графит шаровидной формы находится в каком чугуне

Высокопрочный чугун с шаровидным графитом.

Высокопрочные чугуны (ГОСТ 7293) могут иметь ферритную (ВЧ 35), феррито-перлитную (ВЧ45) и перлитную (ВЧ 80) металлическую основу. Получают эти чугуны из серых, в результате модифицирования магнием или церием (добавляется 0,03…0,07% от массы отливки). По сравнению с серыми чугунами, механические свойства повышаются, это вызвано отсутствием неравномерности в распределении напряжений из-за шаровидной формы графита.

Высокопрочный чугун – чугун, в котором графит имеет шаровидную форму (рис. 1.10).

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Его получают путем модифицирования в ковше жидкого чугуна, не отличающегося по составу от серого (3,0-3,6 % С; 2,0-3,1 % Si), церием или магнием (0,03-0,07 %) или магниевой лигатурой (20 % Mg + 80 % Ni).

По структуре высокопрочный чугун разделяют на ферритный и перлитный (рис. 2.13).

Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу (по сравнению с пластинчатой). Прочностные свойства этих чугунов наиболее высокие. Высокопрочные чугуны не уступают в прочности углеродистым конструкционным сталям, подвергаемым термической обработке. Пластичность этих чугунов удовлетворительная, но несколько уступает стали.

Для повышения механических свойств высокопрочные чугуны нередко подвергают термической обработке. Высокопрочные чугуны обозначаются (маркируются) буквами ВЧ и числом, показывающим предел прочности sВ. Высокопрочные чугуны широко применяются в автостроении и дизелестроении: коленчатые валы, крышки цилиндров и др.; в прокатных станах – прокатные валки и др.; в химической и нефтяной промышленности – корпуса насосов, вентили и т.п.

Механические свойства и назначение высокопрочных чугунов приведены в таблице 1.4.

Механические свойства высокопрочных чугунов

Марка чугунаσв, МПаσ0,2, МПаδ,%Твердость, НВ,
Не менее
ВЧ35140-170
ВЧ40140-202
ВЧ45140-225
ВЧ50153-345
ВЧ60192-277
ВЧ70228-302
ВЧ80248-351
ВЧ100270-360

Высокопрочные чугуны обладают высоким пределом текучести,

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.,

что выше предела текучести стальных отливок. Также характерна достаточно высокая ударная вязкость и усталостная прочность,

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.,

при перлитной основе.

Высокопрочные чугуны содержат: углерода – 3,2…3,8 %, кремния – 1,9…2,6 %, марганца – 0,6…0,8 %, фосфора – до 0,12 %, серы – до 0,3 %.

Эти чугуны обладают высокой жидкотекучестью, линейная усадка – около 1%. Литейные напряжения в отливках несколько выше, чем для серого чугуна. Из-за высокого модуля упругости достаточно высокая обрабатываемость резанием. Обладают удовлетворительной свариваемостью.

Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.

Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.ВЧ 100.

Ковкий чугун

Получают отжигом белого доэвтектического чугуна.

Ковкий чугун имеет в структуре графит хлопьевидной формы (рис. 2.14) и в связи с этим характеризуется высокой пластичностью.

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.а б

Детали из ковкого чугуна получают из отливок белого доэвтектического чугуна (2,4-3,4 % С) путем длительного отжига – томления, поэтому графит ковких чугунов носит название углерод отжига. Отливки должны быть сравнительно небольшими (толщина сечения не должна превышать 40-50 мм), чтобы исключить графитизацию сердцевины при медленном охлаждении массивной детали.

По структуре металлической основы ковкие чугуны бывают ферритными и перлитными.

Отливки из белого чугуна, предназначенные для отжига на ковкий чугун, упаковывают в специальные ящики. Первый этап отжига при температуре 950…970 °С обеспечивает распад цементита, входящего в состав ледебурита, и получение перлитного ковкого чугуна. Получение ферритного ковкого чугуна обеспечивается последующим понижением температуры до 720…740 °С и длительной выдержкой в указанных условиях, во время которой происходит распад цементита перлита с образованием феррита и графита (рис.1.15).

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Рис. 1.15. Схема отжига белого чугуна на ковкий,

ферритный и перлитный чугуны

Процесс протекает очень медленно (до 100 часов) и зависит от структуры отливки и ряда технологических факторов. Для ускорения отжига часто чугун модифицируют (алюминием, бором и т.п.), что позволяет сократить время отжига на ферритный ковкий чугун до 24-60 часов.

Ковкие чугуны обозначаются символом КЧ, после которого указывается предел прочности sв и относительное удлинение d : КЧ55-4.

Внутренние напряжение в ковком чугуне полностью снимаются во время отжига.

Механические свойства и химический состав ковких чугунов

Марка чугунаσв, МПа,δ,%Твердость НВ, (кгс/мм 2 )С, %Si, %Mn, %PS
Не менееНе более, %
Ферритныечугуны
КЧ 33-8100-1632,6-2,91,0-1,60,4-0,60,180,20
КЧ 37-12110-1632,4-2,71,2-1,40,2-0,40,120,06
Перлитныечугуны
КЧ 55-4192-2412,5-2,81,1-1,30,3-1,01,100,20
КЧ 65-3212-2692,4-2,71,2-1,40,3-1,00,100,06

Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.

Отливки выдерживаются в печи при температуре 950…1000 графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.С в течении 15…20 часов. Происходит разложение цементита: графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне..

Структура после выдержки состоит из аустенита и графита (углерод отжига). При медленном охлаждении в интервале 760…720 o С, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига (получается ферритный ковкий чугун).

При относительно быстром охлаждении вторая стадия полностью устраняется, и получается перлитный ковкий чугун.

Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.

По механическим и технологическим свойствам ковкий чугун занимает промежуточное положение между серым чугуном и сталью. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливки и необходимость отжига.

Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках.

Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы.

Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.

Источник

СТРУКТУРА, МЕХАНИЧЕСКИЕ, ЛИТЕЙНЫЕ СВОЙСТВА И СТАНДАРТИЗАЦИЯ ПРОМЫШЛЕННЫХ ЧУГУНОВ

Основные свойства и области применения чугуна с шаровидным графитом

Промышленное освоение чугунов с шаровидным графитом начато в 1948-1949 гг., когда фирма «Интернейшнл никел компани» (США) и Британская исследовательская ассоциация чугунного литья опубликовали первые патентные материалы по технологии получения нового сплава (патенты США № 2485760 и № 2488511). В настоящее время удельный вес отливок из высокопрочного чугуна в общем объеме чугунного литья можно считать весьма объективным показателем уровня развития литейного производства в стране.

Таблица 1.8 – Механические свойства чугуна с шаровидным графитом (ГОСТ 7293-85)

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Некоторые из показателей механических свойств, не вошедших в ГОСТ 7293-85, приведены в табл.1.9-1.10.

Наиболее важным для достижения соответствующих механических свойств является получение правильной шаровидной формы графита, формирование которой зависит от ряда факторов (состав металла, условия модифицирования, температура модифицирования, шихтовые материалы и пр.). Главным фактором является содержание остаточного магния, церия и других сфероидизаторов.

Таблица 1.9 – Механические свойства высокопрочного чугуна с различной матрицей при растяжении, сжатии и изгибе

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Таблица 1.10 – Механические свойства чугуна с шаровидным графитом при кручении

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Влияние толщины стенки отливки в высокопрочных чугунах проявляется несколько иначе, чем в серых (табл.1.11).

Таблица 1.11 – Влияние толщины стенки отливки на механические свойства ВЧШГ

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Во-первых, вследствие большей квазиизотропности характеристики прочности с увеличением толщины отливки понижаются значительно медленнее, чем в серых чугунах. Во-вторых, значительно сильнее сказывается отрицательное влияние толщины отливок на пластические свойства этих чугунов. Однако такое влияние проявляется только после ферритизации. В сыром же состоянии толщина отливок оказывает на удлинение высокопрочного чугуна мало влияния, так как неблагоприятная кристаллизация компенсируется при этом более высокой степенью графитизации. Интересно отметить, что циклическая вязкость высокопрочного чугуна очень мало изменяется с увеличением толщины отливок, в то время как в сером чугуне она резко повышается вследствие укрупнения размеров графита.

