искусственный интеллект что учить

Почему искусственный интеллект нужно изучать даже гуманитариям

Рассказываем, с чего начать изучение ИИ

искусственный интеллект что учить. искусственный интеллект что учить фото. картинка искусственный интеллект что учить. смотреть фото искусственный интеллект что учить. смотреть картинку искусственный интеллект что учить.

искусственный интеллект что учить. искусственный интеллект что учить фото. картинка искусственный интеллект что учить. смотреть фото искусственный интеллект что учить. смотреть картинку искусственный интеллект что учить.

Что такое ИИ и почему это так интересно

Искусственный интеллект – это способность машины имитировать человеческое мышление. Так называют современную технологию, с помощью которой электронные устройства, программы и роботы могут решать различные задачи по заданным алгоритмам.

Тема искусственного интеллекта и машинного мышления интересовала учёных ещё до изобретения компьютеров, а после появления ЭВМ вышла на новый уровень. В 1950-60-х годах вопросы, связанные с созданием и использованием искусственного интеллекта, стали широко обсуждаться в обществе.

Ответ на этот вопрос найти сложно ещё и потому, что нет чётких критериев разумности машины. Если это умение делать логические умозаключения, то компьютер давно превзошёл человека. Если же речь идёт о гибкости и оригинальности мышления, тут человек пока ещё превосходит даже самые современные интеллектуальные устройства.

ИИ активно используется в самых разных областях, список которых с каждым годом расширяется, и найти своё место в этой сфере могут не только технари, но и гуманитарии – специалисты по управлению проектами, рекламе и пиару, психологи, экономисты, лингвисты.

Что могут программы с искусственным интеллектом

Современные технологии искусственного интеллекта позволяют создать устройства и программы, которые:

В каких сферах применяется ИИ

Обработка языка

Машинный перевод активно используется в интернете и социальных сетях, совершенствуясь с каждым годом. Компьютер научился распознавать и устную, и письменную, и печатную речь. По прогнозам, переводчик станет одной из первых профессий, которая исчезнет «по вине» ИИ.

Компьютерные игры

Искусственный интеллект используется для создания игровой Вселенной, он управляет ботами – персонажами, за которых не играют люди. С помощью ИИ создаются игровые стратегии.

Управление финансами

Программы и устройства успешно осуществляют бухгалтерские операции, ведут учёт и контроль, могут создавать прогнозы на основе имеющихся данных. Специальные программы ведут учёт расходов.

Анализ окружающей среды

Технологии искусственного интеллекта применяются для создания «умных домов». Контроль над всем, что происходит в доме – электричеством, отоплением, вентиляцией, работой бытовой техники осуществляет специальная программа. Роботы-пылесосы сканируют окружающее пространство, чтобы определить, нужно ли им приступать к работе.

Мобильные приложения

Программы для мобильных телефонов умеют распознавать лица, отслеживать наше месторасположение, следят за режимом сна и питания.

Транспорт

С помощью интеллектуальных устройств можно выстроить маршрут передвижения с учётом пробок, компьютер в современном автомобиле в определённых режимах отслеживает положение машины на дороге, контролирует скорость и мощность двигателя. Технология ИИ используется в автомобилях, способных передвигаться без участия человека.

Медиа

С помощью специальных программ можно планировать и публиковать материалы в интернете и соцсетях. Технологии ИИ подбирают контент в соответствии с интересами пользователя. В недалёком будущем компьютерные программы, вероятно, научатся создавать тексты на основе уже загруженных в интернет материалов.

ИИ может анализировать резюме соискателей, распределять их на группы в зависимости от навыков и квалификации и даже определять, насколько работник подходит для той или иной должности.

Медицина

Искусственный интеллект анализирует данные пациентов и выявляет связь между методами лечения и состоянием больного. В будущем планируется создать роботов, которые будут ставить диагноз на основе имеющихся симптомов, обращаясь к медицинской базе данных.

Тяжёлая промышленность

Роботы активно применяются в областях, где необходима постоянная концентрация на совершении одних и тех же рутинных действий. Самый высокий уровень внедрения машин с элементами искусственного интеллекта в производство на данный момент отмечен в Японии: на 10 000 сотрудников автомобильной промышленности там приходилось в 2014 году около 1500 роботов.

Зачем изучать технологию ИИ

Искусственный интеллект – технология не только настоящего, но и будущего, и у специалистов в этой сфере не будет проблем с трудоустройством в ближайшие несколько десятков лет. В эту область уже сейчас привлекаются огромные инвестиции, а значит, не будет проблем и с оплатой труда работников, занимающихся разработкой, изготовлением и внедрением технологий ИИ.

Вклад в науку и культуру

Искусственный интеллект и создание интеллектуальных программ и устройств – та область, в которой постоянно совершаются новые открытия. Занимаясь искусственным интеллектом, учёные и инженеры находятся на переднем крае мировой науки, продвигают человечество вперёд. Кроме того, развитие искусственного интеллекта и внедрение его в нашу жизнь порождает множество этико-философских вопросов, для разрешения которых нужен уже не машинный, а человеческий разум, способный к творческому мышлению.

В сфере создания ИИ очень востребованы не только разработчики программного обеспечения, но и люди с креативным мышлением, способные придумывать и продвигать новые идеи. Чтобы работать в этой сфере, важно уметь нестандартно мыслить. Отдельное перспективное направление, которым может заняться творческий человек – обучение машины созданию произведений искусства. Уже сегодня компьютеры рисуют картины, пишут музыку и стихи. В недалёком будущем, возможно, они возьмут на себя создание книг, кино и мультфильмов.

Освоение новых навыков

Чтобы работать в области искусственного интеллекта, необходимо хорошее знание математики и основ программирования. Для изучения ИИ наиболее важны два раздела математики – линейная алгебра и теория вероятности. Самый востребованный язык программирования в этой сфере – Python, потом идут R и Lua. Пригодится также знание английского языка – самые современные научные данные, статьи, отчёты о достижениях и экспериментах, как правило, публикуются на английском.

Для успешной работы в области ИИ необходимо критическое мышление, умение тщательно проверять любую гипотезу, сопоставлять все данные, анализировать любую задачу с разных сторон. Понадобятся и хорошие коммуникативные навыки – работа над проектами ИИ происходит в большой команде, в сотрудничестве с коллегами и специалистами из смежных областей.

Приступить к изучению технологию искусственного интеллекта на начальном уровне вполне можно самостоятельно, с изучения соответствующей литературы.

Книги, в доступной форме рассказывающие о машинном обучении и технологиях ИИ:

Познакомиться с основами создания алгоритмов для искусственного интеллекта можно на кружках робототехники в школе или центре детского творчества. Кроме того, можно найти бесплатные онлайн-курсы и открытые лекции в интернете о машинном интеллекте.

Технологии машинного обучения и искусственного интеллекта – одна из самых интересных и перспективных областей, изучение которой полезно школьникам не только с математическим, но и с гуманитарным складом ума. Это поможет им приобрести новые навыки, расширит список возможных профессий и позволит внести вклад в развитие научно-технического прогресса.

Хотите получать новые статьи во «ВКонтакте»? Подпишитесь на рассылку полезных статей

Источник

Наука о данных, искусственный интеллект, машинное обучение: путь самоучки

Не каждый может найти время и деньги на то, чтобы получить очное образование в сферах Data Science (DS, наука о данных), AI (Artificial Intelligence, искусственный интеллект), ML (Machine Learning, машинное обучение). Недостаток времени и нехватка денег — это серьёзные препятствия. Преодолеть эти препятствия можно, занявшись самообучением. Но и тут не всё так просто. Для того чтобы успешно учиться самостоятельно, нужны дисциплина, сосредоточенность и правильный подбор учебных предметов. Самообучение в выбранной области, при правильном подходе, можно свободно совмещать с обычной жизнью или с учёбой в общеобразовательных учреждениях. Но в некоторых областях знаний, в таких, как DS, AI, ML, очень сложно начать учиться самостоятельно. Однако, прошу поверить мне на слово, сложности стоят того, что можно получить в результате. Ключ к успеху в самообучении лежит в том, чтобы учиться в собственном темпе.

искусственный интеллект что учить. искусственный интеллект что учить фото. картинка искусственный интеллект что учить. смотреть фото искусственный интеллект что учить. смотреть картинку искусственный интеллект что учить.

В этом материале я хочу рассказать о том, как можно действовать тому, кто хочет самостоятельно обрести знания в областях DS, AI и ML. Применение предложенных здесь методов учёбы способно привести к хорошему прогрессу в изучении нового. Здесь, кроме того, я собираюсь поделиться ссылками на ресурсы, которыми я пользуюсь, и которые я без тени сомнения готов порекомендовать другим.

Изучите некоторые математические дисциплины

Математика, даже если это кому-то и не нравится, очень важна в интересующей нас области. Я думаю, что можно с достаточной уверенностью говорить о том, что те, кто это читают, уже обладают некоторыми знаниями по математике, которые они получили в школе. Это — хорошая база, но этого и близко недостаточно тому, кто хочет развиваться в сферах DS, AI и ML. А именно, тут понадобится углубиться в математику немного сильнее, чем это делается в школе, придётся изучить некоторые вещи из статистики, алгебры и других математических дисциплин. Я собрал бы список полезных ресурсов по математике для DS, но это уже сделали за меня в этой статье. И сделали очень хорошо.

Научитесь программировать

Если вы только начинаете самообучение — не стоит сразу бросаться в изучение того, как писать код для целей машинного обучения. Вместо этого стоит изучить основные концепции программирования, не привязанные к какой-либо предметной области. Узнайте о том, что такое программирование, ознакомьтесь с разными существующими типами кода, разберитесь с тем, как правильно писать программы. Это очень важно, так как в процессе освоения программирования вы изучите множество базовых идей, которые сослужат вам хорошую службу на протяжении всей вашей DS-карьеры.

Не спешите, не стремитесь сразу изучить что-то сложное. То, насколько хорошо вы поймёте основы, скажется на всей вашей будущей профессиональной деятельности. Здесь вы можете найти очень хорошие видеоуроки, которые познакомят вас с программированием и информатикой. А именно, в них разбираются самые важные вещи, в которых вам нужно разбираться. Уделите этому вопросу достаточно времени и постарайтесь дойти до понимания всего, что узнаете.

Выберите один язык программирования и как следует в нём разберитесь

Существует много языков программирования, используемых теми, кто работает в областях DS, AI и ML. Чаще всего здесь используются Python, R, Java, Julia и SQL. В данных сферах могут применяться и другие языки, но те, которые я перечислил, применяются чаще других не без причины:

Научитесь собирать данные

Чаще всего вам никто не будет давать данные, предназначенные специально для вас, а иногда в вашем распоряжении может не быть вообще никаких данных. Но, в любом случае, вам нужно найти способ сбора данных, с которыми вы будете работать. У организации, в которой вы трудитесь, может быть хорошая система сбора данных. Если это так, для вас это — большой плюс. Если такой системы в организации нет, то вам придётся найти способ сбора данных. Но речь идёт не о любых данных, а о качественной информации, с который вы сможете продуктивно работать, достигая поставленных целей. Сбор данных не имеет прямой связи с «добычей данных», с их глубинным анализом. Сбор данных — это шаг работы, который предшествует анализу.

Открытые данные, которыми можно пользоваться бесплатно, можно найти во многих местах интернета. Иногда же нужные данные можно собрать с веб-сайтов, применяя методы веб-скрапинга. Владение веб-скрапингом — это очень важный навык дата-сайентиста, поэтому я очень прошу всех, кто собирается работать в областях DS, AI и ML, освоить этот навык. Вот хорошее руководство по веб-скрапингу.

Данные, кроме того, могут храниться в базах данных, поэтому вам очень пригодятся начальные сведения по администрированию БД и умения по взаимодействию с базами данных. В частности, здесь очень важны знания SQL. Поучиться SQL можно здесь.

Научитесь обрабатывать данные

То, о чём я будут тут говорить, часто называют «первичной обработкой данных» (Data Wrangling). Этот процесс включает в себя очистку имеющихся данных. Здесь применяется разведочный анализ данных и удаление из них всего ненужного. Этот процесс так же включает в себя структурирование данных, приведение их к такой форме, с которой можно будет работать. Эта стадия работы с данными является самой тяжёлой и изматывающей. Те данные, с которыми вы столкнётесь в процессе обучения, будут уже подготовлены к анализу. Но данные, с которыми вы встретитесь в реальном мире, могут быть совершенно «сырыми». Если вы и правда стремитесь стать специалистом в области обработки и анализа данных, вам стоит найти настоящие данные и отыскать способы приведения их в пристойный вид.

Реальные данные можно найти практически повсюду. Например — на Kaggle. На этой замечательной платформе имеются данные от множества компаний со всего мира. Первичная обработка данных — это очень утомительное занятие, но если вы будете заниматься этим регулярно и настойчиво, вы, постепенно, поймёте, что занятие это ещё и очень интересное. Вот хорошие лекции по первичной обработке данных.

Научитесь визуализировать данные

Если вы — специалист по DS, AI или ML, и хорошо разбираетесь в своём деле, вы не должны забывать о том, что то, что кажется вам очевидным, может быть совершенно непонятно окружающим. Не ждите от них того, что они, например, смогут сделать выводы, глядя на колонки цифр. Научиться визуализировать данные нужно для того чтобы результатами вашей работы могли бы воспользоваться специалисты из других областей. «Визуализацией данных» обычно называют процесс представления данных в графическом виде. Такое представление данных позволит извлечь их них пользу даже тем, кто не имеет специальных знаний в сферах DS, AI и ML.

Существует множество способов визуализации данных. Так как мы, всё же, программисты, нашим основным методом визуализации данных должно быть написание соответствующего кода. Это быстро и не требует покупки специализированных инструментов. При написании кода для визуализации данных можно пользоваться множеством бесплатных и опенсорсных библиотек, созданных для используемых нами языков программирования. Например, существуют библиотеки такого рода для Python. Это — Matplotlib, Seaborn и Bokeh. Вот видеоурок по Matplotlib.

Ещё один способ визуализации данных предусматривает использование инструментов с закрытым кодом. Например — Tableau. Существует много таких средств, они позволяют добиваться весьма привлекательных результатов, но они не бесплатны. Tableau — один из самых распространённых подобных инструментов, им я пользуюсь очень часто. Я посоветовал бы всем, кто занимается анализом и визуализацией данных, изучить Tableau. Вот хорошее руководство по этому инструменту.

Искусственный интеллект и машинное обучение

AI и ML можно рассматривать как подразделы DS, так как они основаны на данных. AI и ML — это технологии, которые основаны на обучении машин поведению, сходному с поведением людей. Для этого используются специально подготовленные данные, передаваемые машинам. Компьютерные модели можно научить многому такому, на что способны люди. Для этого их обучают и направляют к нужному результату. В данном случае «машины» можно воспринимать как маленьких детей, не имеющих совершенно никаких знаний. Этих детей постепенно обучают идентифицировать объекты, говорить. Они учатся на своих ошибках и, по мере обучения, начинают всё лучше решать поставленные перед ними задачи. Так происходит и с машинами.

Технологии AI и ML — это то, что «оживляет» машины с использованием множества математических алгоритмов. Человечеству до сих пор не известны границы возможностей этих постоянно совершенствующихся технологий. В наши дни технологии AI и ML широко используются для решения когнитивных задач. Это — обнаружение и распознавание объектов, распознавание лиц и речи, обработка естественного языка, выявление спама и обнаружение мошенничества. Этот список можно ещё очень долго продолжать.

Более подробный рассказ об AI и ML достоин отдельной публикации. Пока же я могу порекомендовать это видео, касающееся общих вопросов применения данных технологий. А вот — многочасовой видеоурок, посвящённый машинному обучению. Проработав эти видео, вы можете приобрести знания в сфере ML, соответствующие начальному или даже среднему уровню. Вы узнаете о множестве существующих алгоритмов машинного обучения, о том, как они устроены, и о том, как ими пользоваться. После этого у вас должно быть достаточно знаний для того чтобы приступить к созданию собственных простых ML-моделей. О том, как это сделать, можно почитать здесь.

Изучите способы публикации ML-моделей в интернете

Существуют инструменты, позволяющие публиковать ML-модели в интернете. Это позволяет дать к ним доступ всем желающим. Для того чтобы публиковать модели в интернете, нужно хорошее понимание процессов веб-разработки. Дело в том, что под «публикацией модели» понимается создание веб-страницы (или группы страниц), обеспечивающей возможность работы с моделью в браузере. Кроме того, нужно учитывать то, что фронтенд проекта, его интерфейс, должен обмениваться данными с бэкендом, с серверной частью проекта, где расположена сама модель. Для того чтобы строить подобные проекты, вы должны уметь создавать серверные API и пользоваться этими API в клиентской части приложений.

В том случае, если вы планируете публиковать модели в облачных средах, если собираетесь использовать технологию Docker, вам пригодится хорошее знание сферы облачных вычислений и DevOps.

На самом деле, существует множество способов развёртывания моделей в интернете. Я посоветовал бы начать с изучения того, как это делается с использованием веб-фреймворка Flask, основанного на Python. Вот хорошее учебное руководство об этом.

Найдите наставника

Самообучение — это прекрасно, но ничто не сравнится с обучением у профессионалов. Дело в том, что при таком подходе усваивается то, что используется в реальности, и в том, что так обучение идёт через практику. Многие вещи можно изучить только на практике. Обучение с наставником имеет множество сильных сторон, но надо учитывать то, что не каждый наставник способен оказать существенное влияние на вашу карьеру или жизнь. Именно поэтому очень важно найти хорошего наставника.

Например, эту задачу можно попытаться решить с помощью платформы Notitia AI. Здесь учащимся назначают персональных наставников, которые делают личный и профессиональный вклад в развитие учеников. Наставники доводят тех, кто хочет учиться, от начального до экспертного уровня в сферах DS, AI и ML. Notia AI, это, кроме того, самая доступная платформа такого рода.

Итоги

Учтите, что изучение курсов, чтение статей и просмотр видео не сделают из вас специалиста по работе с данными. Вам понадобится пройти сертификацию в специализированном учреждении. Кроме того, некоторые вакансии требуют наличия определённых документов об образовании. Вложите время в самообучение, сертифицируйтесь или получите документы об образовании, и вы будете готовы к реальной работе.

Как вы думаете, что нужно знать и уметь тому, кто стремится стать ценным специалистом в сферах искусственного интеллекта или машинного обучения?

Источник

С чего начать изучение искусственного интеллекта?

Машинное обучение и искусственный интеллект уже давно и прочно вошли в повседневную жизнь. Однако специалистов в этой области до сих пор очень мало. С чего же начать изучение сферы ИИ? На этот вопрос ответили пользователи сайта Quora.

искусственный интеллект что учить. искусственный интеллект что учить фото. картинка искусственный интеллект что учить. смотреть фото искусственный интеллект что учить. смотреть картинку искусственный интеллект что учить.

Шриканс Варма Чекури, преподаватель и исследователь в сфере машинного обучения

Я работаю преподавателем онлайн-курса по изучение искусственного интеллекта и машинного обучения. Этот курс создан для новичков, у которых нет никаких знаний в данной сфере, которые, однако, готовы на протяжении 5-6 месяцев тратить 5-10 часов в неделю на изучение машинного обучения. По окончании данного курса многие наши студенты действительно решают существующие задачи при помощи ИИ\МО.

Работа курса построена следующим образом:

Мы начинаем с базовых знаний об Python, включая изучение крупных библиотек данных, таких как NumPy, SciPy, MatPlotlib, Seaborn и др. Среди множества языков программирования мы выбираем Python (а не Java или, к примеру, R), потому что этот язык достаточно легко изучить. Кроме того, для него существует огромное количество отличных библиотек для ИИ\МО.

Как только усвоен базовый уровень программирования, участники курса учатся работать с данными, используя Python в качестве инструмента программирования. Данный этап носит название «Исследовательский анализ данных» и включает в себя использование инструментов для построения диаграмм, что облегчает работу с данными. На этом этапе изучаются базовые понятия, такие как гистограмма, PDF, CDF, точечная и прямоугольная диаграммы и другие. Анализу подвергаются реально существующие массивы данных. Благодаря использованию диаграмм для осуществления анализа данных, уже на начальных этапах обучения студенты могут увидеть результат проделанных ими исследований, что, несомненно, мотивирует их на дальнейшую работу.

После мы переходим к изучению статистики и теории вероятности. Данный блок информации воспринимается участниками курса легче, учитывая то, что на предыдущем этапе велась работа с данными. Участники курса знакомятся с такими понятиями, как распределение вероятностей, тестирование гипотезы, корреляция, доверительные интервалы и многое другое. При помощи простых примеров, разбавляющих «сухую» теорию, данная тема воспринимается намного лучше.

Дальше мы переходим к линейной алгебре. Хоть многим людям намного проще воспринимать зрительную информацию, поэтому диаграммы и геометрия намного легче для восприятия, чем уравнения, все же базовые знания в линейной алгебры необходимы.

Теперь можно перейти непосредственно к основам машинного обучения. Мы используем Метод главных компонент (PCA) и алгоритм t-SNE для визуализации многомерных переменных. Однако в качестве базиса для извлечения математических деталей используется геометрия.

Изучив все необходимые основы, можно переходить к главным алгоритмам машинного обучения. Что касается уравнений – они начинают нравиться студентам только тогда, когда студенты в них разобрались и могут с легкостью их читать. Поэтому мы подаем уравнения в форме описательных предложений, что помогает студентам быстрее разобраться в них и получить более четкое представление о происходящем.

По моему опыту, изучение каждой отдельной техники необходимо сочетать с параллельной работой над действительно существующей задачей той же направленности. В нашем курсе изучается более 25 техник машинного обучения и 5 техник глубокого обучения.

Если у вас есть свободное время, то неплохо было бы использовать каждый отдельный метод на практике. Это даст вам более глубокое понимание того, каким образом функционирует каждый алгоритм в машинном обучении.

Кроме того, студенту также необходимо понять и разобраться, как наиболее эффективно применять различные методы, в каких случаях метод работает не лучшим образом и что делать, если метод плохо работает.

Также, для более глубокого погружения в машинное обучение необходимо разбираться в базовой математике и применять различные техники для решения многочисленных задач, существующих в данной области.

Ражж Раж, разработчик ПО в компании Facebook

Codecademy.com – полностью бесплатный вебсайт с интерактивными курсами, посвященными самым разным языками программирования. Присоединяйтесь к более чем 25-ти миллионам пользователей со всего мира и осваивайте новые знания.

Codeavengers.com – научитесь создавать приложения, игры и вебсайты с помощью Code Avengers | Code Avengers. На этом сайте представлены онлайн-курсы и учебные пособия для множества языков программирования, включая Python, HTML & CSS, JavaScript. Кроме того, здесь можно найти руководство для новичков по освоению программирования.

Udacity – это ресурс со множеством инновационных курсов по программированию. Некоторые обучающие программы бесплатны, поэтому данный сайт отлично подойдет начинающим разработчикам.

«Чистый код» Роберт Мартин («Clean Code», by Robert C. Martin) – для тех, кому больше нравится читать. В данной книге можно найти огромное количество примеров с использование Java, однако они применимы также и к другим языкам программирования. Данное пособие обращает особое внимание на правильную организацию кода, поэтому оно может стать вашим пошаговым руководством в изучении возможностей, которые вам предоставляет программирование.

Далее вам следует научиться работать с ботами. Отличным примером таких ботов являются специализированные поисковые роботы, которыми пользуются поисковые системы, тот же Google. Следующие ресурсы могут дать вам исчерпывающую информацию по этой теме:

Xpath – отличный ресурс, который помогает вам создавать ботов и исследовать HTML.

Regex – онлайн-инструмент, который обучает обработке информации, полученной при помощи ботов.

Requests – упрощенный HTTP; отличная HTTP-библиотека для веб-разработчиков, которые хорошо знакомы с языком программирования Python.

Чат-боты: подробное руководство для начинающих («The Complete Beginner’s Guide to Chatbots») – содержит всю необходимую информацию о чатботах, о том, что это такое и как их создавать.

После того, как вы определитесь с языком программирования, который будет соответствовать вашим способностям и умениям, а также познакомитесь и узнаете достаточно о чатботах, можно переходить к изучению машинного обучения. Однако стоит учесть, что для погружения в данную тему вам необходимо владеть, как минимум, базовым уровнем высшей математики и статистики – это поможет вам разобраться в алгоритмах МО. Ниже представлены некоторые учебные пособия, книги и гайды, которые помогут вам на первых порах:

«Программируем коллективный разум» Тоби Сегаран («Programming Collective Intelligence» by Toby Segaran) – хоть эта книга и была написана задолго до того, как машинное обучение достигло нынешнего уровня популярности, однако в ней эта технология представлена в легко воспринимаемой форме. Ключевые темы: функции поисковой системы, методы совместного фильтрования, метод опорных векторов и байесовская фильтрация. Для описания машинного обучения используется Python.

«Машинное обучение» Том Митчелл ([PDF] «Machine Learning», by Tom Mitchell) – отличное вводное пособие, содержащее подробный обзор алгоритмов машинного обучения. В книге представлены несколько тематических исследований, сопровождаемых простыми примерам, которые облегчают читателю понимание алгоритмов.

«Машинное обучение. Новый искусственный интеллект» Этем Алпайдин («Machine Learning: The New AI», by Ethem Alpaydi) – это книга о том, как с развитием цифровых технологий от базовых мейнфреймов до смарт-девайсов машинное обучение стало одной из передовых технологий в области компьютерных наук. Кроме того, из данного пособия можно узнать базовую информацию о машинном обучении, а также то, каким образом данную технологию можно применять в отношении приложений.

Подводя итог, вот список тех областей, в которых у вас должно быть достаточно знаний, чтобы разобраться с искусственным интеллектом:

искусственный интеллект что учить. искусственный интеллект что учить фото. картинка искусственный интеллект что учить. смотреть фото искусственный интеллект что учить. смотреть картинку искусственный интеллект что учить.

Для изучения ИИ существует огромное количество курсов как в реальном, так и в онлайн-формате. Udacity.com, mit.edu, edX.org и saylor.org предлагают действительно крутые онлайн-курсы по этой теме:

«Введение в искусственный интеллект» на udacity.com («Intro to Artificial Intelligence») – этот состоящий из 10 уроков онлайн-курс позволяет новичкам окунуться в мир ИИ. Вы познакомитесь с такими понятиями, как компьютерное зрение, машинное обучение, обработка естественного языка, робототехника и теория игр. Чтобы освоить этот курс, необходимо обладать базовыми знаниями по линейной алгебре и теории вероятности.

«Искусственный интеллект» на edX.org («Artificial Intelligence») – для изучения базовых концептов ИИ можно использовать курс, представленный на сайте edX. Данный курс уделяет особое внимание статистической модели и модели теории принятия решений. Необходимы достаточные знания в математике, а также начальные знания и базовый опыт в программировании. В качестве основного языка используется Python. В рамках данного курса студенты научатся создавать автономных интеллектуальных агентов, которые запрограммированы на принятие рандомных решений, а также изучат приложения машинного обучения.

«Искусственный интеллект» от MIT OpenCourseWare («Artificial Intelligence»)– данный курс предоставит своим студентам исчерпывающие знания по методам обучения ИИ. По завершении данного курса вы будете знать основные способы сборки решений. Кроме того, вы взглянете на человеческий интеллект с точки зрения высоких технологий.

«Искусственный интеллект» от Saylor Academy («Artificial Intelligence Course») – в рамках данного курса студенты получат углубленные знания в области ИИ. Особое внимание уделяется таким темам, как машинное обучение, программирование искусственного интеллекта, робототехника, а также понимание естественного языка.

«Искусственный интеллект: Принципы и методы» (Stanford University: «Artificial Intelligence: Principles & Techniques») – прекрасный учебный курс для тех, кто хочет узнать больше об искусственном интеллекте. Данный курс базируется на основополагающих принципах ИИ и включает в себя такие темы, как машинное обучение, Марковский процесс принятия решений, удовлетворение ограничений, а также графические модели. Главная цель курса – позволить студентам освоить различные инструменты, с помощью которых они смогут внедрить ИИ в повседневную практическую деятельность, тем самым решив ряд существующих проблем.

Помимо посвященных ИИ курсов, специалисты в сфере IT, а также изучающие компьютерные науки студенты могут расширить свои знания в данной теме при помощи соответствующей учебной литературы. Область искусственного интеллекта обладает огромным количеством интересных, а иногда и несколько запутанных вопросов и тем для изучения. Вот лишь некоторые из пособий, которые помогут вам разобраться в данной теме:

«Искусственный интеллект: современный подход», Стюарт Рассел и Питер Норвиг ([PDF] «Artificial Intelligence: A Modern Approach», by Stuart J. Russell and Peter Norvig) – в первой части книги рассматриваются интеллектуальные агенты, далее можно найти информацию о теории принятия решений, а также раскрытие таких понятий, как «восприятие» и «рассуждение». В конце книги авторы оценивают общий потенциал данной технологии и дают прогноз на будущее.

«Революция Искусственного интеллекта – путь к Супер-интеллекту», Тим Урбан («The AI Revolution: Road to Superintelligence») – крайне детализированная и взвешенная статья, в которой автор пытается развеять некоторые из наиболее распространенных заблуждений, которые касаются сферы искусственного интеллекта.

«На пути к искусственному интеллекту», Нильс Нильсон ([PDF] The Quest for Artificial Intelligence, by Nils J. Nilsson) – в этой книге содержится все, что вам нужно знать об искусственном интеллекте с самого начала существования технологии (когда ИИ существовал еще только в форме концепта) и до наших дней.

Мы упомянули различные курсы, которые могут помочь вам в изучении искусственного интеллекта, а также некоторые книги, способные углубить ваши знания по этой теме. Теперь мы бы хотели обратить внимание на различные точки зрения, имеющиеся касательно ИИ. Один из наиболее удобных способов познакомиться с ними – это посещение различных мероприятий и конференций, а также просмотр видеоконференций. Вот некоторые из наиболее интересных докладов и презентаций:

Илон Маск об Искусственном Интеллекте (Elon Musk talks about Artificial Intelligence at MIT) – это дискуссия длительностью более часа, записанная в 2014 году на праздновании 100-летия со дня основания Кафедры аэронавтики и астронавтики Массачусетского технологического института. Обсуждение охватывает множество тем: от исследования Марса и роли НАСА в этом до предупреждений о существующей опасности со стороны ИИ, а также об электромобилях компании Tesla.

Обсуждение статуса и места искусственного интеллекта в нынешнем мире (Davos 2016, The State of Artificial Intelligence) – обстоятельное обсуждение, главной целью которого было найти ответ на крайне важные вопросы: «Насколько близко передовые технологии подошли к тому, чтобы навсегда изменить человеческий разум?» и «Какое влияние оказывает ИИ на развитие нынешней промышленности?».

Илон Маск рассказывает об искусственном интеллекте в Стэнфордском университете (Elon Musk talks about artificial intelligence at Stanford University (2015)) – речь посвящена разным вопросам, обсуждение непосредственно ИИ начинается на 27 минуте. Илон Маск рассуждает о передовых технологиях, их месте в будущем, а также делает прогноз, что будет представлять собой искусственный интеллект через 25 лет.

Билл Гейтс и Илон Маск рассуждают о безопасности ИИ (Bill Gates and Elon Musk talk about AI safety) – оба оратора говорят об суперинтеллекте, ИИ, а также о том, что технологии делают для людей. Главная цель обсуждения – это обратить особое внимание на то, что необходимо сделать искусственный интеллект максимально безопасным. Маск уточняет, что создать и выпустить ИИ – это не так уж и сложно. Обеспечить его безопасность в дальнейшем – вот в действительности непростая задача.

Искусственный интеллект давно перестал быть всего лишь плодом нашего воображения. На сегодняшний день данная технология более чем реальна. Мы высоко ценим таких виртуальных помощников, как Cortana, Siri и Google Now, за их вклад в нашу жизнь. Игровая индустрия использует искусственный интеллект для создания впечатляющих онлайн-продуктов, а автопромышленность на сегодняшний день стремится усовершенствовать самоуправляемые машины.

Кроме того, с помощью искусственного интеллекта работают специализированные программы, направленные на выявление случаев мошенничества, а также программы, которые прогнозируют и предугадывают желания покупателя. Говоря простым языком, наш дом, банк, смартфон и машина – все это работает на основе ИИ.

Сридхар Махадеван, член Ассоциации по продвижению искусственного интеллекта

Свой ответ я бы хотел начать с уточнения того, что большую часть своей жизни, то есть, почти 40 лет, я провел за работой над ИИ. Для начала хотелось бы развеять некоторые неверные стереотипы и заблуждения:

ИИ никогда не был и не является подразделом чего-то, на мой взгляд, крайне скучного и повседневного, в том числе и сферы программного обеспечения. Нет никакой необходимости разбираться или уметь писать код, чтобы понять ИИ (по крайней мере, на начальных этапах). По сути, это не только не принесет никакой пользы, а даже наоборот, может озадачить и отбить всякое желание заниматься этим дальше. Что действительно необходимо прежде всего сделать, так это разобраться в проблеме.

ИИ – это одна из величайших задач и загадок человечества, главная цель которой – это создание машины, которая будет в какой-то мере напоминать нас. Эта машина должна будет перенять наши самые впечатляющие и удивительные способности, которые позволяют нам при помощи сенсорных систем воспринимать, фильтровать и распределять огромное количество информации. Каждый раз, когда вы читаете газету или протягиваете руку, чтобы взять чашку кофе, вы проделываете то, на что многие машины совершенно не способны. И даже больше: величайшие умы человечества до сих пор не знают, как сделать так, чтобы машины смогли это делать.

Если вкратце, то ИИ – это попытка воспроизвести процесс возникновения и дальнейшего развития человеческого мозга. Несмотря на все наши усилия, мы до сих пор почти ничего не знаем о том, каким именно образом наш мозг выполняет все те задания, которые отличают нас от остальных видов и делают нас людьми.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *