играть через tcp ip что это значит
О сетевой модели в играх для начинающих
Последние две недели я работал над сетевым движком для своей игры. До этого я вообще ничего не знал о сетевых технологиях в играх, поэтому прочитал множество статей и провёл множество экспериментов, чтобы уяснить все концепции и иметь возможность написать собственный сетевой движок.
В этом руководстве я хотел бы поделиться с вами различными концепциями, которые вам нужно изучить перед написанием собственного игрового движка, а также самыми лучшими ресурсами и статьями для их изучения.
В целом существует два основных типа сетевых архитектур: peer-to-peer и клиент-серверная. В архитектуре peer-to-peer (p2p) данные передаются между любыми парами подключенных игроков, а в клиент-серверной архитектуре данные передаются только между игроками и сервером.
Хотя архитектура peer-to-peer по-прежнему используется в некоторых играх, стандартом является клиент-серверная: она проще в реализации, требует канал меньшей ширины и облегчает защиту от читерства. Поэтому в этом руководстве мы сосредоточимся на клиент-серверной архитектуре.
В частности, нас больше всего интересуют авторитарные серверы: в таких системах сервер всегда прав. Например, если игрок думает, что находится в координатах (10, 5), а сервер говорит ему, что он в (5, 3), то клиент должен заменить свою позицию той, которую передаёт сервер, а не наоборот. Использование авторитарных серверов упрощает распознавание читеров.
В игровых сетевых системах есть три основных компонента:
Транспортный протокол
Первый шаг заключается в выборе протокола для транспортировки данных между сервером и клиентами. Для этого существует два Интернет-протокола: TCP и UDP. Но вы можете создать и собственный транспортный протокол на основе одного из них или применить библиотеку, в которой они используются.
Сравнение TCP и UDP
И TCP, и UDP основаны на IP. IP позволяет передавать пакет от источника получателю, но не даёт гарантий, что отправленный пакет рано или поздно попадёт к получателю, что он доберётся до него хотя бы раз и что последовательность пакетов придёт в правильном порядке. Более того, пакет может содержать только ограниченный размер данных, задаваемый величиной MTU.
UDP является всего лишь тонким слоем поверх IP. Следовательно, он имеет те же ограничения. В отличие от него, TCP обладает множеством особенностей. Он обеспечивает надёжное упорядоченное соединение между двумя узлами с проверкой на ошибки. Следовательно, TCP очень удобен и используется во множестве других протоколов, например, в HTTP, FTP и SMTP. Но все эти функции имеют свою цену: задержку.
Чтобы понять, почему эти функции могут вызывать задержку, надо разобраться, как работает TCP. Когда узел-отправитель передаёт пакет узлу-получателю, он ожидает получить подтверждение (ACK). Если спустя определённое время он не получает его (потому что пакет или подтверждение было утеряно, или по каким-то другим причинам), то отправляет пакет повторно. Более того, TCP гарантирует получение пакетов в правильном порядке, поэтому пока утерянный пакет не получен, все остальные пакеты не могут быть обработаны, даже если они уже получены узлом-получателем.
Но как вы наверно понимаете, задержка в многопользовательских играх очень важна, особенно в таких активных жанрах, как FPS. Именно поэтому многие игры используют UDP с собственным протоколом.
Собственный протокол на основе UDP может быть эффективнее TCP по различным причинам. Например, он может помечать некоторые пакеты как надёжные, а другие — как ненадёжные. Поэтому его не волнует, добрался ли ненадёжный пакет до получателя. Или он может обрабатывать несколько потоков данных, чтобы потерянный в одном потоке пакет не замедлял остальные потоки. Например, может существовать поток для ввода игрока и ещё один поток для сообщений чата. Если сообщение чата, которое не является срочными данными, потеряно, то оно не замедлит срабатывание ввода, который является неотложным. Или же собственный протокол может реализовать надёжность иначе, чем в TCP, чтобы быть более эффективным в условиях видеоигр.
Итак, если TCP такой отстойный, то мы будем создавать свой транспортный протокол на основе UDP?
Всё немного сложнее. Даже хотя TCP почти субоптимален для игровых сетевых систем, он может вполне хорошо работать конкретно в вашей игре и сэкономить ваше драгоценное время. Например, задержка может и не быть проблемой для пошаговой игры или игры, в которую можно играть только в сетях LAN, где задержки и утеря пакетов намного меньше, чем в Интернете.
Во многих успешных играх, в том числе World of Warcraft, Minecraft и Terraria, используется TCP. Однако в большинстве FPS применяются собственные протоколы на основе UDP, поэтому ниже мы поговорим о них подробнее.
Если вы решите использовать TCP, то убедитесь, что отключен алгоритм Нейгла, потому что он буферизует пакеты перед отправкой, а значит, увеличивает задержку.
Чтобы подробнее узнать о различиях между UDP и TCP в контексте многопользовательских игр, можно прочитать статью Гленна Фидлера UDP vs. TCP.
Собственный протокол
Итак, вы хотите создать собственный транспортный протокол, но не знаете, с чего начать? Вам повезло, ведь Гленн Фидлер написал об этом две потрясающие статьи. В них вы найдёте множество умных мыслей.
Первая статья, Networking for Game Programmers 2008 года, проще, чем вторая, Building A Game Network Protocol 2016 года. Рекомендую вам начать с более старой.
Учтите, что Гленн Фидлер — большой сторонник использования собственного протокола на основе UDP. И после прочтения его статей вы наверняка переймёте у него мнение о том, что TCP имеет в видеоиграх серьёзные недостатки, и захотите реализовать собственный протокол.
Но если вы новичок в работе с сетями, то сделайте себе одолжение и используйте TCP или библиотеку. Для успешной реализации собственного транспортного протокола нужно предварительно многому научиться.
Сетевые библиотеки
Если вам нужно что-то более эффективное, чем TCP, но вы не хотите заморачиваться реализацией собственного протокола и вдаваться во множество подробностей, то можете воспользоваться сетевой библиотекой. Их очень много:
Транспортный протокол: заключение
Подведём итог: существует два основных транспортных протокола: TCP и UDP. TCP обладает множеством полезных особенностей: надёжность, сохранение порядка пакетов, обнаружение ошибок. У UDP всего этого нет, зато TCP по своей природе обладает повышенными задержками, недопустимыми для некоторых игр. То есть для обеспечения низких задержек можно создать собственный протокол на основе UDP или использовать библиотеку, реализующую транспортный протокол на UDP и адаптированную для многопользовательских видеоигр.
Выбор между TCP, UDP и библиотекой зависит от нескольких факторов. Во-первых, от потребностей игры: нужны ли ей низкие задержки? Во-вторых, от требований протокола приложения: нужен ли ему надёжный протокол? Как мы увидим из следующей части, можно создать протокол приложения, для которого вполне подойдёт ненадёжный протокол. Наконец, нужно ещё учитывать опытность разработчика сетевого движка.
У меня есть два совета:
Протокол приложения
Теперь, когда мы можем обмениваться данными между клиентами и сервером, нужно решить, какие именно данные передавать и в каком формате.
Классическая схема заключается в том, что клиенты отправляют серверу ввод или действия, а сервер отправляет клиентам текущее игровое состояние.
Сериализация
Первым шагом будет преобразование данных, которые мы хотим отправить (ввод или игровое состояние), в подходящий для передачи формат. Этот процесс называется сериализацией.
В голову сразу приходит мысль использовать человекочитаемый формат, например JSON или XML. Но это будет совершенно неэффективно и впустую займёт большую часть канала.
Вместо этого рекомендуется использовать двоичный формат, который намного более компактен. То есть пакеты будут содержать только несколько байтов. Здесь нужно учитывать проблему порядка байтов, который на разных компьютерах может отличаться.
Для сериализации данных можно использовать библиотеку, например:
Альтернативным решением может быть самостоятельная реализация, она не особо сложна, особенно если в коде вы используете ориентированный на данные подход. Кроме того, она позволит вам выполнять оптимизации, которые не всегда возможны при использовании библиотеки.
Сжатие
Количество данных, передаваемых между клиентами и сервером, ограничено пропускной способностью канала. Сжатие данных позволит передавать в каждом снэпшоте больше данных, увеличить частоту обновления или просто снизить требования к каналу.
Битовая упаковка
Первая техника — это битовая упаковка. Она заключается в использовании ровно того количества битов, которое необходимо для описания нужной величины. Например, если у вас есть перечисление, которое может иметь 16 различных значений, то вместо целого байта (8 бит) можно использовать всего 4 бита.
Гленн Фидлер объясняет, как реализовать это, во второй части статьи Reading and Writing Packets.
Битовая упаковка особенно хорошо работает с дискретизацией, которая будет темой следующего раздела.
Дискретизация
Дискретизация — это техника сжатия с потерями, которая заключается в использовании для кодирования величины только подмножества возможных значений. Проще всего реализовать дискретизацию округлением чисел с плавающей запятой.
Гленн Фидлер (опять!) показывает, как применять дискретизацию на практике, в своей статье Snapshot Compression.
Алгоритмы сжатия
Следующей техникой будут алгоритмы сжатия без потерь.
Вот, на мой взгляд, три самых интересных алгоритма, которые нужно знать:
Дельта-сжатие
Последняя методика сжатия — это дельта-сжатие. Она заключается в том, что передаются только различия между текущим игровым состоянием и последним состоянием, полученным клиентом.
Впервые она была применена в сетевом движке Quake3. Вот две статьи, объясняющих способ её использования:
Шифрование
Кроме того вам может понадобиться шифровать передачу информации между клиентами и сервером. На это есть несколько причин:
Протокол приложения: заключение
На этом мы закончим с протоколом приложения. Я считаю, что сжатие совершенно необязательно и решение о его использовании зависит только от игры и требуемой пропускной способности канала. Шифрование, на мой взгляд, обязательно, но в первом прототипе можно обойтись без него.
Логика приложения
Теперь мы способны обновлять состояние в клиенте, но можем столкнуться с проблемами задержек. Игроку, выполнив ввод, нужно ждать обновления состояния игры от сервера, чтобы увидеть, какое воздействие он оказал на мир.
Более того, между двумя обновлениями состояния мир совершенно статичен. Если частота обновления состояний низка, то движения будут очень дёрганными.
Существует несколько техник, позволяющих снизить влияние этой проблемы, и в следующем разделе я о них расскажу.
Техники сглаживания задержек
Все описанные в этом разделе техники подробно рассмотрены в серии Fast-Paced Multiplayer Габриэля Гамбетты. Я настойчиво рекомендую прочитать эту великолепную серию статей. В ней также есть интерактивное демо, позволяющее увидеть, как эти техники работают на практике.
Первая техника заключается в том, чтобы применять результат ввода напрямую, не ожидая ответа от сервера. Это называется прогнозированием на стороне клиента. Однако когда клиент получает обновление от сервера, он должен убедиться, что его прогноз был верным. Если это не так, то ему нужно просто изменить своё состояние согласно полученному от сервера, потому что сервер авторитарен. Эта техника впервые была использована в Quake. Подробнее о ней можно прочитать в статье Quake Engine code review Фабьена Санглара [перевод на Хабре].
Второй набор техник используется для сглаживания движения других сущностей между двумя обновлениями состояния. Существует два способа решения этой задачи: интерполяция и экстраполяция. В случае интерполяции берутся два последних состояния и показывается переход из одного в другое. Её недостаток в том, что она вызывает небольшую долю задержки, потому что клиент всегда видит то, что происходило в прошлом. Экстраполяция заключается в прогнозировании того, где сейчас должны находиться сущности на основании последнего состояния, полученного клиентом. Её недостаток в том, что если сущность полностью меняет направление движения, то возникнет большая погрешность между прогнозом и реальной позицией.
Последняя, самая продвинутая техника, полезная только в FPS — это компенсация лага. При использовании компенсации лага сервер учитывает задержки клиента, когда он стреляет в цель. Например, если игрок выполнил хедшот на своём экране, но в реальности его цель из-за задержки находилась в другом месте, то было бы нечестно отказывать игроку в праве на убийство из-за задержки. Поэтому сервер выполняет перемотку времени назад, на тот момент, когда игрок выстрелил, чтобы симулировать, что видел игрок на своём экране, и проверить коллизию между его выстрелом и целью.
Гленн Фидлер (как всегда!) написал в 2004 году статью Network Physics (2004), в которой заложил фундамент синхронизации симуляции физики между сервером и клиентом. В 2014 году он написал новую серию статей Networking Physics, в которой описал другие техники для синхронизации симуляции физики.
Предотвращение читерства
Существует две основные техники предотвращения читерства.
Первая: усложнение отправки читерами вредоносных пакетов. Как сказано выше, хорошим способом её реализации является шифрование.
Вторая: авторитарный сервер должен получать только команды/ввод/действия. Клиент не должен иметь возможности изменять состояние на сервере, кроме как отправкой ввода. Тогда сервер каждый раз при получении ввода должен перед его применением проверять его на допустимость.
Логика приложения: заключение
Рекомендую вам реализовать способ симуляции больших задержек и низких частот обновления, чтобы иметь возможность протестировать поведение своей игры в плохих условиях, даже когда клиент и сервер запущены на одном компьютере. Это сильно упростит реализацию методик сглаживания задержек.
Другие полезные ресурсы
Если вы хотите изучить другие ресурсы, посвящённые сетевым моделям, то их можно найти здесь:
Основы TCP/IP для будущих дилетантов
Предположим, что вы плохо владеете сетевыми технологиями, и даже не знаете элементарных основ. Но вам поставили задачу: в быстрые сроки построить информационную сеть на небольшом предприятии. У вас нет ни времени, ни желания изучать толстые талмуды по проектированию сетей, инструкции по использованию сетевого оборудования и вникать в сетевую безопасность. И, главное, в дальнейшем у вас нет никакого желания становиться профессионалом в этой области. Тогда эта статья для вас.
Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ: Заметки о Cisco Catalyst: настройка VLAN, сброс пароля, перепрошивка операционной системы IOS
Понятие о стеке протоколов
Задача — передать информацию от пункта А в пункт В. Её можно передавать непрерывно. Но задача усложняется, если надо передавать информацию между пунктами A B и A C по одному и тому же физическому каналу. Если информация будет передаваться непрерывно, то когда С захочет передать информацию в А — ему придётся дождаться, пока В закончит передачу и освободит канал связи. Такой механизм передачи информации очень неудобен и непрактичен. И для решения этой проблемы было решено разделять информацию на порции.
На получателе эти порции требуется составить в единое целое, получить ту информацию, которая вышла от отправителя. Но на получателе А теперь мы видим порции информации как от В так и от С вперемешку. Значит, к каждой порции надо вписать идентификационный номер, что бы получатель А мог отличить порции информации с В от порций информации с С и собрать эти порции в изначальное сообщение. Очевидно, получатель должен знать, куда и в каком виде отправитель приписал идентификационные данные к исходной порции информации. И для этого они должны разработать определённые правила формирования и написания идентификационной информации. Далее слово «правило» будет заменяться словом «протокол».
Для соответствия запросам современных потребителей, необходимо указывать сразу несколько видов идентификационной информации. А так же требуется защита передаваемых порций информации как от случайных помех (при передаче по линиям связи), так и от умышленных вредительств (взлома). Для этого порция передаваемой информации дополняется значительным количеством специальной, служебной информацией.
В протоколе Ethernet находятся номер сетевого адаптера отправителя (MAC-адрес), номер сетевого адаптера получателя, тип передаваемых данных и непосредственно передаваемые данные. Порция информации, составленная в соответствии с протоколом Ethernet, называется кадром. Считается, что сетевых адаптеров с одинаковым номером не существует. Сетевое оборудование извлекает передаваемые данные из кадра (аппаратно или программно), и производит дальнейшую обработку.
Как правило, извлечённые данные в свою очередь сформированы в соответствии с протоколом IP и имеют другой вид идентификационной информации — ip адрес получателя (число размером в 4 байта), ip адрес отправителя и данные. А так же много другой необходимой служебной информации. Данные, сформированные в соответствии с IP протоколом, называются пакетами.
Далее извлекаются данные из пакета. Но и эти данные, как правило, ещё не являются изначально отправляемыми данными. Этот кусок информации тоже составлен в соответствии определённому протоколу. Наиболее широко используется TCP протокол. В нём содержится такая идентификационная информация, как порт отправителя (число размером в два байта) и порт источника, а так же данные и служебная информация. Извлечённые данные из TCP, как правило, и есть те данные, которые программа, работающая на компьютере В, отправляла «программе-приёмнику» на компьютере A.
Вложность протоколов (в данном случае TCP поверх IP поверх Ethernet) называется стеком протоколов.
ARP: протокол определения адреса
Существуют сети классов A, B, C, D и E. Они различаются по количеству компьютеров и по количеству возможных сетей/подсетей в них. Для простоты, и как наиболее часто встречающийся случай, будем рассматривать лишь сеть класса C, ip-адрес которой начинается на 192.168. Следующее число будет номером подсети, а за ним — номер сетевого оборудования. К примеру, компьютер с ip адресом 192.168.30.110 хочет отправить информацию другому компьютеру с номером 3, находящемуся в той же логической подсети. Это значит, что ip адрес получателя будет такой: 192.168.30.3
Важно понимать, что узел информационной сети — это компьютер, соединённый одним физическим каналом с коммутирующим оборудованием. Т.е. если мы отправим данные с сетевого адаптера «на волю», то у них одна дорога — они выйдут с другого конца витой пары. Мы можем послать совершенно любые данные, сформированные по любому, выдуманному нами правилу, ни указывая ни ip адреса, ни mac адреса ни других атрибутов. И, если этот другой конец присоединён к другому компьютеру, мы можем принять их там и интерпретировать как нам надо. Но если этот другой конец присоединён к коммутатору, то в таком случае пакет информации должен быть сформирован по строго определённым правилам, как бы давая коммутатору указания, что делать дальше с этим пакетом. Если пакет будет сформирован правильно, то коммутатор отправит его дальше, другому компьютеру, как было указано в пакете. После чего коммутатор удалит этот пакет из своей оперативной памяти. Но если пакет был сформирован не правильно, т.е. указания в нём были некорректны, то пакет «умрёт», т.е. коммутатор не будет отсылать его куда либо, а сразу удалит из своей оперативной памяти.
Для передачи информации другому компьютеру, в отправляемом пакете информации надо указать три идентификационных значения — mac адрес, ip адрес и порт. Условно говоря, порт — это номер, который, выдаёт операционная система каждой программе, которая хочет отослать данные в сеть. Ip адрес получателя вводит пользователь, либо программа сама получает его, в зависимости от специфики программы. Остаётся неизвестным mac адрес, т.е. номер сетевого адаптера компьютера получателя. Для получения необходимой данной, отправляется «широковещательный» запрос, составленный по так называемому «протоколу разрешения адресов ARP». Ниже приведена структура ARP пакета.
Сейчас нам не надо знать значения всех полей на приведённой картинке. Остановимся лишь на основных.
В поля записываются ip адрес источника и ip адрес назначения, а так же mac адрес источника.
Поле «адрес назначения Ethernet» заполняется единицами (ff:ff:ff:ff:ff:ff). Такой адрес называется широковещательным, и такой фрейм будер разослан всем «интерфейсам на кабеле», т.е. всем компьютерам, подключённым к коммутатору.
Коммутатор, получив такой широковещательный фрейм, отправляет его всем компьютерам сети, как бы обращаясь ко всем с вопросом: «если Вы владелец этого ip адреса (ip адреса назначения), пожалуйста сообщите мне Ваш mac адрес». Когда другой компьютер получает такой ARP запрос, он сверяет ip адрес назначения со своим собственным. И если он совпадает, то компьютер, на место единиц вставляет свой mac адрес, меняет местами ip и mac адреса источника и назначения, изменяет некоторую служебную информацию и отсылает пакет обратно коммутатору, а тот обратно — изначальному компьютеру, инициатору ARP запроса.
Таким образом ваш компьютер узнаёт mac адрес другого компьютера, которому вы хотите отправить данные. Если в сети находится сразу несколько компьютеров, отвечающих на этот ARP запрос, то мы получаем «конфликт ip адресов». В таком случае необходимо изменить ip адрес на компьютерах, что бы в сети не было одинаковых ip адресов.
Построение сетей
Задача построения сетей
На практике, как правило, требуется построить сети, число компьютеров в которой будет не менее ста. И кроме функций файлообмена, наша сеть должна быть безопасной и простой в управлении. Таким образом, при построении сети, можно выделить три требования:
Существует большое множество приложений, программных модулей и сервисов, которые, для своей работы отправляют в сеть широковещательные сообщения. Описанный в пункте ARP: протокол определения адреса лишь один из множества ШС, отправляемый вашим компьютером в сеть. Например, когда вы заходите в «Сетевое окружение» (ОС Windows), ваш компьютер посылает ещё несколько ШС со специальной информацией, сформированной по протоколу NetBios, что бы просканировать сеть на наличие компьютеров, находящихся в той же рабочей группе. После чего ОС рисует найденные компьютеры в окне «Сетевое окружение» и вы их видите.
Так же стоит заметить, что во время процесса сканирования той или иной программой, ваш компьютер отсылает ни одно широковещательное сообщение, а несколько, к примеру для того, что бы установить с удалёнными компьютерами виртуальные сессии или ещё для каких либо системных нужд, вызванных проблемами программной реализации этого приложения. Таким образом, каждый компьютер в сети для взаимодействия с другими компьютерами вынужден посылать множество различных ШС, тем самым загружая канал связи не нужной конечному пользователю информацией. Как показывает практика, в больших сетях широковещательные сообщения могут составить значительную часть трафика, тем самым замедляя видимую для пользователя работу сети.
Виртуальные локальные сети
Для решения первой и третьей проблем, а так же в помощь решения второй проблемы, повсеместно используют механизм разбиения локальной сети на более маленькие сети, как бы отдельные локальные сети (Virtual Local Area Network). Грубо говоря, VLAN — это список портов на коммутаторе, принадлежащих одной сети. «Одной» в том смысле, что другой VLAN будет содержать список портов, принадлежащих другой сети.
Фактически, создание двух VLAN-ов на одном коммутаторе эквивалентно покупке двух коммутаторов, т.е. создание двух VLAN-ов — это всё равно, что один коммутатор разделить на два. Таким образом происходит разбиение сети из ста компьютеров на более маленькие сети, из 5-20 компьютеров — как правило именно такое количество соответствует физическому местонахождению компьютеров по надобности файлообмена.
VLAN-ы, теория
Возможно, фраза «администратору достаточно удалить порт из одного VLAN-а и добавить в другой» могла оказаться непонятной, поэтому поясню её подробнее. Порт в данном случае — это не номер, выдаваемый ОС приложению, как было рассказано в пункте Стек протоколов, а гнездо (место) куда можно присоединить (вставить) коннектор формата RJ-45. Такой коннектор (т.е. наконечник к проводу) прикрепляется к обоим концам 8-ми жильного провода, называемого «витая пара». На рисунке изображён коммутатор Cisco Catalyst 2950C-24 на 24 порта:
Как было сказано в пункте ARP: протокол определения адреса каждый компьютер соединён с сетью одним физическим каналом. Т.е. к коммутатору на 24 порта можно присоединить 24 компьютера. Витая пара физически пронизывает все помещения предприятия — все 24 провода от этого коммутатора тянутся в разные кабинеты. Пусть, к примеру, 17 проводов идут и подсоединяются к 17-ти компьютерам в аудитории, 4 провода идут в кабинет спецотдела и оставшиеся 3 провода идут в только что отремонтированный, новый кабинет бухгалтерии. И бухгалтера Лиду, за особые заслуги, перевели в этот самый кабинет.
Как сказано выше, VLAN можно представлять в виде списка принадлежащих сети портов. К примеру, на нашем коммутаторе было три VLAN-а, т.е. три списка, хранящиеся во flash-памяти коммутатора. В одном списке были записаны цифры 1, 2, 3… 17, в другом 18, 19, 20, 21 и в третьем 22, 23 и 24. Лидин компьютер раньше был присоединён к 20-ому порту. И вот она перешла в другой кабинет. Перетащили её старый компьютер в новый кабинет, или она села за новый компьютер — без разницы. Главное, что её компьютер присоединили витой парой, другой конец которой вставлен в порт 23 нашего коммутатора. И для того, что бы она со своего нового места могла по прежнему пересылать файлы своим коллегам, администратор должен удалить из второго списка число 20 и добавить число 23. Замечу, что один порт может принадлежать только одному VLAN-у, но мы нарушим это правило в конце этого пункта.
Замечу так же, что при смене членства порта в VLAN, администратору нет никакой нужды «перетыкать» провода в коммутаторе. Более того, ему даже не надо вставать с места. Потому что компьютер администратора присоединён к 22-ому порту, с помощью чего он может управлять коммутатором удалённо. Конечно, благодаря специальным настройкам, о которых будет рассказано позже, лишь администратор может управлять коммутатором. О том, как настраивать VLAN-ы, читайте в пункте VLAN-ы, практика [в следующей статье].
Как вы, наверное, заметили, изначально (в пункте Построение сетей) я говорил, что компьютеров в нашей сети будет не менее 100. Но к коммутатору можно присоединить лишь 24 компьютера. Конечно, есть коммутаторы с большим количеством портов. Но компьютеров в корпоративной сети/сети предприятия всё равно больше. И для соединения бесконечно большого числа компьютеров в сеть, соединяют между собой коммутаторы по так называемому транк-порту (trunk). При настройки коммутатора, любой из 24-портов можно определить как транк-порт. И транк-портов на коммутаторе может быть любое количество (но разумно делать не более двух). Если один из портов определён как trunk, то коммутатор формирует всю пришедшую на него информацию в особые пакеты, по протоколу ISL или 802.1Q, и отправляет эти пакеты на транк-порт.
Всю пришедшую информацию — имеется в виду, всю информацию, что пришла на него с остальных портов. А протокол 802.1Q вставляется в стек протоколов между Ethernet и тем протоколом, по которому были сформированные данные, что несёт этот кадр.
В данном примере, как вы, наверное, заметили, администратор сидит в одном кабинете вместе с Лидой, т.к. витая пора от портов 22, 23 и 24 ведёт в один и тот же кабинет. 24-ый порт настроен как транк-порт. А сам коммутатор стоит в подсобном помещении, рядом со старым кабинетом бухгалтеров и с аудиторией, в которой 17 компьютеров.
Витая пара, которая идёт от 24-ого порта в кабинет к администратору, подключается к ещё одному коммутатору, который в свою очередь, подключён к роутеру, о котором будет рассказано в следующих главах. Другие коммутаторы, которые соединяют другие 75 компьютеров и стоят в других подсобных помещениях предприятия — все они имеют, как правило, один транк-порт, соединённый витой парой или по оптоволокну с главным коммутатором, что стоит в кабинете с администратором.
Выше было сказано, что иногда разумно делать два транк-порта. Второй транк-порт в таком случае используется для анализа сетевого трафика.
Примерно так выглядело построение сетей больших предприятий во времена коммутатора Cisco Catalyst 1900. Вы, наверное, заметили два больших неудобства таких сетей. Во первых, использование транк-порта вызывает некоторые сложности и создаёт лишнюю работу при конфигурировании оборудования. А во вторых, и в самых главных — предположим, что наши «как бы сети» бухгалтеров, экономистов и диспетчеров хотят иметь одну на троих базу данных. Они хотят, что бы та же бухгалтерша смогла увидеть изменения в базе, которые сделала экономистка или диспетчер пару минут назад. Для этого нам надо сделать сервер, который будет доступен всем трём сетям.
Как говорилось в середине этого пункта, порт может находиться лишь в одном VLAN-е. И это действительно так, однако, лишь для коммутаторов серии Cisco Catalyst 1900 и старше и у некоторых младших моделей, таких как Cisco Catalyst 2950. У остальных коммутаторов, в частности Cisco Catalyst 2900XL это правило можно нарушить. При настройке портов в таких коммутаторах, каждый пор может иметь пять режимов работы: Static Access, Multi-VLAN, Dynamic Access, ISL Trunk и 802.1Q Trunk. Второй режим работы именно то, что нам нужно для выше поставленной задачи — дать доступ к серверу сразу с трёх сетей, т.е. сделать сервер принадлежащим к трём сетям одновременно. Так же это называется пересечением или таггированием VLAN-ов. В таком случае схема подключения может быть такой:
Продолжение следует
Вторая часть этой статьи, где рассматривается практическое применение изложенных здесь основ: Заметки о Cisco Catalyst: настройка VLAN, сброс пароля, перепрошивка операционной системы IOS