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Влияние ряда химических элементов на свойства в чугуне с шаровидным графитом заметно отличается от рассмотренных ранее данных для чугуна с пластинчатым графитом. Механизм действия углерода в чугуне с шаровидным графитом такой же, как и в сером. Углерод в обоих случаях способствует графитизации и ферритизации матрицы. Можно считать, что повышение содержания углерода в высокопрочном чугуне характеризуется некоторым понижением прочностных, пластинчатых, упругих и вязких свойств. Однако это понижение свойств весьма незначительно, что позволяет исключить из требований, предъявляемых к высокопрочному чугуну, жесткую регламентацию по содержанию углерода. Оно обычно выдерживается в пределах 3,2-3,6 %, что значительно облегчает условия плавки и улучшает литейные свойства.

Кремний оказывает заметное влияние как на структуру, так и на механические свойства высокопрочного чугуна с шаровидным графитом. На практике регулирование количества феррита в нетермообработанном состоянии осуществляют подбором содержания кремния в металле. При содержании 3,0-3,3% кремний способствует получению устойчивой ферритной структуры в литом состоянии. Следует заметить, что пластичность чугуна при этом понижается, а при количестве кремния свыше 3,5% наблюдается хрупкость даже при обычном содержании марганца и фосфора. Поэтому с точки зрения пластичности рекомендуется принимать содержание кремния на уровне 2,0-2,4%, а для получения чистого феррита применять термическую обработку. Содержание кремния не должно превышать 2,3% во избежание отрицательного влияния его на ударную вязкость. Для получения наилучших свойств рекомендуется содержание углерода и кремния выбирать в соответствии с оптимальной областью на рис.1.2.

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Рисунок 1.2 – Содержание углерода и кремния, рекомендуемое для чугуна с шаровидным графитом

В противоположность кремнию марганец в высокопрочном чугуне с шаровидным графитом уменьшает количество феррита и повышает количество перлита, что увеличивает предел прочности и уменьшает пластичность. Поэтому для получения высокой пластичности содержание марганца не должно превышать величины 0,4 %. В тех случаях, когда в литой структуре допускается некоторое количество перлита (это имеет место в большинстве случаев на практике), содержание марганца может составлять 0,4-0,8%. Для снижения порога хладноломкости рекомендуется содержание марганца снижать до 0,3% и менее.

Содержание фосфора в чугуне с шаровидным графитом обычно не должно превышать 0,1%. В противном случае образование фосфидной эвтектики способствует снижению показателей относительного удлинения и ударной вязкости. В тех случаях, когда чугун с шаровидным графитом используется для получения толстостенных отливок, содержание фосфора стремятся уменьшить из-за возможной его ликвации.

На практике чугуны с шаровидным графитом для получения определенных свойств могут легировать теми же элементами, что и серый чугун. В большинстве случаев действие легирующих элементов на механические свойства чугуна подобно рассмотренному ранее легированию серого чугуна. Следует отметить, что даже сравнительно небольшое легирование марганцем, никелем, хромом, молибденом и медью дает возможность повысить как механические свойства конструкционного высокопрочного чугуна с шаровидным графитом, так и некоторые специальные свойства (сопротивление износу, коррозии, эрозии, ползучести и т.п.). Применяющиеся в качестве сфероидизаторов магний и церий обычно остаются в чугуне с шаровидным графитом в количестве 0,03% и 0,02% соответственно, так как в противном случае графит кристаллизуется в шаровидной форме лишь частично. В то же время излишне высокое содержание магния и церия приводит сначала к образованию цементита в литой структуре, а затем к «перемодифицированию» (образованию пластинчатого графита). Поэтому остаточное содержание магния и церия не должно превосходить 0,08% и 0,05% соответственно.

Источник

СТРУКТУРА, МЕХАНИЧЕСКИЕ, ЛИТЕЙНЫЕ СВОЙСТВА И СТАНДАРТИЗАЦИЯ ПРОМЫШЛЕННЫХ ЧУГУНОВ

Состав и формы графита в чугунах

Варьируя химический состав, скорость затвердевания и режимы термической обработки, можно в значительной степени управлять свойствами чугуна. Одним из наиболее важных процессов, определяющих свойства чугуна, является его графитизация. Графитная фаза придает чугуну ряд свойств, которые невозможно встретить в других сплавах.

Чугунами принято называть сплавы железа с углеродом, которые содержат в структуре эвтектику. Помимо углерода и кремния чугуны содержат и другие элементы. Эти примеси разделяют на две группы: 1) технологические или обычные примеси, попадающие в состав чугуна в процессе производства; 2) легирующие и модифицирующие – специально вводимые элементы для регулирования структурообразования и свойств чугуна. К обычным примесям относят фосфор, серу, марганец, газы (водород, азот, кислород). Нелегированным считают чугун, содержащий до 3,5–4,0 % Si, до 1,5-2,0 % Mn, до 0,3 % P, до 0,2-0,3 % S и менее 0,1 % Cr, Ni Cu. Содержание основного компонента – углерода,– составляет около 4 %, и его оптимальное значение зависит от содержания других элементов. Количество фосфора может доходить до 0,8 % при производстве отливок специального назначения, например, для художественного литья (каслинское литье). Возможное содержание газов зависит от способа выплавки чугуна и может изменяться от 10,6 (вагранка) до 7,1 см 3 /100 г (индукционная печь). Наиболее распространенными легирующими элементами являются хром, никель, алюминий, медь, титан, вольфрам и др. Обычные примеси (марганец, кремний) могут быть легирующими элементами при повышенном их содержании. В качестве модифицирующих добавок в чугуны вводят магний, кальций, церий, лантан, сурьму, висмут и другие элементы. Такие чугуны называют модифицированными.

Для анализа процессов структурообразования в чугунах используют обычно двойную диаграмму состояния Fe – C. Из диаграммы следует, что в двойных сплавах область чугунов начинается для С > 2,03–2,06 %. По содержанию углерода для двойной диаграммы чугуны разделяют на доэвтектические (C 4,3 %). Для затвердевания доэвтектического чугуна характерно то, что кристаллизация начинается с появления дендритов первичного аустенита. При затвердевании же заэвтектического чугуна процесс кристаллизации начинается с появления графитных или цементитных частиц.

Деление чугунов на до–, за– и эвтектические по содержанию углерода достаточно условно. Однако для практики литейного производства эвтектичность имеет особое значение – чугуны эвтектического состава обладают лучшими технологическими свойствами. Они имеют меньшую усадку и максимальную жидкотекучесть (из всех сплавов температура кристаллизации эвтектики минимальна, отсутствует интервал кристаллизации – твердо-жидкого состояния). Поэтому для оценки эвтектичности промышленных чугунов вводят показатели углеродного эквивалента или степени эвтектичности.

Углеродный эквивалент учитывает смещение фигуративной точки сплава на двойной диаграмме железо–углерод под влиянием примесей, чаще всего, кремния и фосфора:

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Степень эвтектичности показывает относительное содержание эвтектики в чугуне и определяется как:

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Чем ближе Сэкв к 4,3 %, тем ближе структура чугуна к эвтектической, тем меньше избыточной фазы (аустенита, графита или цементита). Этому же соответствует Sэвт=1,0. Влияние остальных элементов в указанных выше количествах несущественно. Необходимо учитывать, что углеродный эквивалент и степень эвтектичности являются скорее литейными, чем металлографическими характеристиками. При содержании углерода более 4,3 % Sэвт становится больше 1,0 (100 %), хотя доля эвтектики в сплаве падает. В легированных чугунах углеродный эквивалент будет более сложным образом зависеть от содержания других элементов. Например, многие высокоуглеродистые среднелегированные инструментальные стали по структурному типу являются чугунами (имеют в структуре эвтектику).

графит шаровидной формы находится в каком чугуне. графит шаровидной формы находится в каком чугуне фото. картинка графит шаровидной формы находится в каком чугуне. смотреть фото графит шаровидной формы находится в каком чугуне. смотреть картинку графит шаровидной формы находится в каком чугуне.

Рисунок 1.1 – Схемы микроструктур чугуна: а – серый чугун на ферритной основе; б – чугун с вермикулярным графитом; в – серый феррито-перлитный чугун; г – серый чугун на перлитной основе; д – высокопрочный феррито-перлитный чугун; е –высокопрочный перлитный чугун; ж – белый чугун (доэвтектический; графит отжига (хлопьевидный).

Включения графита в сером и высокопрочном чугунах обычно окружены небольшой оторочкой металлической основы, обогащенной кремнием. Обычно именно здесь и выделяется в первую очередь структурно-свободный феррит. Небольшое количество такого феррита в сером и высокопрочном чугунах бывает даже полезным для механических свойств металла, так как в этом случае хрупкая фаза (графит) оказывается окаймленной пластичной и вязкой, которая оказывает дополнительное сопротивление к возникновению и распространению микро- и макротрещин при нагружении металла.

Многие эксплутационные свойства серого чугуна зависят от размеров и количества графитных включений. Очевидно, что сравнительно мелкие включения с завихренными пластинами при их равномерном распределении обеспечивают более высокие эксплутационные свойства чугуна. Крупные пластины графита с относительно прямыми заостренными кромками служат источниками образования трещин, приводя в конечном итоге к разрушению детали или изделия в целом. Во многих крупноразмерных включениях графита наблюдаются характерные внутренние трещины в виде продольных разрывов сплошности, вызванных ростовыми напряжениями. Значительный уровень ростовых напряжений служит также причиной сильно выраженного рыхлого пакетного строения холмиков роста.

Одним из факторов, обеспечивающих управление процессом формообразования графита, является скорость охлаждения металла при затвердевании. Чем она выше, тем больше величина переохлаждения металла и, следовательно, больше возникает центров кристаллизации аустенитной фазы. Однако, при значительном увеличении скорости охлаждения чугуна в результате неравномерного распределения углерода и примесей в отдельных микрообъемах жидкой фазы может начаться образование цементитной эвтектики, что существенно изменяет свойства отливки.

Шаровидный графит в промышленных отливках не имеет идеальной сферической формы. Поверхность шаровидного графита состоит из множества тонколепестковых выступов. Эти лепестки правильной полигональной и неправильной округленной формы в совокупности образуют структуру чередующихся волнообразных гряд. Исследование ионотравленных срезов шаровидного графита позволило выявить следующие типы слоистой структуры: дендритную, дендритно-концентрическую, зигзагообразную и концентрическую. Получение того или иного типа слоистой структуры обычно связывают с условиями охлаждения и химическим составом модификатора.

Литературные данные о химическом и фазовом составе неметаллических включений в шаровидном графите далеко не однозначны. Вместе с тем, по этим данным представляется возможным сделать вывод о том, что роль неметаллических включений в образовании конечных форм роста графита второстепенна. Неметаллические включения, встречающиеся в пластинчатом и шаровидном графите, не содержат углерода и в равной степени встречаются в центральных и периферийных участках. В магниевом чугуне с шаровидным графитом они содержат магний, кремний, кальций, серу и железо. В промышленном магнийцериевом чугуне с шаровидным графитом в центральной части графитовых включений обнаружены частицы диаметром 2. 5 мкм переменного состава, содержащие преимущественно оксиды цезия, магния и железа.

В целом же чугун с шаровидным графитом является весьма перспективным конструкционным материалом. Как показывает практика последних десятилетий, чугун с шаровидным графитом, обладая высокими служебными свойствами и высокой экономичностью, вытеснил большое количество изделий из чугуна с пластинчатым графитом и стали. В большинстве промышленно развитых стран мира среди литых железоуглеродистых сплавов чугун с шаровидным графитом занимает второе место по массе выпускаемых отливок после серого чугуна.

Использование чугуна с вермикулярной формой графита в качестве самостоятельного конструкционного материала предложено в середине 50-х годов, а само название «чугун с вермикулярным графитом» впервые встречается у Р. Шелленга. Вермикулярный графит, подобно обычному пластинчатому графиту, формируется посредством ветвления в пределах эвтектической аустенитно-графитной колонии. На первых стадиях затвердевания формируется графит шаровидной формы, который затем трансформируется в вермикулярный. В ряде работ показано, что кончики включений вермикулярного графита в течение всего процесса кристаллизации остаются в контакте с жидким металлом.

Специфика анизотропного микростроения вермикулярного графита заключается в периодическом сочетании микрозон слоисто-блочной структуры, подобной структуре пластинчатого графита, и слоисто-концентрической, характерной для шаровидного графита. При этом кристаллографическая ориентировка слоев роста смежных микрокристаллитов каждого лепестка вермикулярного графита, как правило, сильно различается. Видимо, механизм формирования вермикулярного графита состоит в автономном образовании и послойном зародышевом разрастании составляющих графит микрокристаллитов.

Особое строение и форма вермикулярного графита являются основной причиной более высокого уровня упругих свойств по сравнению с чугуном с пластинчатым графитом. Это объясняется тем, что модуль упругости Е сильно зависит от скорости деформации графитовых включений и, следовательно, от размера и пространственной формы графита. Например, при приблизительно одинаковом химическом составе чугуна модуль упругости в зависимости от формы графита составляет 80*10 3 Н/мм 2 у чугуна с пластинчатым графитом, 157*10 3 Н/мм 2 у чугуна с вермикулярным графитом и 170*10 3 Н/мм 2 у чугуна с шаровидным графитом. Влияние матрицы (ферритная – перлитная) менее существенно.

Не останавливаясь на комплексном рассмотрении основных преимуществ, которые могут быть достигнуты в случае использования в отливках чугуна с вермикулярным графитом по сравнению с чугуном с пластинчатым и шаровидным графитом, отметим лишь, что чугун с вермикулярным графитом высоко экономичен. Это позволяет рекомендовать его для широкого круга отливок сложной конфигурации с различной толщиной стенки и регламентацией по механическим свойствам.

Помимо рассмотренных форм графита в структуре чугунов с шаровидным и вермикулярным графитом встречаются различные вырожденные формы, среди которых наибольший практический интерес представляют графит переохлаждения и шаровидный разорванный (звездообразный). Графит переохлаждения на поверхности шлифа в оптическом микроскопе имеет вид россыпи мелких и мельчайших изолированных обломков. Причины образования и реальная морфология этого графита изучены достаточно слабо. Эта вырожденная форма тонко дифференцированного графита часто встречается в тепловых узлах отливок в условиях модифицирования цериевым мишметаллом.

Разорванный (звездообразный) шаровидный графит соответствует эталону ШГф10 и ШГф11 (ГОСТ 3443-87). Наличие подобного графита также значительно снижает прочностные свойства чугуна с шаровидным и вермикулярным графитом. Разорванный шаровидный графит представляет собой незаполненную секториально-дендритную форму роста. Основной причиной характерной недостроенности такого типа шаровидного графита служит избыток примесей, в том числе сфероидизирующих, на фронте роста призматических плоскостей кристаллической решетки, вызывающий в определенный момент времени углеродо-непроницаемость диффузионного пограничного слоя расплава у этих плоскостей. Характерно, что по размеру разорванный шаровидный графит в 2-3 раза превышает полностью застроенный шаровидный графит.

В целом же комплексные данные о различных формах графита в чугуне способствуют расширению научных представлений о генезисе формообразования графита в процессе затвердевания отливки. Это, в конечном счете, позволит в максимальной степени стимулировать развитие тенденции улучшения качества промышленных отливок, обладающих более высокими эксплуатационными характеристиками при существенном снижении их массы, что, соответственно, повысит конкурентоспособность литых чугунных изделий за счет уменьшения металлоемкости выпускаемой продукции при гарантированном повышении качества.

Формирование структуры чугуна в реальных отливках происходит в неравновесных условиях и зависит от множества факторов, которые не учитываются равновесными двойными диаграммами состояния. Поэтому для определения структуры чугунных отливок и их механических свойств обычно используются различные эмпирические диаграммы и номограммы, широко рассмотренные во многих работах.

На процессы структурообразования чугуна в первую очередь влияют углерод и кремний. В сером чугуне они определяются изменением не только содержания графита, но и структуры матрицы. В целом повышение содержания углерода в чугуне уменьшает прочность, модуль упругости и твердость и увеличивает пластичность и циклическую вязкость. Однако при низком содержании углерода наблюдается сначала некоторая анормальность (повышение прочности и твердости) с увеличением содержания углерода, что, вероятно, является следствием устранения междендритного графита и сопровождающего его феррита.

Различие влияния кремния и углерода заключается в том, что кремний образует твердый раствор с ферритом, тем самым повышает его прочность и твердость и понижает его плотность и вязкость. В серых чугунах к легирующему влиянию кремния добавляется еще и графитизирующее, что может резко изменить те или иные механические свойства. Только в малоуглеродистом и малокремнистом чугуне наблюдается сначала некоторое увеличение прочности вследствие устранения междендритного графита. Однако при содержании кремния сверх определенного количества уменьшается пластичность серого чугуна, что является следствием преобладающего влияния силикоферрита, которое проявляется, несмотря на ферритизацию структуры. Твердость серого чугуна кремний изменяет в противоположном направлении, понижая ее сначала в результате графитизации и увеличивая ее затем вследствие образования силикоферрита.

Достаточно часто влияние углерода и кремния на механические свойства чугуна рассматривают совместно, используя для этого функцию углеродного эквивалента или эвтектичности (см. выше), хотя относительное влияние этих элементов на положение эвтектической точки далеко не всегда соответствует их влиянию на механические свойства.

По вопросу влияния серы на механические свойства чугуна существуют достаточно противоречивые мнения. С высокой степенью достоверности можно утверждать, что сера и сульфиды железа оказывают весьма неблагоприятное влияние на прочность и пластичность чугуна при одной и той же структуре матрицы, что объясняется ослаблением границ зерен эвтектикой Fe-FeS. Помимо этого, сера способствует перлитизации структуры и может также повысить прочность и твердость ферритного или феррито-перлитного серого чугуна. Вредное влияние серы подавляется марганцем, который в соединении с серой дает сернистый марганец, представляющий собой тугоплавкое соединение, всплывающее в шлак и частично остающееся в отливках в виде неметаллических включений. Обычно, учитывая вредное влияние серы, в практике литейного производства стремятся регламентировать содержание серы на весьма низких уровнях.

Влияние фосфора на механические свойства чугуна следует признать отрицательным с точки зрения изменения его прочностных характеристик. Вследствие наличия фосфора в чугуне происходит легирование феррита, размельчение эвтектического зерна и образование включений фосфидной эвтектики. При этом значительно повышается твердость и понижается пластичность и вязкость чугуна. Общая закономерность изменения прочности чугуна заключается в следующем: сначала происходит возрастание прочностных показателей по мере повышения содержания фосфора, а затем при выделении фосфидной эвтектики они начинают понижаться. Следует дополнительно отметить, что влияние фосфора снижается с увеличением содержания кремния в чугуне.

В ряде случаев для изменения механических и физических свойств чугун легируют. Обычно при легировании чугуна используются те же химические элементы, что и при легировании стали. К элементам, оказывающим положительное влияние на графитизацию, относят алюминий, кремний, никель, медь, кобальт и т.п. Противодействуют выделению графита такие элементы, как хром, ванадий, вольфрам и молибден. Сравнивая имеющиеся в литературе данные, необходимо отметить, что существует определенная аналогия между склонностью чугуна, содержащего хром, молибден и марганец, к отбелу, а также к повышению температуры начала его графитизации. Легирующие элементы, воздействуя на структуру чугуна, оказывают решающее влияние на его механические и эксплутационные свойства. Влияние легирующих элементов в низколегированных чугунах с пластинчатым графитом на структуру приведено в табл.1.1.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *