mOhm, 34 nC Qg, SO-8
100V, 8.3A, 18 mOhm, 28 nC Qg, SO-8
150V, 5.2A, 44 mOhm, 36 nC Qg, SO-8
150V, 5.1A, 43 mOhm, 25 nC Qg, SO-8
200V, 3.7A, 79 mOhm, 39 nC Qg, SO-8
Все транзисторы являются Trench MOSFET транзисторы и предназначены для применения в импульсных источниках питания.
20
—
25 В
20V, 100A, 1.2 mOhm, 155 nC Qg, 2.5V drive capable, PQFN5x6
20V, 50A, 3.0 mOhm, 54 nC Qg, 2.5V drive capable, PQFN5x6
25V, 51A, 6 mOhm, 7 nC Qg, Low Rg, PQFN 5×6
25V, 100A, 1.15 mOhm, 52 nC Qg, PQFN 5×6
25V FETky, 100A, 1.4 mOhm, 39 nC Qg, PQFN 5×6
30 В
30V, 16A, 13 mOhm, 4.7 nC Qg, PQFN 5×6
30V, 25A, 9 mOhm, 7.1 nC Qg, PQFN 5×6
30V, 44A, 8.1 mOhm, 7.8 nC Qg, PQFN 5×6
30V, 25A, 6.6 mOhm, 9.3 nC Qg, PQFN 5×6
30V, 25A, 5 mOhm, 15 nC Qg, PQFN 5×6
30V, 79A, 4.5 mOhm, 16 nC Qg, PQFN 5×6
30V, 82A, 4.2 mOhm, 15 nC Qg, Low Rg, PQFN 5×6
30V, 50A, 4.1 mOhm, 14 nC Qg, PQFN 5×6
30V, 50A, 3.1 mOhm, 19 nC Qg, PQFN 5×6
30V, 50A, 2.1 mOhm, 33 nC Qg, PQFN 5×6
30V, 100A, 2.1 mOhm, 29 nC Qg, PQFN 5×6
30V FETky, 100A, 2.5 mOhm, 26 nC Qg, PQFN 5×6
30V, 100A, 1.85 mOhm, 37 nC Qg, PQFN 5×6
30V, 100A, 1.4 mOhm, 50 nC Qg, PQFN 5×6
40 В
40V, 100A, 4.3 mOhm, 42 nC Qg, PQFN 5×6
40V, 100A, 3.5 mOhm, 53 nC Qg, PQFN 5×6
40V, 100A, 2.6 mOhm, 73 nC Qg, PQFN 5×6
60V, 40A, 14.4 mOhm, 23 nC Qg, PQFN 5×6
60V, 89A, 6.7 mOhm, 40 nC Qg, PQFN 5×6
60V, 100A, 5.6 mOhm, 50nC Qg, PQFN 5×6
60V, 100A, 4.1 mOhm, 67 nC Qg, PQFN 5×6
75V, 75A, 8.5 mOhm, 48 nC Qg, PQFN 5×6
75V, 71A, 9.6 mOhm, 39 nC Qg, PQFN 5×6
75V, 100A, 5.9 mOhm, 65 nC Qg, PQFN 5×6
100 В
100V, 55A, 14.9 mOhm, 39 nC Qg, PQFN 5×6
100V, 63A, 12.4 mOhm, 48 nC Qg, PQFN 5×6
100V, 100A, 9.0 mOhm, 65 nC Qg, PQFN 5×6
150 В
150V, 27A, 58 mOhm, 20 nC Qg, PQFN 5×6
150V, 56A, 31 mOhm, 33 nC Qg, PQFN 5×6
200 В
200V, 20A, 100 mOhm, 20 nC Qg, PQFN 5×6
200V, 41A, 59 mOhm, 36 nC Qg, PQFN 5×6
250 В
250V, 31A, 104 mOhm, 36 nC Qg, PQFN 5×6
25 В
25V, 39A, 7.8 mOhm, 8.1 nC Qg, Small Can
25V, 37A, 5.9 mOhm, 8.8 nC Qg, Small Can
25V, 68A, 4.9 mOhm, 13 nC Qg, Small Can
25V, 95A, 3.0 mOhm, 21 nC Qg, Small Can
25V, 166A, 2.1 mOhm, 29 nC Qg, Med Can
25V, 180A, 1.6 mOhm, 40 nC Qg, Med Can
25V, 180A, 1.6 mOhm, 39 nC Qg, Med Can
25V, 220A, 1.25 mOhm, 46 nC Qg, Med Can
25V, 160A, 1.8 mOhm, 35 nC Qg, Med Can
25V, 210A, 1.4 mOhm, 45 nC Qg, Med Can
25V, 270A, 0.7 mOhm, 64 nC Qg, Large Can
30 В
30V, 35A, 8.0 mOhm, 7.9 nC Qg, Small Can
30V, 36A, 8.9 mOhm, 6.6 nC Qg, Small Can
30V, 47A, 6.6 mOhm, 9.4 nC Qg, Med Can Dual
30V, 47A, 6.6 mOhm, 9.4 nC Qg, Med Can Dual
Как подобрать замену для MOSFET-транзистора
На что нужно обратить внимание
Открыв PDF-даташит, в первую очередь надо выяснить: тип транзистора (MOSFET или JFET), полярность, тип корпуса, расположение выводов (цоколевку).
Для MOSFET-транзистора важным параметром является сопротивление сток-исток открытого транзистора (Rds). От значения Rds зависит мощность, выделяемая на транзисторе. Чем меньше значение Rds, тем меньше транзистор будет нагреваться.
Однако необходимо помнить, что чем больше Id и меньше Rds, тем больше ёмкость затвора у MOSFET-транзистора. Это приводит к тому, что требуется большая мощность для управления этим затвором. А если схема не обеспечит нужную мощность, то возрастут динамические потери из-за замедленной скорости переключения транзистора и, как итог, MOSFET будет больше нагреваться. Поэтому необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор сильно нагревается, то дело может быть как в самом транзисторе, так и в элементах его обвязки.
Расшифровка основных параметров MOSFET-транзисторов
Тип транзистора – в реальных устройствах могут использоваться полевые транзисторы разных типов: транзистор с управляющим p-n – переходом (J-FET) или униполярные транзисторы МДП-типа (MOSFET).
Предельно допустимое напряжение затвор-исток (Vgs) – при подаче на затвор напряжения более допустимого, возможно повреждение изолирующего оксидного слоя затвора (это может быть и статическое электричество). Не стоит использовать транзисторы с большим запасом по напряжениям Vds и Vgs, т.к. обычно они имеют худшие скоростные характеристики.
Максимально допустимый постоянный ток стока (Id) – следует иметь ввиду, что иногда выводы из корпуса транзистора ограничивают максимально допустимый постоянный ток стока (переключаемый ток может быть больше). С ростом температуры максимально допустимый ток уменьшается.
Общий заряд затвора (Qg) — заряд, который нужно сообщить затвору для открытия транзистора. Чем меньше этот параметр, тем меньшая мощность требуется для управления транзистором.
Выше описаны наиболее важные параметры MOSFET-транзисторов. В даташитах производитель указывает много дополнительных параметров: заряд затвора, ток утечки затвора, импульсный ток стока, входная емкость и др.
Что важно учесть при монтаже MOSFET-транзистора
При работе с MOSFET транзисторами нужно учесть, что они могут быть повреждены статическим электричеством на ваших руках или одежде. Перед монтажом на печатную плату необходимо соединить выводы транзистора между собой тонкой проволокой. Для пайки лучше используйте паяльную станцию, а не обычный электрический паяльник. Вместо отсоса для удаления припоя используйте медную ленту для удаления припоя. Это уменьшит вероятность пробоя затвора статическим электричеством. Или используйте антистатический браслет.
Как подобрать замену для MOSFET-транзистора
Как подобрать замену для MOSFET-транзистора
Для большинства MOSFET-транзисторов достаточно просто подобрать аналоги, схожие по параметрам. Если заменить MOSFET-транзистор на такой же невозможно, то для поиска аналога необходимо:
Изучить схему включения MOSFET-транзистора для определения режима его работы (ключ в цепях коммутации, импульсное устройство, линейный стабилизатор и т.д.).
Найти даташит для неисправного MOSFET-транзистора и заполнить форму для подбора аналога на сайте.
Выбрать наиболее подходящий аналог MOSFET-транзистора, учитывая режим его работы в устройстве.
На что нужно обратить внимание
Открыв PDF-даташит, в первую очередь надо выяснить: тип транзистора (MOSFET или JFET), полярность, тип корпуса, расположение выводов (цоколевку).
Для MOSFET-транзистора важным параметром является сопротивление сток-исток открытого транзистора (Rds). От значения Rds зависит мощность, выделяемая на транзисторе. Чем меньше значение Rds, тем меньше транзистор будет нагреваться.
Однако необходимо помнить, что чем больше Id и меньше Rds, тем больше ёмкость затвора у MOSFET-транзистора. Это приводит к тому, что требуется большая мощность для управления этим затвором. А если схема не обеспечит нужную мощность, то возрастут динамические потери из-за замедленной скорости переключения транзистора и, как итог, MOSFET будет больше нагреваться. Поэтому необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор сильно нагревается, то дело может быть как в самом транзисторе, так и в элементах его обвязки.
Расшифровка основных параметров MOSFET-транзисторов
Тип транзистора – в реальных устройствах могут использоваться полевые транзисторы разных типов: транзистор с управляющим p-n – переходом (J-FET) или униполярные транзисторы МДП-типа (MOSFET).
Предельно допустимое напряжение затвор-исток (Vgs) – при подаче на затвор напряжения более допустимого, возможно повреждение изолирующего оксидного слоя затвора (это может быть и статическое электричество). Не стоит использовать транзисторы с большим запасом по напряжениям Vds и Vgs, т.к. обычно они имеют худшие скоростные характеристики.
Максимально допустимый постоянный ток стока (Id) – следует иметь ввиду, что иногда выводы из корпуса транзистора ограничивают максимально допустимый постоянный ток стока (переключаемый ток может быть больше). С ростом температуры максимально допустимый ток уменьшается.
Общий заряд затвора (Qg) — заряд, который нужно сообщить затвору для открытия транзистора. Чем меньше этот параметр, тем меньшая мощность требуется для управления транзистором.
Выше описаны наиболее важные параметры MOSFET-транзисторов. В даташитах производитель указывает много дополнительных параметров: заряд затвора, ток утечки затвора, импульсный ток стока, входная емкость и др.
Что важно учесть при монтаже MOSFET-транзистора
При работе с MOSFET транзисторами нужно учесть, что они могут быть повреждены статическим электричеством на ваших руках или одежде.
Перед монтажом на печатную плату необходимо соединить выводы транзистора между собой тонкой проволокой.
Для пайки лучше используйте паяльную станцию, а не обычный электрический паяльник.
Вместо отсоса для удаления припоя используйте медную ленту для удаления припоя. Это уменьшит вероятность пробоя затвора статическим электричеством. Или используйте антистатический браслет.