дайте определение тригонометрической формы комплексного числа
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №40. Тригонометрическая форма комплексного числа.
Перечень вопросов, рассматриваемых в теме
1) понятие модуля комплексного числа;
2) понятие тригонометрической формы комплексного числа;
3) перевод комплексного числа в тригонометрическую форму.
Модулем комплексного числа z называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.
Аргументом комплексного числа z называется угол φ между положительной полуосью действительной оси Re z и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z=0.
Для этого рассмотрим формулы для нахождения в зависимости от а и b.
1.
2.
3.
4.
5.
6.
7.
8.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., Учебник комплект под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е.Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Но в электротехнике, электрооборудовании, электронике, автоматике и других дисциплинах комплексное число записывается в тригонометрической форме.
Тригонометрическая форма комплексного числа r(cos φ+sin φ).
На любом трансформаторе стоит маркировка cos φ=. Это энергетический показатель ГОС стандартов. Он показывает эффективность работы, КПД, cos φ- активный показатель мощности, тока, напряжения. sin φ- реактивный показатель.
Любое комплексное число (кроме нуля) z=a+bi можно записать в тригонометрической форме: z=|z|∙(cosφ+isinφ), где |z| – это модуль комплексного числа, а φ – аргумент комплексного числа.
Модулем комплексного числа z называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.
Модуль комплексного числа z стандартно обозначают: |z| или r.
По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений a и b.
Аргументом комплексного числа z называется угол φ между положительной полуосью действительной оси Re z и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z=0.
Аргумент комплексного числа z стандартно обозначают: φ или arg z.
Из геометрических соображений получается следующая формула для нахождения аргумента:
Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой.
Для этого рассмотрим формулы для нахождения в зависимости от а и b.
1.
2.
3.
4.
5.
6.
7.
8.
Поскольку a 0, то – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение arctg 2, поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
— число z в тригонометрической форме.
Разбор решения заданий тренировочного модуля
№1. Тип задания: единичный выбор
Найдем его модуль и аргумент.
Поскольку a 0, то – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение arctg 2, поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
— число z в тригонометрической форме.
Значит, верный ответ 1
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Найдите куб суммы z= (3+4i) 3 =_____________
Возведем данное выражение в третью степень
Упрощаем полученное выражение, учитывая, что i 2 =-1
Ответ:
Тригонометрическая форма комплексного числа
Рассмотрим комплексное число, заданной в обычной (алгебраической) форме:
Задача заключается в представлении комплексного числа (1) в тригонометрической форме. Для этого на комплексной плоскости введем полярные координаты. Примем за полюс начало координат, а за полярную ось вещественную ось R.
Как известно, полярными координатами точки z являются длина r ее радиус-вектора, равной расстоянию от точки z до полюса, и величина ее полярного угла, т.е. угла, образованного между полярной осью и вектором-радиусом точки z. Отметим, что направление отсчета угла берется от полярной оси до вектора-радиуса против часовой стрелки (Рис.1, Рис.2).
На Рис.3 изображено комплексное число z. Координаты этого числа в декартовой системе координат (a, b). Из определения функций sin и cos любого угла, следует:
Подставляя (2) в (1), получим:
Эта форма записи называется тригонометрической формой записи комплексного числа.
Уравнения (2) возведем в квадрат и сложим:
r−длина радиус-вектора комплексного числа z называется модулем комплексного числа и обозначается |z|. Очевидно |z|≥0, причем |z|=0 тогда и только тогда, когда z=0.
Величина полярного угла точки, соответвующей комплексному числу z, т.е. угла φ, называется аргументом этого числа и обозначается arg z. Заметим, что arg z имеет смысл лишь при z≠0. Аргумент комплексного числа 0 не имеет смысла.
Аргумент комплексного числа определен неоднозначно. Если φ аргумент комплексного числа, то φ+2πk, k=0,1. также является аргументом комплексного числа, т.к. cos(φ+2πk)=cosφ, sin(φ+2πk)=sinφ.
Приведение комплексного числа из алгебраической формы в тригонометрическую
Пусть комплексное число представлено в алгебраической форме: z=a+bi. Представим это число в тригонометрической форме. Вычисляем модуль комплексного числа: . Вычисляем аргумент φ комплексного числа из выражений
или
. Полученные значения вставляем в уравнение (3).
Пример 1. Представить комплексное число z=1 в тригонометрической форме.
Решение. Комплексное число z=1 можно представить так: z=1+0i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=1/1. Откуда имеем φ=0. Подставляя значения модуля и аргумента в (3), получим: z=1(cos0+isin0).
Пример 2. Представить комплексное число z=i в тригонометрической форме.
Решение. Комплексное число z=i можно представить так: z=0+1i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=0/1. Откуда имеем φ=π/2. Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. .
Пример 3. Представить комплексное число z=4+3i в тригонометрической форме.
Решение. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=4/5. Откуда имеем φ=arccos(4/5). Подставляя значения модуля и аргумента в (3), получим:
.
Ответ. , где φ=arccos(4/5).
Умножение комплексных чисел в тригонометрической форме записи
В результате умножения комплексных чисел в тригонометрической форме мы получили комплексное число в тригонометрической форме, следовательно |z1z2|=r1r2, или
Пример 4. Умножить комплексные числа и
.
Решение. Воспользуемся формулой (5):
Ответ. .
Деление комплексных чисел в тригонометрической форме записи
Отсюда следует, что или
Далее , или
Пример 5. Делить комплексные числа и
.
Решение. Воспользуемся формулой (8):
Ответ. .
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №40. Тригонометрическая форма комплексного числа.
Перечень вопросов, рассматриваемых в теме
1) понятие модуля комплексного числа;
2) понятие тригонометрической формы комплексного числа;
3) перевод комплексного числа в тригонометрическую форму.
Модулем комплексного числа z называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.
Аргументом комплексного числа z называется угол φ между положительной полуосью действительной оси Re z и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z=0.
Для этого рассмотрим формулы для нахождения в зависимости от а и b.
1.
2.
3.
4.
5.
6.
7.
8.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., Учебник комплект под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е.Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Но в электротехнике, электрооборудовании, электронике, автоматике и других дисциплинах комплексное число записывается в тригонометрической форме.
Тригонометрическая форма комплексного числа r(cos φ+sin φ).
На любом трансформаторе стоит маркировка cos φ=. Это энергетический показатель ГОС стандартов. Он показывает эффективность работы, КПД, cos φ- активный показатель мощности, тока, напряжения. sin φ- реактивный показатель.
Любое комплексное число (кроме нуля) z=a+bi можно записать в тригонометрической форме: z=|z|∙(cosφ+isinφ), где |z| – это модуль комплексного числа, а φ – аргумент комплексного числа.
Модулем комплексного числа z называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.
Модуль комплексного числа z стандартно обозначают: |z| или r.
По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений a и b.
Аргументом комплексного числа z называется угол φ между положительной полуосью действительной оси Re z и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z=0.
Аргумент комплексного числа z стандартно обозначают: φ или arg z.
Из геометрических соображений получается следующая формула для нахождения аргумента:
Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой.
Для этого рассмотрим формулы для нахождения в зависимости от а и b.
1.
2.
3.
4.
5.
6.
7.
8.
Поскольку a 0, то – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение arctg 2, поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
— число z в тригонометрической форме.
Разбор решения заданий тренировочного модуля
№1. Тип задания: единичный выбор
Найдем его модуль и аргумент.
Поскольку a 0, то – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение arctg 2, поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
— число z в тригонометрической форме.
Значит, верный ответ 1
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Найдите куб суммы z= (3+4i) 3 =_____________
Возведем данное выражение в третью степень
Упрощаем полученное выражение, учитывая, что i 2 =-1
Ответ: