выбор формы уравнения регрессии называется
Выбор формы уравнения регрессии.
Для построения уравнения множественной регрессии чаще используются следующие функции
1. линейная:
2. степенная:
3. экспоненциальная:
4. гипербола:
В виду четкой интерпретации параметров наиболее широко используются линейная и степенная функции. В линейной множественной регрессии параметры при Х называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизменном значении других факторов, закрепленных на среднем уровне.
Пример. Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:
где у – расходы семьи за месяц на продукты питания, тыс.руб.;
х1 – месячный доход на одного члена семьи, тыс.руб.;
х2 – размер семьи, человек.
Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при том же среднем размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Параметр а не подлежит экономической интерпретации.
При изучении вопросов потребления коэффициенты регрессии рассматривают как характеристики предельной склонности к потреблению. Например, если функции потребления Сt имеет вид:
то потребление в период времени t зависит от дохода того же периода Rt и от дохода предшествующего периода Rt-1. Соответственно коэффициент b0 обычно называют краткосрочной предельной склонностью к потреблению. Общим эффектом возрастания как текущего, так и предыдущего дохода будет рост потребления на b= b0 + b1. Коэффициент b рассматривается здесь как долгосрочная склонность к потреблению. Так как коэффициенты b0 и b1 >0, то долгосрочная склонность к потреблению должна превосходить краткосрочную b0. Например, за период 1905 – 1951 гг. (за исключением военных лет) М.Фридман построил для США следующую функцию потребления: Сt = 53+0,58 Rt+0,32 Rt-1 с краткосрочной предельной склонностью к потреблению 0,58 и с долгосрочной склонностью к потреблению 0,9.
Функция потребления может рассматриваться также в зависимости от прошлых привычек потребления, т.е. от предыдущего уровня потребления
В этом уравнении параметр b0 также характеризует краткосрочную предельную склонность к потреблению, т.е. влияние на потребление единичного роста доходов того же периода Rt. Долгосрочную предельную склонность к потреблению здесь измеряет выражение b0/(1- b1).
Так, если уравнение регрессии составило:
то краткосрочная склонность к потреблению равна 0,46, а долгосрочная – 0,575 (0,46/0,8).
В степенной функции коэффициенты bj являются коэффициентами эластичности. Они показывают, на сколько процентов изменяется в среднем результат с изменением соответствующего фактора на 1% при неизменности действия других факторов. Этот вид уравнения регрессии получил наибольшее распространение в производственных функциях, в исследованиях спроса и потребления.
Предположим, что при исследовании спроса на мясо получено уравнение:
где у – количество спрашиваемого мяса
Следовательно, рост цен на 1% при том же доходе вызывает снижение спроса на мясо в среднем на 2.63%. Увеличение дохода на 1% обусловливает при неизменных ценах рост спроса на 1.11%.
В производственных функциях вида:
где P – количество продукта, изготавливаемого с помощью m производственных факторов (F1, F2, ……Fm).
b – параметр, являющийся эластичностью количества продукции по отношению к количеству соответствующих производственных факторов.
Экономический смысл имеют не только коэффициенты b каждого фактора, но и их сумма, т.е. сумма эластичностей: В = b1 +b2+……+bm. Эта величина фиксирует обобщенную характеристику эластичности производства. Производственная функция имеет вид
где Р – выпуск продукции
F1 – стоимость основных производственных фондов
F3 – затраты на производство
При практических расчетах не всегда . Она может быть как больше, так и меньше 1. В этом случае величина В фиксирует приближенную оценку эластичности выпуска с ростом каждого фактора производства на 1% в условиях увеличивающейся (В>1) или уменьшающейся (В T ;
Для уравнения применили равенство:
— скалярная функция
Система нормальных уравнений (1) содержит k линейных уравнений относительно k неизвестных i = 1,2,3……k
=
(2)
Перемножив (2) получим развернутую форму записи систем нормальных уравнений
Оценка коэффициентов
Стандартизированные коэффициенты регрессии, их интерпретация. Парные и частные коэффициенты корреляции. Множественный коэффициент корреляции. Множественный коэффициент корреляции и множественный коэффициент детерминации. Оценка надежности показателей корреляции.
Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.
Так, для уравнения система нормальных уравнений составит:
Ее решение может быть осуществлено методом определителей:
,
,…,
,
где D – главный определитель системы;
Dа, Db1, …, Dbp – частные определители.
а Dа, Db1, …, Dbp получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.
Возможен и иной подход в определении параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:
где — стандартизованные переменные
, для которых среднее значение равно нулю
, а среднее квадратическое отклонение равно единице:
;
— стандартизованные коэффициенты регрессии.
Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных вида
Решая ее методом определителей, найдем параметры – стандартизованные коэффициенты регрессии (b-коэффициенты).
Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответствующий фактор хi изменится на одну сигму при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии bI сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.
Пример. Пусть функция издержек производства у (тыс. руб.) характеризуется уравнением вида
где х1 – основные производственные фонды;
х2 – численность занятых в производстве.
Анализируя его, мы видим, что при той же занятости дополнительный рост стоимости основных производственных фондов на 1 тыс. руб. влечет за собой увеличение затрат в среднем на 1,2 тыс. руб., а увеличение численности занятых на одного человека способствует при той же технической оснащенности предприятий росту затрат в среднем на 1,1 тыс. руб. Однако это не означает, что фактор х1 оказывает более сильное влияние на издержки производства по сравнению с фактором х2. Такое сравнение возможно, если обратиться к уравнению регрессии в стандартизованном масштабе. Предположим, оно выглядит так:
Это означает, что с ростом фактора х1 на одну сигму при неизменной численности занятых затрат на продукцию увеличиваются в среднем на 0,5 сигмы. Так как b1
Дата добавления: 2016-05-16 ; просмотров: 2260 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Выбор формы уравнения регрессии
Как и в парной зависимости, возможны разные виды уравнений множественной регрессии: линейные и нелинейные.
Ввиду четкой интерпретации параметров наиболее широко используются линейная и степенная функции. В линейной множественной регрессии
параметры при х называются коэффициентами «чистой» регрессии. Они характеризуют среднее изменение результата с изменением соответствующего фактора на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.
В степенной функции коэффициенты
являются коэффициентами эластичности. Они показывают, на сколько процентов изменяется в среднем результат с изменением соответствующего фактора на 1 % при неизменности действия других факторов. Этот вид уравнения регрессии получил наибольшее распространение в производственных функциях, в исследованиях спроса и потребления.
В производственных функциях вида
где Р – количество продукта, изготавливаемого с помощью m производственных факторов (F1, F2, …,Fm);
Экономический смысл имеет не только коэффициенты b каждого фактора, но их сумма, т.е. сумма эластичностей: .
Эта величина фиксирует обобщенную характеристику эластичности производства.
Вопросы для самоконтроля
1. Как образуется множественная регрессия?
2. Цель множественной регрессии?
3. Экономический смысл коэффициента b?
Рекомендуемая литература
2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.
5. Ежемесячный информационно-аналитический журнал.
Тема №7. Предпосылки метода наименьших квадратов.
· Метод наименьших квадратов
Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.
Так, для уравнения система нормальных уравнений составит
Ее решение может быть осуществлено методом определителей:
где — определитель системы;
где — получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.
Другой вид уравнения множественной регрессии – уравнение регрессии в стандартизованном масштабе:
где — стандартизованные переменные;
— стандартизованные коэффициенты регрессии.
Вопросы для самоконтроля
1. Какой метод используется при определение параметров регрессии?
2. Цель множественной регрессии?
3. Экономический смысл коэффициента b?
Рекомендуемая литература
2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.
Тема №8. Оценка параметров и надежности результатов уравнения множественной регрессии.
· Оценка параметров и надежности результатов уравнения множественной регрессии
Оценка статистическая значимости параметров регрессии проводится с помощью t – статистики Стьюдента и путем расчета доверительного интервала для каждого из показателей. Выдвигается гипотеза Н0 о статистически значимом отличие показателей от 0 a = b = r = 0. Рассчитываются стандартные ошибки параметров a,b, r и фактическое значение t – критерия Стьюдента.
;
;
;
Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью F-критерия Фишера:
где — факторная сумма квадратов на одну степень свободы;
— остаточная сумма квадратов на одну степень свободы;
— коэффициент (индекс) множественной детерминации;
Оценивается значимость не только уравнения в целом, но и фактора, дополнительно включенного в регрессионную модель. Необходимость такой оценки связана с тем, что не каждый фактор, вошедший в модель, может существенно увеличивать долю объясненной вариации результативного признака. Кроме того, при наличии в модели нескольких факторов они могут вводиться в модель в разной последовательности.
Ввиду корреляции между факторами значимость одного и того же фактора м/б различной в зависимости от последовательности его введения в модель. Мерой для оценки включения фактора в модель служит частый F-критерий, т.е. Fxi. В общем виде для фактора xi частый F-критерий определяется как :
Если рассматривается уравнение y=a+b1x1+b2+b3x3+e, то определяются последовательно F-критерий для уравнения с одним фактором х1, далее F-критерий для дополнительного включения в модель фактора х2, т. е. для перехода от однофакторного уравнения регрессии к двухфакторному, и, наконец, F-критерий для дополнительного включения в модель фактора х3, т. е. дается оценка значимости фактора х3 после включения в модель факторов x1 и х2. В этом случае F-критерий для дополнительного включения фактора х2 после х1 является последовательнымв отличие от F-критерия для дополнительного включения в модель фактора х3, который является частнымF-критерием, ибо оценивает значимость фактора в предположении, что он включен в модель последним. С t-критерием Стьюдента связан именно частный F-критерий. Последовательный F-критерий может интересовать исследователя на стадии формирования модели. Для уравнения y=a+b1x1+b2+b3x3+e оценка значимости коэффициентов регрессии bi предполагает расчет трех межфакторных коэффициентов детерминации, а именно: ,
,
и можно убедиться, что существует связьмежду собой t— критерия Стьюдента для оценки значимости bi и частным F-критерием:
На основе соотношения bi и
получим:
Продемонстрируем это соотношение на примере двухфакторного уравнения регрессии Ранее было доказано, что коэффициенты регрессии
могут быть определены как
Тогда для двухфакторного уравнения регрессии имеем:
Тогда связь с скорректированным коэффициентом множественной корреляции или детерминацией :
Величина F-критерия, оценивая значимость уравнения регрессии в целом, характеризует одновременно и значимость коэффициента (индекса) множественной корреляции. Вместе с тем оценку существенности коэффициента множественной корреляции можно дать и через сравнение скорректированного коэффициента корреляции с его табличным значением при соответствующем уровне вероятности и числе степеней свободы n-m-1. Так, при n = 30 и m = 2 фактическое значение должно превышать 0,368 при 5%-ном уровне значимости, чтобы можно было считать его значение отличным от нуля с вероятностью 0,95.
Вопросы для самоконтроля
1. Какой метод используется при определение?
2. Цель множественной регрессии?
3. Экономический смысл коэффициента b?
Рекомендуемая литература
2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.
5. Ежемесячный информационно-аналитический журнал.
Тема №9. Множественная корреляция. Линейный коэффициент множественной корреляции. Частная корреляция.
Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации.
Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или, иначе, оценивает тесноту совместного влияния факторов на результат.
Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции:
где — остаточная дисперсия для уравнения
—общая дисперсия результативного признака.
Расчет индекса множественной корреляции предполагает определение уравнения множественной регрессии и на его основе остаточной дисперсии:
При линейной зависимости признаков формула индекса множественной корреляции имеет вид:
где -стандартизованные коэффициенты регрессии;
Формула индекса множественной корреляции для линейной регрессии получила название линейного коэффициента множественной корреляции, или, что то же самое, совокупного коэффициента корреляции.
При нелинейной зависимости формула скорректированного индекса множественной детерминации имеет вид:
Чем больше величина m, тем сильнее различия и
.
Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.
Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.
Частные коэффициенты корреляции измеряющие влияние на у фактора хi при неизменном уровне других факторов можно определить по формуле:
;
При двух факторах и i=1 данная формула примет вид:
Вопросы для самоконтроля
1. Какая практическая значимость уравнения множественной регрессии?
2. Что характеризует коэффициент множественной корреляции?
Рекомендуемая литература
2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.
5. Ежемесячный информационно-аналитический журнал.
Тема №10. Отбор факторов. Мультиколлинеарность.
Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям.
1. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность
2. Факторы не должны быть интеркоррелированы и тем более находиться в точной функциональной связи.
При дополнительном включении в регрессию р + 1 фактора коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться:
и
Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемый в анализ фактор хр+1 не улучшает модель и практически является лишним фактором.
Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами.
Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы
были бы равны нулю. Так, для уравнения, включающего три объясняющих переменных
матрица коэффициентов корреляции между факторами имела бы определитель, равный единице:
.
Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю:
.
Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.
Существует ряд подходов преодоления сильной межфакторной корреляции. Самый простой путь устранения мультиколлинеарности состоит в исключении из модели одного или нескольких факторов. Другой подход связан с преобразованием факторов, при котором уменьшается корреляция между ними.
Одним из путей учета внутренней корреляции факторов является переход к совмещенным уравнениям регрессии, т.е. к уравнениям, которые отражают не только влияние факторов, но и их взаимодействие. Так, если , то возможно построение следующего совмещенного уравнения:
.
Рассматриваемое уравнение включает взаимодействие первого порядка (взаимодействие двух факторов). Возможно включение в модель и взаимодействий более высокого порядка, если будет доказана их статистическая значимость по -критерию Фишера, но, как правило, взаимодействия третьего и более высоких порядков оказываются статистически незначимыми.
Отбор факторов, включаемых в регрессию, является одним из важнейших этапов практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут быть разные. Они приводят построение уравнения множественной регрессии соответственно к разным методикам. В зависимости от того, какая методика построения уравнения регрессии принята, меняется алгоритм ее решения на ЭВМ.
Наиболее широкое применение получили следующие методы построения уравнения множественной регрессии:
1. Метод исключения – отсев факторов из полного его набора.
2. Метод включения – дополнительное введение фактора.
3. Шаговый регрессионный анализ – исключение ранее введенного фактора.
При отборе факторов также рекомендуется пользоваться следующим правилом: число включаемых факторов обычно в 6–7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной дисперсии очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, а -критерий меньше табличного значения.
Вопросы для самоконтроля
1. Для чего определяется мультиколлинеарность?
2. Отбор факторов как определяется?
Рекомендуемая литература
2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.
5. Ежемесячный информационно-аналитический журнал.
Тема №11. Проверка выполнимости предпосылок МНК. Пошаговая регрессия.
· Проверка выполнимости предпосылок МНК
При оценке параметров уравнения регрессии применяется метод наименьших квадратов (МНК). При этом делаются определенные предпосылки относительно случайной составляющей . В модели
случайная составляющая представляет собой ненаблюдаемую величину. После того как произведена оценка параметров модели, рассчитывая разности фактических и теоретических значений результативного признака
, можно определить оценки случайной составляющей
. Поскольку они не являются реальными случайными остатками, их можно считать некоторой выборочной реализацией неизвестного остатка заданного уравнения, т.е.
.
При изменении спецификации модели, добавлении в нее новых наблюдений выборочные оценки остатков могут меняться. Поэтому в задачу регрессионного анализа входит не только построение самой модели, но и исследование случайных отклонений
, т.е. остаточных величин.
При использовании критериев Фишера и Стьюдента делаются предположения относительно поведения остатков – остатки представляют собой независимые случайные величины и их среднее значение равно 0; они имеют одинаковую (постоянную) дисперсию и подчиняются нормальному распределению.
Статистические проверки параметров регрессии, показателей корреляции основаны на непроверяемых предпосылках распределения случайной составляющей . Они носят лишь предварительный характер. После построения уравнения регрессии проводится проверка наличия у оценок
(случайных остатков) тех свойств, которые предполагались. Связано это с тем, что оценки параметров регрессии должны отвечать определенным критериям. Они должны быть несмещенными, состоятельными и эффективными. Эти свойства оценок, полученных по МНК, имеют чрезвычайно важное практическое значение в использовании результатов регрессии и корреляции.
Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям.
Оценки считаются эффективными, если они характеризуются наименьшей дисперсией. В практических исследованиях это означает возможность перехода от точечного оценивания к интервальному.
Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки. Большой практический интерес представляют те результаты регрессии, для которых доверительный интервал ожидаемого значения параметра регрессии имеет предел значений вероятности, равный единице. Иными словами, вероятность получения оценки на заданном расстоянии от истинного значения параметра близка к единице.
Указанные критерии оценок (несмещенность, состоятельность и эффективность) обязательно учитываются при разных способах оценивания. Метод наименьших квадратов строит оценки регрессии на основе минимизации суммы квадратов остатков. Поэтому очень важно исследовать поведение остаточных величин регрессии . Условия, необходимые для получения несмещенных, состоятельных и эффективных оценок, представляют собой предпосылки МНК, соблюдение которых желательно для получения достоверных результатов регрессии.
Исследования остатков предполагают проверку наличия следующих пяти предпосылок МНК:
1) случайный характер остатков;
2) нулевая средняя величина остатков, не зависящая от ;
3) гомоскедастичность – дисперсия каждого отклонения , одинакова для всех значений x;
4) отсутствие автокорреляции остатков – значения остатков распределены независимо друг от друга;
5) остатки подчиняются нормальному распределению.
Если распределение случайных остатков не соответствует некоторым предпосылкам МНК, то следует корректировать модель.
Вторая предпосылка МНК относительно нулевой средней величины остатков означает, что . Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных.
Предпосылка о нормальном распределении остатков позволяет проводить проверку параметров регрессии и корреляции с помощью F— и t-критериев. Вместе с тем, оценки регрессии, найденные с применением МНК, обладают хорошими свойствами даже при отсутствии нормального распределения остатков, т.е. при нарушении пятой предпосылки МНК.