для определения параметров структурную форму модели необходимо преобразовать в
Системы эконометрических уравнений
1. Наибольшее распространение в эконометрических исследованиях получили:
в) системы взаимозависимых уравнений.
2. Эндогенные переменные – это:
б) зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через ;
3. Экзогенные переменные – это:
а) предопределенные переменные, влияющие на зависимые переменные, но не зависящие от них, обозначаются через ;
4. Лаговые переменные – это:
в) значения зависимых переменных за предшествующий период времени.
5. Для определения параметров структурную форму модели необходимо преобразовать в:
а) приведенную форму модели;
6. Модель идентифицируема, если:
в) если число параметров структурной модели равно числу параметров приведенной формы модели.
7. Модель неидентифицируема, если:
а) число приведенных коэффициентов меньше числа структурных коэффициентов;
8. Модель сверхидентифицируема, если:
б) если число приведенных коэффициентов больше числа структурных коэффициентов;
9. Уравнение идентифицируемо, если:
б) ;
10. Уравнение неидентифицируемо, если:
а) ;
11. Уравнение сверхидентифицируемо, если:
в) .
12. Для определения параметров точно идентифицируемой модели:
б) применяется косвеный МНК;.
13. Для определения параметров сверхидентифицируемой модели:
а) применяется двушаговый МНК;
14. Для определения параметров неидентифицируемой модели:
б) ни один из существующих методов применить нельзя.
Временные ряды
1. Аддитивная модель временного ряда имеет вид:
б) ;
2. Мультипликативная модель временного ряда имеет вид:
а) ;
3. Коэффициент автокорреляции:
а) характеризует тесноту линейной связи текущего и предыдущего уровней ряда;
4. Аддитивная модель временного ряда строится, если:
а) значения сезонной компоненты предполагаются постоянными для различных циклов;
5. Мультипликативная модель временного ряда строится, если:
б) амплитуда сезонных колебаний возрастает или уменьшается;
6. На основе поквартальных данных построена аддитивная модель временного ряда. Скорректированные значения сезонной компоненты за первые три квартала равны: 7 – I квартал, 9 – II квартал и –11 – III квартал. Значение сезонной компоненты за IV квартал есть:
7. На основе поквартальных данных построена мультипликативная модель временного ряда. Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 – I квартал, 1,2 – II квартал и 1,3 – III квартал. Значение сезонной компоненты за IV квартал есть:
8. Критерий Дарбина-Уотсона применяется для:
Ответы по эконометрике
Каждое следующее значение остатков
Y=T+S+E
Амплитуда сезонных колебаний возрастает и уменьшается
индентифицируемое
Как случайные величины
От 0 до 1
Иметь нормальный закон…..
Парного коэф. корреляции
Не превосходит единицы
Если относительная величина……………………неограниченно
Fрасч>Fтабл
Интервал содержит параметры генеральной совокупности
Неэффективные оценки параметров
Уt=a+b0x1+Ɣyt-1+ƹt
Уt= a+b0x1…….(самая длинная формула)
Дисперсия случайных….
b±t…….·ob если коэф. «а» вместо «в» «а»
среднее значение у=2……………….равняется: (если у=6, тогда ответ 2)
…….(xi-x¯)²)
Вероятность того, что………………..прогнозный интервал
t тест
Большее значения F критерия
…………..=[(n-m-1)/m]( R²/(1- R²)]
Приведенную форму модели
Применяется косвенный МНК
Применяется двухшаговый МНК
Ни один из существ. методов применить нельзя
11 атрибутивных методов
С ростом Х увеличивается У
T статистки
R=√ D
T критерия стьюдента
Статистическую значимость модели в целом……
Ситуция не определена
Функциональная зависимость
Принимает любое значение
Квадрат парного…
Имеют нормальный закон
Степенная
коэф. корреляции
Коэф. детерминации
Определения тесноты связи……………..
Стоящие в начале и в конце временного ряда
Характеризует тесноту линейной связи текущего и предыдущего уровней ряда
Значение зависимых переменных за предшествующий период времени
Две и больше независимых…………
Y=TxSxE
Ошибками спецификации
Математическое ожидание остатков равно 0
Оценки обладают наименьшей дисперсией………….оценками
Увелич. точность….
Корреляция между независимыми переменными
b= Cov(x;y)/Var(x);a=y¯ bx¯
От количества точек………………(или от применяемого метода сглаживания)
Применим после ее…..
Применим после ее приведения
тенденцией
На сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов
RC²= R² (n-1)/(n-m-1)
T стьюдента
периодическим
И от уровня доверительной вероятности,и от числа факторов, вкл-х в модель и от длины исходного ряда
Только от уровня доверительной вероятности и от числа факторов, вкл-х в модель
Длительные, постоянно действующие факторы
По методу наименьших квадратов
D+1=H
D+1 H
Атрибутивные признаки….
Проверки существенности коэф. корреляции
На сколько единиц изменится У, если Х изменился на единицу
На сколько % изменится……………………………на 1%
Единица измерения фактора…………………показателя
Зависимые переменные, число которых равно числу уравнений……..
Предопределенные переменные, влияющие…………..
Методу наименьших квадратов
Ответы на тесты по эконометрике
Q=………..min соответствует методу наименьших квадратов
Автокорреляция — это корреляционная зависимость уровней ряда от предыдущих значений.
Автокорреляция имеется когда каждое следующее значение остатков
Аддитивная модель временного ряда имеет вид: Y=T+S+E
Атрибутивная переменная может употребляться, когда: независимая переменная качественна;
В каких пределах изменяется коэффициент детерминанта: от 0 до 1.
В каком случае модель считается адекватной Fрасч>Fтабл
В каком случае рекомендуется применять для моделирования показателей с увелич. ростом параболу если относительная величина…неограниченно
В результате автокорреляции имеем неэффективные оценки параметров
В хорошо подобранной модели остатки должны иметь нормальный закон
В эконометрическом анализе Xj рассматриваются как случайные величины
Величина доверительного интервала позволяет установить предположение о том, что: интервал содержит оценку параметра неизвестного.
Величина рассчитанная по формуле r=…является оценкой парного коэф. Корреляции
Внутренне нелинейная регрессия — это истинно нелинейная регрессия, которая не может быть приведена к линейной регрессии преобразованием переменных и введением новых переменных.
Временной ряд — это последовательность значений признака (результативного переменного), принимаемых в течение последовательных моментов времени или периодов.
Выберете авторегрессионную модель Уt=a+b0x1+Ɣyt-1+ƹt
Выберете модель с лагами Уt= a+b0x1…….(самая длинная формула)
Выборочное значение Rxy не > 1, |R|
Гетероскедастичность присутствует когда: дисперсия случайных остатков не постоянна
Гетероскидастичность – это когда дисперсия остатков различна
Гипотеза об отсутствии автокорреляции остатков доказана, если Dтабл2…
Гомоскедастичность — постоянство дисперсии для всех наблюдений, или одинаковость дисперсии каждого отклонения (остатка) для всех значений факторных переменных.
Гомоскидастичность – это когда дисперсия остатков постоянна и одинакова для всех … наблюдений.
Дисперсия — показатель вариации.
Для определения параметров неиденцифицированной модели применяется.: не один из сущ. методов применить нельзя
Для определения параметров сверх иденцифицированной модели примен.: применяется. 2-х шаговый МНК
Для определения параметров структурную форму модели необходимо преобразовать в приведенную форму модели
Для определения параметров точно идентифицируемой модели: применяется косвенный МНК;
Для оценки … изменения y от x вводится: коэффициент эластичности:
Для парной регрессии ơ²b равно ….(xi-x¯)²)
Для проверки значимости отдельных параметров регрессии используется: t-тест.
Для регрессии y=a+bx из n наблюдений интервал доверия (1-а)% для коэф. b составит b±t…….·ơb
Для регрессии из n наблюдений и m независимых переменных существует такая связь между R² и F..=[(n-m-1)/m]( R²/(1- R²)]
Доверительная вероятность – это вероятность того, что истинное значение результативного показателя попадёт в расчётный прогнозный интервал.
Допустим что для описания одного экономического процесса пригодны 2 модели. Обе адекватны по f критерию фишера. какой предоставить преимущество, у той у кот.: большее значения F критерия
Допустим, что зависимость расходов от дохода описывается функцией y=a+bx среднее значение у=2…равняется 9
Если Rxy положителен, то с ростом x увеличивается y.
Если в уравнении регрессии имеется несущественная переменная, то она обнаруживает себя по низкому значению T статистки
Если качественный фактор имеет 3 градации, то необходимое число фиктивных переменных 2
Если коэффициент корреляции положителен, то в линейной модели с ростом х увеличивается у
Если мы заинтересованы в использовании атрибутивных переменных для отображения эффекта разных месяцев мы должны использовать 11 атрибутивных методов
Если регрессионная модель имеет показательную зависимость, то метод МНК применим после приведения к линейному виду.
Зависимость между коэффициентом множественной детерминации (D) и корреляции (R) описывается следующим методом R=√D
Значимость уравнения регрессии — действительное наличие исследуемой зависимости, а не просто случайное совпадение факторов, имитирующее зависимость, которая фактически не существует.
Интеркорреляция и связанная с ней мультиколлинеарность — это приближающаяся к полной линейной зависимости тесная связь между факторами.
Какая статистическая характеристика выражается формулой R²=…коэффициент детерминации
Какая статистическая хар-ка выражена формулой : rxy=Ca(x;y) разделить на корень Var(x)*Var(y): коэффициент. корреляции
Какая функция используется при моделировании моделей с постоянным ростом степенная
Какие точки исключаются из временного ряда процедурой сглаживания и в начале, и в конце.
Какое из уравнений регрессии является степенным y=a˳aͯ¹a
Классический метод к оцениванию параметров регрессии основан на: – метод наименьших квадратов (МНК)
Количество степеней свободы для t статистики при проверки значимости параметров регрессии из 35 наблюдений и 3 независимых переменных 31;
Количество степеней свободы знаменателя F-статистики в регрессии из 50 наблюдений и 4 независимых переменных: 45
Компоненты вектора Ei имеют нормальный закон
Корреляция — стохастическая зависимость, являющаяся обобщением строго детерминированной функциональной зависимости посредством включения вероятностной (случайной) компоненты.
Коэффициент автокорреляции: характеризует тесноту линейной связи текущего и предстоящего уровней ряда
Коэффициент детерминации — показатель тесноты стохастической связи в общем случае нелинейной регрессии
Коэффициент детерминации – это величина, которая характеризует связь между зависимыми и независимыми переменными.
Коэффициент детерминации – это квадрат множественного коэффициента корреляции
Коэффициент детерминации – это: величина, которая характеризует связь между независимой и зависимой (зависящей) переменными;
Коэффициент детерминации R показывает долю вариаций зависимой переменной y, объяснимую влиянием факторов, включаемых в модель.
Коэффициент детерминации изменяется в пределах: – от 0 до 1
Коэффициент доверия — это коэффициент, который связывает линейной зависимостью предельную и среднюю ошибки, выясняет смысл предельной ошибки, характеризующей точность оценки, и является аргументом распределения (чаще всего, интеграла вероятностей). Именно эта вероятность и есть степень надежности оценки.
Коэффициент доверия (нормированное отклонение) — результат деления отклонения от среднего на стандартное отклонение, содержательно характеризует степень надежности (уверенности) полученной оценки.
Коэффициент корелляции Rxy используется для определения полноты связи X и Y.
Коэффициент корелляции равный 0 означает, что: –отсутствует линейная связь.
Коэффициент корреляции используется для: определения тесноты связи между случайными величинами X и Y;
Коэффициент корреляции рассчитывается для измерения степени линейной взаимосвязи между двумя случайными переменными.
Коэффициент линейной корреляции — показатель тесноты стохастической связи между фактором и результатом в случае линейной регрессии.
Коэффициент регрессии — коэффициент при факторной переменной в модели линейной регрессии.
Коэффициент регрессии b показывает: на сколько единиц увеличивается y, если x увеличивается на 1.
Коэффициент эластичности измеряется в: неизмеримая величина.
Критерий Дарвина-Чотсона применяется для: – отбора факторов в модель; или – определения автокорреляции в остатках
Критерий Стьюдента — проверка значимости отдельных коэффициентов регрессии и значимости коэффициента корреляции.
Критерий Фишера показывает статистическую значимость модели в целом на основе совокупной достоверности всех ее коэффициентов;
Лаговые переменные это значение зависимых переменных за предшествующий период времени
Модель в целом статистически значима, если Fрасч > Fтабл.
Модель идентифицирована, если: – число параметров структурной модели равно числу параметров приведён. формы модели.
Модель неидентифицирована, если: – число приведён. коэф . больше числа структурных коэф.
Модель сверхидентифицирована, если: число приведён. коэф. меньше числа структурных коэф
Мультипликативная модель временного ряда имеет вид: – Y=T*S*E
Мультипликативная модель временного ряда строится, если: амплитуда сезонных колебаний возрастает или уменьшается
На основе поквартальных данных…значения 7-1 квартал, 9-2квартал и 11-3квартал …-5
Неправильный выбор функциональной формы или объясняющих переменных называется ошибками спецификации
Несмещённость оценки параметра регрессии, полученной по МНК, означает: – что она характеризуется наименьшей дисперсией.
Одной из проблем которая может возникнуть в многофакторной регрессии и никогда не бывает в парной регрессии, является корреляция между независимыми переменными
От чего зависит количество точек, исключаемых из временного ряда в результате сглаживания: от применяемого метода сглаживания.
Отметьте основные виды ошибок спецификации: отбрасывание значимой переменной; добавление незначимой переменной;
Оценки коэффициентов парной регрессии является несмещённым, если: математические ожидания остатков =0.
Оценки параметров парной линейной регрессии находятся по формуле b= Cov(x;y)/Var(x);a=y¯ bx¯
Оценки параметров регрессии являются несмещенными, если Математическое ожидание остатков равно 0
Оценки парной регрессии явл. эффективными, если: оценка обладают наименьшей дисперсией по сравнению с другими оценками
При наличии гетероскедастичности следует применять: – обобщённый МНК
При проверке значимости одновременно всех параметров регрессии используется: F-тест.
Применим ли метод наименьших квадратов для расчетов параметров показательной зависимости применим после ее приведения
Применим ли метод наименьших квадратов(МНК) для расчёта параметров нелинейных моделей? применим после её специального приведения к линейному виду
С помощью какого критерия оценивается значимость коэффициента регрессии T стьюдента
С увеличением числа объясняющих переменных скоррестированный коэффициент детерминации: – увеличивается.
Связь между индексом множественной детерминации R² и скорректированным индексом множественной детерминации Ȓ² есть
Скорректиров. коэф. детерминации: – больше обычного коэф. детерминации
Стандартизованный коэффициент уравнения регрессии Ƀk показывает на сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов
Стандартный коэффициент уравнения регрессии: показывает на сколько 1 изменится y при изменении фактора xk на 1 при сохранении др.
Суть коэф. детерминации r 2 xy состоит в следующем: – характеризует долю дисперсии результативного признака y объясняем. регресс., в общей дисперсии результативного признака.
Табличные значения Фишера (F) зависят от доверительной вероятности и от числа включённых факторов и от длины исходного ряда (от доверительной вероятности p и числа степеней свободы дисперсий f1 и f2)..
Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, идентифицируемо если D+1=H
Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, НЕидентифицируемо если D+1 H
Уравнение идентифицировано, если: – D+1=H
Уравнение неидентифицировано, если: – D+1 H
Фиктивные переменные – это: атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;
Формула t= rxy….используется для проверки существенности коэффициента корреляции
Частный F-критерий: – оценивает значимость уравнения регрессии в целом
Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: m;
Что показывает коэффициент наклона – на сколько единиц изменится у, если х изменился на единицу,
Что показывает коэффициент. абсолютного роста на сколько единиц изменится у, если х изменился на единицу
Экзогенная переменная – это независимая переменная или фактор-Х.
Экзогенные переменные — это переменные, которые определяются вне системы и являются независимыми
Экзогенные переменные – это предопределенные переменные, влияющие на зависимые переменные (Эндогенные переменные), но не зависящие от них, обозначаются через х
Эластичность измеряется единица измерения фактора…показателя
Эндогенные переменные – это: зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у
Определения
T-отношение (t-критерий) — отношение оценки коэффициента, полученной с помощью МНК, к величине стандартной ошибки оцениваемой величины.
Аддитивная модель временного ряда – это модель, в которой временной ряд представлен как сумма перечисленных компонент.
Критерий Фишера — способ статистической проверки значимости уравнения регрессии, при котором расчетное (фактическое) значение F-отношения сравнивается с его критическим (теоретическим) значением.
Линейная регрессия — это связь (регрессия), которая представлена уравнением прямой линии и выражает простейшую линейную зависимость.
Метод инструментальных переменных — это разновидность МНК. Используется для оценки параметров моделей, описываемых несколькими уравнениями. Главное свойство — частичная замена непригодной объясняющей переменной на такую переменную, которая некоррелированна со случайным членом. Эта замещающая переменная называется инструментальной и приводит к получению состоятельных оценок параметров.
Метод наименьших квадратов (МНК) — способ приближенного нахождения (оценивания) неизвестных коэффициентов (параметров) регрессии. Этот метод основан на требовании минимизации суммы квадратов отклонений значений результата, рассчитанных по уравнению регрессии, и истинных (наблюденных) значений результата.
Множественная линейная регрессия — это множественная регрессия, представляющая линейную связь по каждому фактору.
Множественная регрессия — регрессия с двумя и более факторными переменными.
Модель идентифицируемая — модель, в которой все структурные коэффициенты однозначно определяются по коэффициентам приведенной формы модели.
Модель рекурсивных уравнений — модель, которая содержит зависимые переменные (результативные) одних уравнений в роли фактора, оказываясь в правой части других уравнений.
Мультипликативная модель – модель, в которой временной ряд представлен как произведение перечисленных компонент.
Несмещенная оценка — оценка, среднее которой равно самой оцениваемой величине.
Нулевая гипотеза — предположение о том, что результат не зависит от фактора (коэффициент регрессии равен нулю).
Обобщенный метод наименьших квадратов (ОМНК) — метод, который не требует постоянства дисперсии (гомоскедастичности) остатков, но предполагает пропорциональность остатков общему множителю (дисперсии). Таким образом, это взвешенный МНК.
Объясненная дисперсия — показатель вариации результата, обусловленной регрессией.
Объясняемая (результативная) переменная — переменная, которая статистически зависит от факторной переменной, или объясняющей (регрессора).
Остаточная дисперсия — необъясненная дисперсия, которая показывает вариацию результата под влиянием всех прочих факторов, неучтенных регрессией.
Предопределенные переменные — это экзогенные переменные системы и лаговые эндогенные переменные системы.
Приведенная форма системы — форма, которая, в отличие от структурной, уже содержит одни только линейно зависящие от экзогенных переменных эндогенные переменные. Внешне ничем не отличается от системы независимых уравнений.
Расчетное значение F-отношения — значение, которое получают делением объясненной дисперсии на 1 степень свободы на остаточную дисперсию на 1 степень свободы.
Регрессия (зависимость) — это усредненная (сглаженная), т.е. свободная от случайных мелкомасштабных колебаний (флуктуаций), квазидетерминированная связь между объясняемой переменной (переменными) и объясняющей переменной (переменными). Эта связь выражается формулами, которые характеризуют функциональную зависимость и не содержат явно стохастических (случайных) переменных, которые свое влияние теперь оказывают как результирующее воздействие, принимающее вид чисто функциональной зависимости.
Регрессор (объясняющая переменная, факторная переменная) — это независимая переменная, статистически связанная с результирующей переменной. Характер этой связи и влияние изменения (вариации) регрессора на результат исследуются в эконометрике.
Система взаимосвязанных уравнений — это система одновременных или взаимозависимых уравнений. В ней одни и те же переменные выступают одновременно как зависимые в одних уравнениях и в то же время независимые в других. Это структурная форма системы уравнений. К ней неприменим МНК.
Система внешне не связанных между собой уравнений — система, которая характеризуется наличием одних только корреляций между остатками (ошибками) в разных уравнениях системы.
Случайный остаток (отклонение) — это чисто случайный процесс в виде мелкомасштабных колебаний, не содержащий уже детерминированной компоненты, которая имеется в регрессии.
Состоятельные оценки — оценки, которые позволяют эффективно применять доверительные интервалы, когда вероятность получения оценки на заданном расстоянии от истинного значения параметра становится близка к 1, а точность самих оценок увеличивается с ростом объема выборки.
Спецификация модели — определение существенных факторов и выявление мультиколлинеарности.
Стандартная ошибка — среднеквадратичное (стандартное) отклонение. Оно связано со средней ошибкой и коэффициентом доверия.
Степени свободы — это величины, характеризующие число независимых параметров и необходимые для нахождения по таблицам распределений их критических значений.
Тренд — основная тенденция развития, плавная устойчивая закономерность изменения уровней ряда.
Уровень значимости — величина, показывающая, какова вероятность ошибочного вывода при проверке статистической гипотезы по статистическому критерию.
Фиктивные переменные — это переменные, которые отражают сезонные компоненты ряда для какого-либо одного периода.
Эконометрическая модель — это уравнение или система уравнений, особым образом представляющие зависимость (зависимости) между результатом и факторами. В основе эконометрической модели лежит разбиение сложной и малопонятной зависимости между результатом и факторами на сумму двух следующих компонентов: регрессию (регрессионная компонента) и случайный (флуктуационный) остаток. Другой класс эконометрических моделей образует временные ряды.
Эффективность оценки — это свойство оценки обладать наименьшей дисперсией из всех возможных.