индуктивность выводная что это

Ключевые параметры при выборе индуктивности

При выборе индуктивности необходимо учитывать следующие ключевые параметры: способ монтажа (поверхностный монтаж или монтаж в отверстия), величину индуктивности, номинальный ток, активное сопротивление (DCR), частоту собственного резонанса (SRF), добротность (Q) и диапазон рабочих температур. Обычно требуется, чтобы габариты катушки индуктивности были как можно меньше, однако в каждом конкретном приложении размеры катушки определяются величиной индуктивности и номинальным током.

От чего зависит величина индуктивности дросселя?

Если предполагается использовать катушку индуктивности в качестве простого однозвенного высокочастотного фильтра 1-го порядка, то выбор конкретного компонента производится исходя из частотного спектра шума, который необходимо подавить. На собственной резонансной частоте (SRF) последовательный импеданс катушки индуктивности максимален. Таким образом, для ВЧ-фильтрации следует выбирать дроссель, у которого собственная резонансная частота близка к частоте шума.

Для фильтров более высокого порядка индуктивности отдельных элементов должны быть рассчитаны, исходя из требуемых частот срезов фильтров (для фильтров нижних и верхних частот) или ширины полосы пропускания (для полосовых фильтров). Для выполнения таких расчетов чаще всего используются программы моделирования, такие, например, как SPICE, AWR Microwave Office и Agilent Genesys или ADS.

Для калиброванных цепей или цепей с согласованным импедансом, желательно выбирать компоненты с минимальным разбросом номинала. Как показано в Таблице 1, проволочные индуктивности, как правило, отличаются меньшим отклонением от номинального значения по сравнению с многослойными печатными и толстопленочными индуктивностями.

Таблица 1. Сравнение параметров различных индуктивностей

Тип индуктивности

Индуктивность, нГн

Точность

Q при 1,8 ГГц

Рейтинг тока, мА

Многослойная (TDK MLK1005S2N7ST)

Выводная (Coilcraft 0402HP-68NXGL)

Многослойная (TDK MLK1005S68NJT)

Как влияет величина тока на выбор индуктивности?

Для сохранения приемлемого уровня потерь и ограничения перегрева катушки индуктивности при протекании большого тока необходимо либо увеличивать сечение провода, либо использовать больше жил того же размера. Применение провода увеличенного сечения позволяет уменьшить активное сопротивление (DCR) и повысить добротность Q, однако расплатой за это становится увеличение габаритов катушки, кроме того, собственная резонансная частота может оказаться ниже. Из таблицы 1 видно, что дроссели с проволочной обмоткой превосходят многослойные печатные индуктивности (того же размера и индуктивности) по уровню допустимой токовой нагрузки.

Увеличение допустимого тока и снижение активного сопротивления обмотки, а также сокращение числа витков могут быть достигнуты за счет использования дросселя с ферритовым сердечником. Однако индуктивности с ферритовым сердечником имеют свои недостатки, такие как значительная температурная зависимость индуктивности, значительная погрешность номинала, пониженная добротность и низкий ток насыщения. Ферритовые дроссели открытого типа, такие как серия LS от Coilcraft, не будут насыщаться даже при протекании номинального тока.

Таким образом, величина тока определяет сопротивление обмотки?

Номинальный ток и активное сопротивление обмотки тесно связаны. Чем меньше сопротивление обмотки, тем меньше будет перегрев при протекании тока, а значит, тем выше может быть сам ток. Кроме того, в большинстве случаев, если все остальные параметры остаются без изменения, для уменьшения сопротивления необходимо использовать дроссель большего типоразмера.

Какой должна быть частота собственного резонанса?

Частота собственного резонанса определяется следующим образом:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.На частоте собственного резонанса дроссель обеспечивает максимальное ослабление шума. На более низких частотах импеданс уменьшается. В точке собственного резонанса полное сопротивление достигает максимального значения. На более высоких частотах сопротивление также уменьшается.

В фильтрах более высокого порядка и в приложениях с согласованным импедансом желательно иметь более плоскую частотную зависимость индуктивности вблизи требуемой частоты. Это предполагает выбор дросселя с частотой, значительно превышающей рабочую частоту. Эмпирическое правило заключается в выборе индуктивности, у которой собственная частота резонанса в 10 раз выше рабочей частоты. Обычно, величина индуктивности определяет частоту резонанса и наоборот. Чем выше индуктивность, тем ниже частота резонанса, что является следствием увеличения емкости обмотки.

Частотная зависимость индуктивности и импеданса

Индуктивность и импеданс резко возрастают вблизи собственной резонансной частоты (SRF), как показано на рисунке 1. Если предполагается использовать катушку индуктивности в роли простого ВЧ-фильтра, в таких случаях следует выбирать дроссель, у которого частота резонанса максимально близка к частоте подавляемого шума. Для других приложений следует выбирать дроссель, у которого частота резонанса максимально, как минимум в 10 раз, выше рабочей частоты.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Рис. 1. Частотная зависимость индуктивности и импеданса проволочного дросселя 100 нГн

В каких случаях важна добротность?

Высокое значение добротности (Q) обеспечивает узкую полосу пропускания, что важно, если катушка индуктивности используется в составе LC-генератора или в другом узкополосном приложении (рисунок 2). Высокое значение Q также приводит к низким потерям и способствует уменьшению энергопотребления.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Рис. 2. Высокая добротность (Q) обеспечивает узкую полосу пропускания и низкие потери

Добротность индуктивности рассчитывается следующим образом:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.Все зависящие от частоты параметры, активные и реактивные потери учитываются в Q, в том числе индуктивность, емкость, скин-эффект проводника и потери в материале магнитного сердечника. Как указано в таблице 1, индуктивности с проволочной обмоткой имеют гораздо более высокие значения Q, чем многослойные печатные индуктивности того же размера и номинала.

Как выбрать рейтинг температуры?

При увеличении тока и сопротивления потери мощности в индуктивности увеличиваются. В свою очередь потери приводят к разогреву и повышению температуры компонента. Номинальный ток индуктивности обычно приводится для заданной температуры окружающей среды, но из-за собственных потерь температура компонента оказывается выше температуры среды. Например, если компонент с верхней границей диапазона рабочих температур +125° C в процессе протекания номинального значения полного тока (Irms или Idc) дополнительно нагревается на 15 °C, то его собственная максимальная температура составит приблизительно 140 °C. При выборе катушки индуктивности нужно убедиться, что температура окружающей среды и потребление тока в приложении не превышают номинальных значений.

Как быстро найти индуктивности, которые обладают всеми необходимыми характеристиками?

Сравнение спецификаций дросселей от различных производителей может занять много времени. Инструмент поиска индуктивностей Coilcraft позволяет выбирать катушки по шести различным параметрам. Фильтр автоматически оставляет только те модели, которые удовлетворяют заданным требованиям.

Источник

Физическая природа индуктивности

Физическая природа индуктивности.

Катушки индуктивности обладают свойством оказывать реактивное сопротивление переменному току при незначительном сопротивлении постоянному току. Совместно с конденсаторами они используются для создания фильтров, осуществляющих частотную селекцию электрических сигналов, а так же для создания элементов задержки сигналов и запоминающих элементов, осуществления связи между цепями через магнитный поток и т.д. В отличие от резисторов и конденсаторов они не являются стандартизованными изделиями, а изготавливаются для конкретных целей и имеют такие параметры, которые необходимы для осуществления тех или иных преобразований электрических сигналов, токов и напряжений.

Функционирование катушек индуктивности основано на взаимодействии тока и магнитного потока. Известно, что при изменении магнитного потока Ф в проводнике, находящемся в магнитном поле, возникает ЭДС, определяемая скоростью изменения магнитного потока

Поэтому при подключении к проводнику источника постоянного напряжения ток в нем устанавливается не сразу, так как в момент включения изменяется магнитный поток и в проводе индуцируется ЭДС, препятствующая нарастанию тока, а спустя некоторое время, когда магнитный поток перестает изменяться. Если же к проводнику подключен источник переменного напряжения, то ток и магнитный поток будут изменяться непрерывно и наводимая в проводнике ЭДС будет препятствовать протеканию переменного тока, что эквивалентно увеличению сопротивления проводника. Чем выше частота изменения напряжения, приложенного к проводнику,, тем больше величина ЭДС, наводимая в нем, следовательно, тем больше сопротивление, оказываемое проводником протекающему току. Это сопротивление X L не связано с потерями энергии, поэтому является реактивным. При изменении тока по синусоидальному закону наводимая ЭДС будет равна

Индуктивность короткого проводника (мкГн) определяется его размерами:

Если провод намотан на каркас, то образуется катушка индуктивности. В этом случае магнитный поток концентрируется и величина индуктивности возрастает.

2.3.2.Конструкции катушек индуктивности.

Конструкционной основой катушки индуктивности является диэлектрический каркас, на который наматывается провод в виде спирали. Обмотка может быть как однослойной (рис.2.21,а), так и многослойной (рис.2.21,6). В некоторых случаях многослойная обмотка делается секционированной (рис.2.21,в). В интегральных схемах применяются плоские спиральные катушки индуктивности (рис.2.21,г).

В катушках индуктивности, работающих на низких в качестве сердечников используют пермаллои. При этом рается из тонких пластин толщиной 0,002-0,1мм.

2.3.3. Индуктивность и собственная емкость катушек индуктивности.

Индуктивность является основным параметром катушки индуктивности. Ее величина (мкТн) определяется соотношением

Для однослойных катушек величина L 0 определяется соотношением

Оптимальными в этом случае являются отношение а диаметр катушки в пределах от 1 до 2 см. При расчете диаметр катушки D принимается равным диаметру каркаса D 0

Для намотки катушки обычно применяют провод оптимального диаметра, который рассчитывается с помощью эмпирических формул и графиков. Для этого по графику S=f(t/D; l /D) (рис.2.25) находят вспомогательный коэффициент S. Затем рассчитывают коэффициент

Полученное значение округляется до ближайшего стандартного значения (табл.2.6) и выбирается марка провода с диаметром d из

Основные параметры обмоточных проводов

Если t> d из; то обмотка размещается. В противном случае задаются большей величиной l и повторяют расчет.

Для многослойных катушек рассчитывают толщину обмотки

Индуктивность уменьшается тем больше, чем меньше диаметр экрана. В большинстве случаев D эк /D >1,6ё1,8. При этом индуктивность уменьшается не более чем на 20%.

Многослойные катушки обычно выполняют с сердечниками броневого типа, при использовании которых большая часть силовых линий магнитного поля катушки замыкается через сердечник, а меньшая-через воздух, вследствие чего влияние экрана на индуктивность катушки значительно ослабляется.

Применение сердечников из магнитных материалов позволяет уменьшить число витков катушки индуктивности и соответственно ее габариты. Основным параметром сердечника является магнитная проницаемость m с При его наличии индуктивность катушки становится равной

Поскольку в расчетные формулы входят эмпирические коэффициенты, то индуктивность изготовленной катушки отличается от расчетной. Применение подстроечных магнитных сердечников позволяет получить требуемое значение индуктивности.

Собственная емкость является паразитным параметром катушки индуктивности, ограничивающим возможности ее применения. Ее возникновение обусловлено конструкцией катушки индуктивности: емкость существует между отдельными витками катушки, между витками и сердечником, витками и экраном, витками и другими элементами конструкции. Все эти распределенные емкости можно объединить в одну, называемую собственной емкостью катушки C L

Наименьшей собственной емкостью обладают однослойные катушки индуктивности Приближенно она рассчитывается по формуле (пФ)

Наименьшее значение угла j получается для витков, имеющих наименьший диаметр, равный диаметру каркаса D 0.

Обычно при использовании универсальной обмотки длину катушки принимают в пределах от 2 до 10мм. Количество циклов намотки связано с рачетнным числом витков W соотношением

Величина собственной емкости катушек с универсальной обмоткой составляет от 3 до 8пФ. Дополнительное снижение емкости достигается серкцонированием обмотки, как показано на рис.2.21,в.

Совместное действие индуктивности и емкости можно учесть введением понятия об эквивалентной индуктивности катушки, определяемой из уравнения

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведет к изменению собственной емкости катушки.

2.3.4. Потери в катушках индуктивности.

Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране.

Потери в проводах вызваны тремя причинами.

Во-первых, провода обмотки обладают омическим сопротивлением

Это сопротивление (Ом) можно выразить через число витков W и средний диаметр катушки D СР

Во-вторых, сопротивление провода обмотки переменному току возрастает с ростом частоты, что обусловлено поверхностным эффектом, суть которого состоит в том, что ток протекает не по всему сечению проводника, а по кольцевой части поперечного сечения (рис.2.29), ширина (мм) которой равна

Вследствие этого провод длиной l имеет сопротивление переменному току равное

После преобразования получаем

В третьих, в проводах обмотки, свитой в спираль, проявляется эффект близости (рис.2.30), суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии провода, прилегающей к каркасу, в результате чего сечение, по которому протекает ток, принимает серповидный характер, что ведет к дополнительному возрастанию сопротивления провода.

провода току высокой частоты r f = r Б + r П оказывается минимальным. Для однослойных катушек d опт = 0,2-0,6мм, для многослойных d опт =0,08-0,2мм. Существенно уменьшить потери в проводах можно применяя провод «литцендрат», состоящий из большего числа жилок, скрученных в жгут. При небольшом диаметре тонких жилок ослабляется поверхностный эффект, а скручивание жилок в жгут ослабляет эффект близости.

d- диаметр провода в см.

Затем по таблице находятся коэффициенты F(z) и G(z).

По (2.50) рассчитывается сопротивление провода катушки току высокой частоты

Если однослойная катушка намотана проводом оптимального диаметра и параметр z >5, то сопротивление r f можно определить по формуле

Потери в диэлектрике обусловлены тем, что между соседними витками катушки существует емкость, имеющая две составляющих-емкость через воздух С ов и емкость через диэлектрик С од (рис.2.33).

tg d с = d в f + d г Н + d п

Потери в экране обусловлены тем, что ток, протекающий по катушке, индуцирует ток в экране. Потери, вносимые экраном, определяются по формуле

Величина h = f(l/D) определяется по графику (рис.2.27).

Таким образом суммарное сопротивление потерь в катушке индуктивности, определяющее ее добротность, равно

R п = r f + r д +r c + r э

Практически величина добротности лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями. С учетом потерь и паразитной емкости катушку индуктивности можно представить в виде эквивалент-

2.3.5.Разновидности катушек индуктивности.

Контурные катушки индуктивности. Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность и добротность. В диапазоне длинных и средних волн эти катушки многослойные, как правило, с намоткой типа «универсаль». Для повышения добротности применяют многожильные провода типа «литцендрат». Для изменения индуктивности применяют цилиндрические сердечники из альсифера или карбонильного железа.

Катушки связи. Эти катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы и коллектора и т.д.

К таким катушкам не предъявляются жесткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи

Вариометры. Это такие катушки, в которых предусмотрена возможность изменения индуктивности в процессе эксплуатации для перестройки колебательных контуров.

Они состоят из двух катушек, соединенных последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра

Источник

Катушка индуктивности

Что такое катушка индуктивности

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

В — магнитное поле, Вб

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

И у нас получится вот такая картина с магнитными силовыми линиями:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

U — напряжение в катушке, В

R — сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности — источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Но где у нее сердечник? Воздух — это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель — это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Также существует еще один особый вид дросселей — это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Имеется ферритовый сердечник

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Начинаю вводить катушку в сердечник на самый край

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

1 — это каркас катушки

2 — это витки катушки

3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо «виток к витку».

Убавим витки катушки в два раза. Было 24 витка, стало 12.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Отдалим витки катушки друг от друга

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от «витков в квадрате». Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

А при параллельном соединении получаем вот так:

индуктивность выводная что это. индуктивность выводная что это фото. картинка индуктивность выводная что это. смотреть фото индуктивность выводная что это. смотреть картинку индуктивность выводная что это.

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *