для литья изделий сложной формы целесообразно использовать сплав

Тесты к семинарскому занятию: Классификация сплавов и их область применения

Ищем педагогов в команду «Инфоурок»

Тесты + План проведения семинарского занятия по Разделу №3

Дата проведения : _______

Группа ТМ14 Специальность 15.02.08 «Технология машиностроения»

Тема занятия : Классификация материалов, металлов и сплавов, их области применения

Вид занятия : семинарское с элементами мультимедийной презентации

Тип занятия : обобщения, систематизации и контроля полученных знаний

Форма проведения : деловая игра с использованием производственных ситуаций и презентаций.

Методическая – внедрение в учебный процесс мультимедийных технологий и совершенствование методики проведения семинарских занятий.

Дидактическая – обобщение и закрепление знаний, полученных в ходе изучения раздела «Классификация материалов, металлов и сплавов, их области применения», проверка и контроль пройденного материала, научить рационально применять презентации при подготовке к семинарскому занятию.

развитие умений и навыков анализировать, объяснять, обобщать, делать самостоятельные выводы;

развитие творческой мыслительной деятельности.

Воспитательная – формирование заинтересованности к обучению, выработка способности к психологической совместимости в коллективе и умения принимать самостоятельные и групповые решения, толерантности, привитие интереса к выбранной специальности.

обеспечивающие – химия, физика;

обеспечиваемые – технология машиностроения, ……………………………..

Методическое обеспечение занятие: рабочая программа, методическая разработка занятия; наглядность – презентации, фотографии структур сплавов;

раздаточный материал – тесты, задания с производственными ситуациями, марочники конструкционных материалов.

Технические средства обучения – мультимедийный проектор с экраном, доска, ноутбук.

Никифоров В.М. Технология металлов и конструкционные материалы. М.: Машиностроение, 1980

Технология металлов и материаловедение /Б.В. Кнорозов, Л.Ф. Усова, А.В. Третьяков и др. – М.:Металлургия, 1987

Марочник сталей (под редакцией Сорокина В.Г.) М.: Машиностроение, 1989

4. Лахтин Ю.М. Основы материаловедения. «Металлургия», 1988год.

5. Башнин Ю.А., Ушаков Б.К., Секей А.Г. Технология термической обработки. – М.: Металлургия, 1986.

6. Геллер Ю.А., Рахштадт А.Г. Материаловедение. – М.: Металлургия, 1989. 5. Гуляев А.П. Металловедение. – М.: Металлургия, 1986.

7. Дриц М.Е., Москалев М.А. Технология конструкционных материалов и материаловедение. – М.: Высш. шк., 1990.

8. Колачев Б.А., Ливанов В.А., Елагин А.И. Металловедение и термическая обработка цветных металлов и сплавов. –М.: Металлургия, 1981

9. Лахтин Ю.М., Леонтьева В.П. Материаловедение. – М.: Машиностроение, 1990.

10. Материаловедение./ Б.Н. Арзамасов, И.И. Сидорин, Г.Ф. Косолапов и др. Под ред. Б.Н. Арзамасова. – М.: Машиностроение, 1986

Ход занятия (кратко основное):

Мотивация проведения занятия – тема, цели, значение, межпредметные связи

Актуализация опорных знаний:

Представление подготовленных презентаций по изученным темам.

Тестирование и анализ усвоения теоретического материала.

Фронтальный устный опрос.

Решение заданий (производственных ситуаций в форме деловой игры)

Подведение итогов занятия. Комментарии ответов и оценивание работы студентов на занятии.Рефлексия.

Источник

Учебные материалы

для литья изделий сложной формы целесообразно использовать сплав. для литья изделий сложной формы целесообразно использовать сплав фото. картинка для литья изделий сложной формы целесообразно использовать сплав. смотреть фото для литья изделий сложной формы целесообразно использовать сплав. смотреть картинку для литья изделий сложной формы целесообразно использовать сплав.

В литейном производстве для расплавления металла чаще всего применяют печи шахтного (вертикального) типа называемые вагранками. При стальном литье жидкий металл часто для заливки берут непосредственно либо из мартенов при обычном качестве сталей, либо из электропечей при повышенном качестве, либо из тигелей индукционных печей (при получении отливок из высоколегированных сталей).

Больше всего литых изделий получают из чугунов. Применяются серые, ковкие, высокопрочные и чугуны со специальными свойствами. При этом структура металла, а следовательно и свойства отливки зависят не столько от хим.состава, сколько от формы и размеров отливки, скорости залива, а главное от скорости охлаждения отливки. Чем больше скорость охлаждения, тем больше происходит отбеливание чугуна (т.е. тем больше углерода в чугуне будет находиться в химически связанном состоянии в виде карбидов Fe3C, а следовательно меньше углерода в свободном состоянии в виде графита).

Отбеленный чугун обычно явление не весьма желательное, так как он очень тверд и хрупок и затруднено его механическое обрабатывание. Из компонентов чугуна на его структуру оказывают влияние главным образом Мn и Si: Mn содержится до 1% – это отбеливающий компонент; Si от 1,5 до 4% – это графитизирующий, т.е. способствует выделению углерода в виде графита в литейных чугунах Si должно быть больше.

Сочетая в чугунах количественное соотношение Mn и Si, а также задавая наперед необходимую скорость заливки и охлаждения добиваются получения той или иной структуры чугунов, а следовательно и свойств чугуна.

После чугунного литья наибольшее применение имеют отливки из сплавов на основе меди (бронзы и латуни Cu–Zn), на основе алюминия (силумины Al–Si и дюралюмины), на основе магния, титана и т.д.

Стальное литье – применяется для отливки более ответственных изделий, заменяет чугунное литье (занимает по объему последнее место).

Основные характеристики свойств литейных сплавов

Жидкотекучесть – это способность металлов и сплавов заполнять форму в расплавленном состоянии. Эта способность металла зависит от температурного интервала кристаллизации, температуры заливки и формы, свойств литейной формы и т.д.

Чистые металлы и сплавы затвердевающие при постоянной температуре (эвтектические сплавы) обладают лучшей жидкотекучестью, чем сплавы, образующие твердые растворы и затвердевающие в интервале температур. Увеличение теплопроводности материала формы снижает жидкотекучесть. Так песчаная форма отводит теплоту медленнее, и расплавленный металл заполняет ее лучше, чем металлическую форму, которая интенсивней охлаждает расплав.

Усадка – свойство уменьшения объема при затвердевании и охлаждении. Усадочные процессы протекают с момента заливки до полного охлаждения отливки. Различают линейную и объемную усадку, выражаемую в относительных единицах.

Линейная усадка определяется отношением

для литья изделий сложной формы целесообразно использовать сплав. для литья изделий сложной формы целесообразно использовать сплав фото. картинка для литья изделий сложной формы целесообразно использовать сплав. смотреть фото для литья изделий сложной формы целесообразно использовать сплав. смотреть картинку для литья изделий сложной формы целесообразно использовать сплав.

где lф и lот – размеры полости формы и отливки при 20° С.

На линейную усадку влияют химический состав сплава, температура его заливки, скорость охлаждения сплава в форме, конструкция отливки и литейной формы. Так усадка серого чугуна уменьшается с увеличением содержания углерода. Увеличение скорости отвода теплоты от залитого в форму сплава приводит к возрастанию усадки отливки.

При охлаждении отливки происходит механическое и термическое торможение усадки. Механическое торможение возникает вследствие трения между отливкой и формой. Термическое торможение обусловлено различными скоростями охлаждения отдельных частей отливки. Сложные по конфигурации отливки подвергаются совместному воздействию механического и термического торможения. Елин = 0,9÷1,3% – для серого чугуна, 2÷2,4% для углеродистых сталей, 0,9÷1,5% для алюминиевых сплавов, 1,4÷2,3% для медных сплавов.

Объемная усадка Еоб = 3 Елин.

Усадка в отливках проявляется в виде дефектов отливки: это усадочных раковин, пористости, трещин и короблений.

Усадочные раковины – сравнительно крупные полости, расположенные в местах отливки, затвердевших последними. Усадочная пористость – скопление пустот в отливке в обширной зоне в результате усадки в тех местах, которые затвердели последними без доступа к ним расплавленного металла. Множество межзеренных микроусадочных раковин располагается по границам зерен.

Трещины в отливках различают горячие (при температуре близкой к солидусу) и холодные (в области упругих деформаций). Они возникают в результате неравномерного затвердевания и охлаждения тонких и толстых частей детали и торможения процесса усадки формой. В результате возникают внутренние напряжения и если они превышают предел прочности металла отливки, то образуются трещины.

Горячие трещины образуются по границам кристаллов и изломы имеют окисленную поверхность. Их образования вызывают резкие переходы от тонкой части отливки к толстой, острые углы, выступающие части и т.п. высокая температура заливки (перегрев) способствует увеличению зерна и увеличению перепада температур в отдельных частях отливки, что повышает вероятность образования трещин. Для предупреждения горячих трещин необходимо создавать условия, способствующие формированию мелкозернистой структуры (модифицирование от УЗК), обеспечивать одновременное охлаждение тонких и толстых частей отливок, увеличивать податливость литейных форм; по возможности снижать температуру заливки сплава и т.д.

Опасность холодных трещин усиливается наличием в сплаве вредных примесей (фосфора). Необходимо обеспечивать равномерное охлаждение отливок во всех сечениях, проводить отжиг отливок.

Источник

Отливка

для литья изделий сложной формы целесообразно использовать сплав. для литья изделий сложной формы целесообразно использовать сплав фото. картинка для литья изделий сложной формы целесообразно использовать сплав. смотреть фото для литья изделий сложной формы целесообразно использовать сплав. смотреть картинку для литья изделий сложной формы целесообразно использовать сплав.

Отливка — продукция, полученная способом заливки жидкого сплава в литейные формы, в которых, после охлаждения и затвердения, происходит формирование. Она может быть полностью законченным изделием либо требовать дальнейшей механической обработки.

Подразделяется на следующие виды:

Для получения отливок используется множество разновидностей металла и сплавов, стекло, пластмасса, воск и другой исходный материал. Около 80% заготовок получаются методом литья в песчаные формы, но полученная таким образом отливка перед отправкой заказчику требует обязательной обработки.

Разделяют три группы получения отливок:

1) в разовых формах;

2) по растворяемым моделям;

3) отливка в формах полупостоянного и комбинированного типа, сделанных из огнеупорных материалов:

Это основные виды литья, но на практике применяются и комбинированные варианты.

Литье металлов

Такой способ применяется для получения алюминиевых отливок, которые за счет уникальных химических свойств используются во многих сферах: в приборостроении, в строительстве, в автомобилестроении, мебельном производстве (фурнитура и декоративные детали) и пр. Для их получения применяются различные технологии, выбор которых зависит от размеров, конфигурации и других показателей, требуемых от конечной продукции.

Литье в песчаные формы

Литье отливок в песчаные формы — самый распространенный и дешевый способ литья. Начальным этапом этого метода является изготовление литейной модели. Раньше делали ее из дерева, но в современном производстве изготавливают пластиковые формочки. Модель засыпается специальной смесью из песка и связующего, который уплотняется прессованием. Литье отливки осуществляется путем заливки расплава в образовавшиеся полости через специальные отверстия. После остывания, форму разбивают и вынимают ли в дальнейшем обязательно проходят переработку.

В современном производстве технология литья в песчаные формы осуществляется применением вакуумных форм, которые заполняются песком. Чтобы получить форму, используют металлическую опоку, которая состоит из двух бездонных коробов, которые засыпаются песком и утрамбовываются. На поверхности разъема снимается отпечаток будущей модели, соответствующей форме отливки. Соединяя две формы, осуществляется заливка расплава.

Литье в кокиль

Это наиболее качественный способ литья отливки, который осуществляется с помощью разборной металлической формы. После застывания кокиль используется повторно. Но делается это после его очистки. Особенностью данного метода заключается в том, что затвердение жидкого расплава происходит без какого-либо внешнего воздействия. Полученные таким образом изделия обладают мелкозернистым, плотным строением, обеспечивающим герметичность и хорошие механические показатели.

Литье под давлением

Этот метод гарантирует высокое качество поверхности, которую после этого не придется подвергать механической обработке. Он очень производительный для получения деталей различной конфигурации, весом от нескольких грамм до десяток кг.

Литье под давлением позволяет получать сложные детали, с наличием криволинейных поверхностей и различных канал. При этом чаще всего используют цинковые, магниевые, латунные и алюминиевые отливки.

Технология ЛПД имеет много плюсов:

Но данная технология имеет и ряд минусов: продолжительность процесса, высокая стоимость на производство пресс форм, сложности в получении отливок, содержащих скрытые полости, а также возможность появления в заготовках газовых раковин и усадочных трещин.

Для изготовления алюминиевых отливок в ЛПД применяют специальное оборудование, оснащенное холодной горизонтальной камерой, предназначенной для прессовки материала, и полуавтоматические машины для литья сплавов из цинка с горячей камерой прессовки материала и с усилием запирания.

Литье по выплавляемым моделям

Данный метод позволяет осуществить литье отливки высокой точности. Заранее изготавливается точная копия модели из парафина, воска и стеарина и другого материала, а также литниковая система. Применяется в случаях изготовления деталей высокой точности (например, лопатки турбин и т. п.).

На блок модели наносится суспензия и производится обсыпка огнеупорным наполнителем из кварца, дистенсилиманита, электрокорунда и т. д. Требуется наносить 6 – 10 слоев, каждый из них сушится примерно полчаса. Этот процесс ускоряется с помощью сушильных шкафов, закачанных аммиачным газом. Таким образом, формируется оболочка, из которой выплавляют модельный состав. Осуществляется это в воде, воздействием пара высокого давления или путем выжигания.

Следующим этапом литья по выплавляемым моделям является прокаливание блока путем вытопки при температуре 1000 градусов Цельсия. Затем устанавливают нагретый блок в печь и в оболочку заливают расплавленный металл. Последним этапом является охлаждение, выбивка и отрезка отливки. Плюсом данного способа является литье отливок из сплавов, которые трудно поддаются механической обработке. Применяется данная технология и для изготовления единичных деталей, и в серийном производстве.

Литье по газифицируемым моделям

Технология ЛГМ – наиболее выгодное решение в плане экономичности, экологичности и высокого качества полученных фасонных отливок. Данный метод все больше внедряется в мировом производстве, особенно популярен он в США и Китае. В начале изготавливается копия модели из пенопласта, которая помещается в песчаную форму. Таким образом изготавливаются отливки массой до 2 тонн и более, размерами от 40 до 1000 мм.

Этот метод активно применяется в двигателестроении для получения головок блоков цилиндров, отдельных блоков и прочих деталей. При этом для годного литья массой 100 кг расходуется несколько видов неметаллических материалов, предназначенных для формирования моделей-формочек:

Формовка при этом состоит из засыпки модели песчаным составом, с возможностью его повторного использования в 95-97% случаях.

Центробежное литье

Литье отливки центробежным методом применяется для получения деталей с формой тела вращения из чугуна, алюминия, стали и бронзы. Расплав заливается в металлическую форму, которая вращается со скоростью до 3000 об/мин.

За счет центробежной силы расплав равномерно распределяется внутри формы, после кристаллизации образуется отливка. Такой способ позволяет получать двухслойные заготовки, состоящие из различных сплавов. Отливка, полученная таким способом, обладает высокой плотностью и хорошими физико-механическими качествами.

Большим плюсом центробежного литья является возможность образования внутренних полостей без необходимости применения стержней, а также экономия сплава за счет отсутствия литниковой системы. Таким методом получается до 95% годных изделий.

В производственном процессе используется оборудование, оснащенное горизонтальными осями вращения. Широко применяется метод центробежного литья для получения отливок гильз, втулок и прочих деталей с формой тела вращения.

Литье в оболочковые формы

Способ литья в оболочковых формах позволяет получить фасонные алюминиевые отливки из металлических сплавов путем их заполнения смесью из песчаных зерен (в основном кварцевых) и синтетического порошка (пульвер-бакелита и фенолоформальдегидной смолы).

Оболочковая форма получается засыпкой на нагретую до 300 °C металлическую модель и ее выдержкой до образования упрочненного тонкого слоя. После этого избыток смеси удаляется. Если используется плакированная смесь, то ее вдувают в зазор, образовавшийся между наружной контурной плитой и нагретой моделью.

И в первом, и во втором случае необходимо подождать упрочнения оболочки на модели в печи. Последующий этап – это скрепление полученных полуформ, их помещение в металлический корпус и заливка расплава. Таким способом осуществляется литье алюминиевых отливок весом до 25 кг. Плюсами данной методики является контроль над тепловым режимом охлаждения заготовок, возможность механизации процесса и повышения производительности.

Цветное литье отливки

Цветное литье отливки – процедура изготовления заготовок определенной формы из металла путем заполнения необходимой формы жидким материалом (алюминий, бронза, латунь, медь).

Применяются следующие разновидности отливки цветного литья:

Из всех названных наиболее качественным и экономным вариантом цветного литья является первый, это практически безотходный способ литья.

Особенности цветного литья отливки положены и в основу художественного литья (дизайнерские изделия, изготовленные по особым эскизам из латуни, бронзы и чугуна) для получения как мелких деталей декора, так и ворот, заборов и фонтанных конструкций.

Сплавы цветного литья отличаются своей прочностью и стойкостью к коррозии под воздействием раствора из бетона цемента, извести.

Онлайн калькулятор

— С помощью онлайн калькулятора вы можете рассчитать приблизительную стоимость вашего заказа

Источник

Основные виды литья для изготовления отливок

Литьё в песчаные формы

Новым направлением технологии литья в песчаные формы является применение вакуумируемых форм из сухого песка без связующего. Для получения отливки данным методом могут применяться различные формовочные материалы, например песчано-глинистая смесь или песок в смеси со смолой и т.д. Для формирования формы используют опоку (металлический короб без дна и крышки). Опока имеет две полуформы, то есть состоит из двух коробов. Плоскость соприкосновения двух полуформ — поверхность разъёма. В полуформу засыпают формовочную смесь и утрамбовывают её. На поверхности разъёма делают отпечаток промодели (промодель соответствует форме отливки). Также выполняют вторую полуформу. Соединяют две полуформы по поверхности разъёма и производят заливку металла.

Литьё в кокиль

Литьё металлов в кокиль — более качественный способ. Изготавливается кокиль — разборная форма (чаще всего металлическая), в которую производится литьё. После застывания и охлаждения, кокиль раскрывается и из него извлекается изделие. Затем кокиль можно повторно использовать для отливки такой же детали.

В кокилях получают отливки из чугуна, стали, алюминиевых, магниевых и др. сплавов. Особенно эффективно применение кокильного литья при изготовлении отливок из алюминиевых и магниевых сплавов. Эти сплавы имеют относительно невысокую температуру плавления, поэтому один кокиль можно использовать до 10000 раз (с простановкой металлических стержней). До 45 % всех отливок из этих сплавов получают в кокилях. При литье в кокиль расширяется диапазон скоростей охлаждения сплавов и образования различных структур. Сталь имеет относительно высокую температуру плавления, стойкость кокилей при получении стальных отливок резко снижается, большинство поверхностей образуют стержни, поэтому метод кокильного литья для стали находит меньшее применение, чем для цветных сплавов. Данный метод широко применяется при серийном и крупносерийном производстве.

Литьё под давлением

ЛПД занимает одно из ведущих мест в литейном производстве. Производство отливок из алюминиевых сплавов в различных странах составляет 30—50 % общего выпуска (по массе) продукции ЛПД. Следующую по количеству и разнообразию номенклатуры группу отливок представляют отливки из цинковых сплавов. Магниевые сплавы для литья под давлением применяют реже, что объясняется их склонностью к образованию горячих трещин и более сложными технологическими условиями изготовления отливок. Получение отливок из медных сплавов ограничено низкой стойкостью пресс-форм.

Номенклатура выпускаемых отечественной промышленностью отливок очень разнообразна. Этим способом изготовляют литые заготовки самой различной конфигурации массой от нескольких граммов до нескольких десятков килограммов. Выделяются следующие положительные стороны процесса ЛПД:

Также выделяют следующие негативное влияние особенностей ЛПД, приводящие к потере герметичности отливок и невозможности их дальнейшей термообработки:

Задавшись целью получения отливки заданной конфигурации, необходимо чётко определить её назначение: будут ли к ней предъявляться высокие требования по прочности, герметичности или же её использование ограничится декоративной областью. От правильного сочетания технологических режимов ЛПД, зависит качество изделий, а также затраты на их производство. Соблюдение условий технологичности литых деталей, подразумевает такое их конструктивное оформление, которое, не снижая основных требований к конструкции, способствует получению заданных физико-механических свойств, размерной точности и шероховатости поверхности при минимальной трудоёмкости изготовления и ограниченном использовании дефицитных материалов. Всегда необходимо учитывать, что качество отливок, получаемых ЛПД, зависит от большого числа переменных технологических факторов, связь между которыми установить чрезвычайно сложно из-за быстроты заполнения формы.

Основные параметры, влияющие на процесс заполнения и формирования отливки, следующие:

Сочетанием и варьированием этих основных параметров, добиваются снижения негативных влияний особенностей процесса ЛПД. Исторически выделяются следующие традиционные конструкторско-технологические решения по снижению брака:

Также, существует ряд нетрадиционных решений, направленных на устранение негативного влияние особенностей ЛПД:

Литьё по выплавляемой модели

Ещё один способ литья металлов — по выплавляемой модели — применяется в случаях изготовления деталей высокой точности (например лопатки турбин и т. п.) Из легкоплавкого материала: парафин, стеарин и др., (в простейшем случае — из воска) изготавливается точная модель изделия и литниковая система. Наиболее широкое применение нашёл модельный состав П50С50 состоящий из 50 % стеарина и 50 % парафина, для крупногобаритных изделий применяются солевые составы менее склонные к короблению. Затем модель окунается в жидкую суспензию на основе связующего и огнеупорного наполнителя. В качестве связующего применяют гидролизованный этилсиликат марок ЭТС 32 и ЭТС 40, гидролиз ведут в растворе кислоты, воды и растворителя (спирт, ацетон). В настоящее время в ЛВМ нашли применения кремнезоли не нуждающиеся в гидролизе в цеховых условиях и являющиеся экологически безопасными. В качестве огнеупорного наполнителя применяют: электрокорунд, дистенсилиманит, кварц и т. д. На модельный блок (модель и ЛПС) наносят суспензию и производят обсыпку, так наносят от 6 до 10 слоёв. С каждым последующим слоем фракция зерна обсыпки меняются для формирования плотной поверхности оболочковой формы. Сушка каждого слоя занимает не менее получаса, для ускорения процесса используют специальные сушильные шкафы, в которые закачивается аммиачный газ. Из сформировавшейся оболочки выплавляют модельный состав: в воде, в модельном составе, выжиганием, паром высокого давления. После сушки и вытопки блок прокаливают при температуре примерно 1000 для удаления из оболочковой формы веществ способных к газообразованию. После чего оболочки поступают на заливку. Перед заливкой блоки нагревают в печах до 1000. Нагретый блок устанавливают в печь и разогретый металл заливают в оболочку. Залитый блок охлаждают в термостате или на воздухе. Когда блок полностью охладится его отправляют на выбивку. Ударами молота по литниковой чаше производится отбивка керамики, далее отрезка ЛПС.Таким образом получаем отливку.

В силу большого расхода металла и дороговизны процесса ЛВМ применяют только для ответственных деталей.

Процесс литья по выплавляемым моделям базируется на следующем основном принципе:

• Копия или модель конечного изделия изготавливаются из легкоплавкого материала.

• Эта модель окружается керамической массой, которая затвердевает и образует форму.

• При последующем нагревании (прокалке) формы модель отливки расплавляется и удаляется.

• Затем в оставшуюся на месте удалённого воска полость заливается металл, который точно воспроизводит исходную модель отливки.

Литьё по газифицируемым (выжигаемым) моделям

Литьё по газифицируемым моделям (ЛГМ) из пенопласта по качеству фасонных отливок, экономичности, экологичности и высокой культуре производства наиболее выгодно. Мировая практика свидетельствует о постоянном росте производства отливок этим способом, которое в 2007 году превысило 1,5 млн т/год, особенно популярна она в США и Китае (в одной КНР работает более 1,5 тыс. таких участков), где всё больше льют отливок без ограничений по форме и размерам. В песчаной форме модель из пенопласта при заливке замещается расплавленным металлом, так получается высокоточная отливка. Чаще всего форма из сухого песка вакуумируется на уровне 50 кПа, но также применяют формовку в наливные и легкоуплотняемые песчаные смеси со связующим. Область применения ЛГМ — отливки массой 0,1—2000 кг и более, тенденция расширения применения в серийном и массовом производстве отливок с габаритными размерами 40—1000 мм, в частности, в двигателестроении для литья блоков и головок блоков цилиндров и др.

На 1 тонну годного литья расходуется 4 вида модельно-формовочных (неметаллических) материалов:

Отсутствие традиционных форм и стержней исключает применение формовочных и стержневых смесей, формовка состоит из засыпки модели песком с повторным его использованием на 95-97 %.

Центробежное литье и центробежный метод литья

Центробежный метод литья (центробежное литьё) используется при получении отливок, имеющих форму тел вращения. Подобные отливки отливаются из чугуна, стали, бронзы и алюминия. При этом расплав заливают в металлическую форму, вращающуюся со скоростью 3000 об/мин.

Под действием центробежной силы расплав распределяется по внутренней поверхности формы и, кристаллизуясь, образует отливку. Центробежным способом можно получить двухслойные заготовки, что достигается поочерёдной заливкой в форму различных сплавов. Кристаллизация расплава в металлической форме под действием центробежной силы обеспечивает получение плотных отливок.

При этом, как правило, в отливках не бывает газовых раковин и шлаковых включений. Особыми преимуществами центробежного литья является получение внутренних полостей без применения стержней и большая экономия сплава в виду отсутствия литниковой системы. Выход годных отливок повышается до 95 %.

В нашем производстве используют машины с горизонтальными осями вращения. Широким спросом пользуются отливки втулок, гильз и других заготовок, имеющих форму тела вращения, произведенные с помощью метода центробежного литья. Что такое центробежное литьё?

Центробежное литье — это способ получения отливок в металлических формах. При центробежном литье расплавленный металл, подвергаясь действию центробежных сил, отбрасывается к стенкам формы и затвердевает. Таким образом получается отливка. Этот способ литья широко используется в промышленности, особенно для получения пустотелых отливок (со свободной поверхностью).

Технология центробежного литья обеспечивает целый ряд преимуществ, зачастую недостижимых при других способах, к примеру:

Центробежным литьём получают литые заготовки, имеющие форму тел вращения:

Наибольшее применение центробежное литьё находит при изготовлении втулок из медных сплавов, преимущественно оловянных бронз.

По сравнению с литьём в неподвижные формы центробежное литьё имеет ряд преимуществ: повышаются заполняемость форм, плотность и механические свойства отливок, выход годного. Однако для его организации необходимо специальное оборудование; недостатки, присущие этому способу литья: неточность размеров свободных поверхностей отливок, повышенная склонность к ликвации компонентов сплава, повышенные требования к прочности литейных форм.

Литьё в оболочковые формы

Литьё в оболочковые формы — способ получения фасонных отливок из металлических сплавов в формах, состоящих из смеси песчаных зёрен (обычно кварцевых) и синтетического порошка (обычно фенолоформальдегидной смолы и пульвер-бакелита). Предпочтительно применение плакированных песчаных зёрен (покрытых слоем синтетической смолы).

Оболочковую форму получают одним из двух методов. Смесь насыпают на металлическую модель, нагретую до 300°С, выдерживают в течение нескольких десятков секунд до образования тонкого упрочнённого слоя, избыток смеси удаляют. При использовании плакированной смеси её вдувают в зазор между нагретой моделью и наружной контурной плитой. В обоих случаях необходимо доупрочнение оболочки в печи (при температуре до 400°С) на модели. Полученные оболочковые полуформы скрепляют, и в них заливают жидкий сплав. Во избежание деформации форм под действием заливаемого сплава перед заливкой их помещают в металлический кожух, а пространство между его стенками и формой заполняют металлической дробью, наличие которой воздействует также на температурный режим охлаждающейся отливки.

Этим способом изготавливают различные отливки массой до 25 кг. Преимуществами способа являются значительные повышение производительности по сравнению с изготовлением отливок литьём в песчаные формы, управление тепловым режимом охлаждения отливки и возможность механизировать процесс.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *