Таблица arp что это
Как посмотреть ARP-таблицу, ARP-запросы.
Что такое ARP-таблица, ARP-запрос?
Любое сетевое оборудование имеет физический 6 битный адрес уникальный для каждого экземпляра.
Отображение IP-адресов, в аппаратные адреса, выполняется с помощью следующих действий:
– в сеть отправляется широковещательный запрос (ARP-request), принимаемый всеми сетевыми устройствами. Он содержит IP и Ethernet адреса отправителя, а также, целевой IP-адрес, для которого выполняется определение MAC-адреса.
– каждое устройство, принявшее запрос проверяет соответствие целевого IP-адреса, указанного в запросе, своему собственному IP-адресу. При совпадении, отправителю передается ARP-ответ (ARP-Reply), в котором содержатся IP и MAC адреса ответившего узла. Кадр с ARP-ответом содержит IP и MAC адреса как отправителя, так и получателя-составителя запроса.
– информация, полученная в ARP-ответе, заносится в ARP-кэш и может использоваться для обмена данными по IP-протоколу для данного узла. ARP-кэш представляет собой таблицу в оперативной памяти, каждая запись в которой содержит IP, MAC и возраст их действительности (от нескольких секунд, до нескольких часов). Возраст записи учитывается для того, чтобы обеспечить возможность повторного выполнения процедуры ARP при каком либо изменении соответствия адресов.
В IP-сетях существует три способа отправки пакетов от источника к приемнику:
– одноадресная передача (Unicast);
При одноадресной передаче поток данных передается от узла-отправителя на индивидуальный IP-адрес узла-получателя.
– широковещательная передача (Broadcast);
Широковещательная передача предусматривает доставку потока данных от узла-отправителя множеству узлов-получателей, подключенных к данному сегменту локальной сети, с использованием широковещательного IP-адреса.
– многоадресная рассылка (Multicast).
Многоадресная рассылка обеспечивает доставку потока данных группе узлов на IP-адрес группы многоадресной рассылки. Узлы группы могут находиться в данной локальной сети или в любой другой. Узлы для многоадресной рассылки объединяются в группы при помощи протокола IGMP (Internet Group Management Protocol, межсетевой протокол управления группами). Пакеты, содержащие в поле назначения заголовка групповой адрес, будут поступать на узлы групп и обрабатываться. Источник многоадресного трафика направляет пакеты многоадресной рассылки не на индивидуальные IP-адреса каждого из узлов-получателей, а на групповой IP-адрес.
Замечания по практическому использованию команды ARP:
Параметры командной строки ARP:
-v – отображает текущие ARP-записи в режиме подробного протоколирования. Все недопустимые записи и записи в интерфейсе обратной связи будут отображаться.
inet_addr – определяет IP-адрес.
-d – удаляет узел, задаваемый inet_addr. Параметр inet_addr может содержать знак шаблона * для удаления всех узлов.
-s – добавляет узел и связывает адрес в Интернете inet_addr c физическим адресом eth_addr. Физический адрес задается 6 байтами (в шестнадцатеричном виде), разделенными дефисом. Эта связь является постоянной
eth_addr – определяет физический адрес.
if_addr – если параметр задан, он определяет адрес интерфейса в Интернете, чья таблица преобразования адресов должна измениться. Если параметр не задан, будет использован первый доступный интерфейс.
Формат командной строки ARP:
Пример содержимого таблицы ARP:
В данном примере присутствуют записи ARP для петлевого интерфейса 127.0.0.1 и реального 192.168.1.133.
Петлевой интерфейс не используется для реальной передачи данных и не имеет привязки к аппаратному адресу.
Таблица ARP реального интерфейса содержит записи для узлов с адресами 192.168.1.1 и 192.168.1.132, а также записи для широковещательной (MAC-адрес равен ff-ff-ff-ff-ff-ff) и групповых рассылок (MAC-адрес начинается с 01-00-5e ).
МАС-адрес групповой рассылки всегда начинается с префикса, состоящего из 24 битов — 01-00-5Е. Следующий, 25-й бит равен 0. Последние 23 бита МАС-адреса формируются из 23 младших битов группового IP-адреса.
ARP: Нюансы работы оборудования Cisco и интересные случаи. Часть 1
Привет habr! Каждый будущий инженер в процессе изучения сетевых технологий знакомится с протоколом ARP (Address Resolution Protocol, далее ARP). Основная задача протокола – получить L2 адрес устройства при известном L3 адресе устройства. На заре профессиональной карьеры начинающий специалист, как мне кажется, редко сталкивается с ситуациями, когда нужно вспомнить про существование ARP. Создаётся впечатление, что ARP – это некоторый автономный сервис, не требующий никакого вмешательства в свою работу, и при появлении каких-либо проблем со связью многие по неопытности могут забыть проверить работу ARP.
Я помню свой порядок мыслей, когда я начинал работать сетевым инженером: «Так, интерфейс поднялся, ошибок по физике вроде как не видно. Маршрут, куда слать пакеты, я прописал. Списков доступа никаких нет. Так почему же не идёт трафик? Что маршрутизатору ещё не хватает?» Рано или поздно каждый сетевой инженер столкнётся с проблемой, причина которой будет лежать именно в особенностях работы/настройки ARP на сетевом оборудовании. Простейший пример: смена шлюза на границе сети (например, вместо сервера MS TMG устанавливаем маршрутизатор). При этом конфигурация маршрутизатора была проверена заранее в лабораторных условиях. А тут, при подключении к провайдеру никакая связь не работает. Возвращаем MS TMG — всё работает. Куда смотреть после проверки канального и физического уровня? Наиболее вероятный ответ – проверить работу ARP.
В данной заметке я не буду подробно описывать принципы работы ARP и протоколов этого семейства (RARP, InARP, UnARP и т.д.). На эту тему уже существует уйма статей в Интернете (например, здесь не плохо описаны разновидности ARP). Единственный теоретический момент, на котором я заострю чуть больше внимания, – механизм Gratuitous ARP (GARP).
Статья будет состоять из двух частей. В первой части будет немного теории и особенности работы ARP на маршрутизаторах Cisco, связанные с правилами NAT и с функцией Proxy ARP. Во второй части опишу отличия в работе ARP между маршрутизаторами Cisco и межсетевыми экранами Cisco ASA, а также поделюсь несколькими интересными случаями из практики, связанными с работой ARP.
Ниже представлен пример обмена ARP-запросом/ARP-ответом в программе-сниффере Wireshark:
ARP-запрос отправляется на широковещательный MAC-адрес ff:ff:ff:ff:ff:ff. В теле ARP-запроса поле с неизвестным значением Target MAC Address заполняется нулями.
ARP-ответ отправляется на MAC-адрес получателя, отправившего ARP-запрос. В поле Sender MAC Address указывается запрашиваемый MAC-адрес устройства.
Поле opcode в заголовке ARP может принимает значение 1 для ARP-запроса и значение 2 для ARP-ответа.
Чтобы два устройства могли начать передавать трафика между собой, в их ARP-таблицах должна существовать соответствующая запись о соседнем устройстве. Логично предположить, чтобы ARP-запись появилась в таблицах, для каждого устройства должна отработать процедура ARP-запрос/ARP-ответ. То есть перед передачей трафика в сети должны пройти по два ARP-запроса и два ARP-ответа (ARP-запрос/ARP-ответ для первого компьютера и ARP-запрос/ARP-ответ для второго компьютера). Однако, данное предположение верно не для всех случаев. Сетевое оборудование Cisco добавляет новую запись в ARP-таблицу сразу по приходу ARP-запроса от удалённого устройства.
Рассмотрим пример. В широковещательный домен добавляется новое устройство с адресом 198.18.0.200. Запустим пинг с нового устройства и посмотрим debug arp на маршрутизаторе Cisco:
Как видно, сразу по пришествии ARP-запроса от неизвестного IP-адреса (rcvd req src 198.18.0.200), маршрутизатор создаёт соответствующую запись в своей ARP-таблице (creating entry for IP address: 198.18.0.200, hw: 64e9.50c8.d6cd).
Для текущей статьи я не проводил подробного исследования по вопросу, какое именно сетевое оборудование добавляет ARP-запись по пришествии ARP-запроса. Однако, предполагаю, описанное поведение присуще не только сетевому оборудованию Cisco, но и сетевому оборудованию других производителей, так как данный механизм позволяет существенно сократить ARP-трафик в сети.
Описанное поведение присуще сетевому оборудованию. Конечное оборудование в большинстве случаев, получает запись в ARP-таблицу только после полноценной процедуры ARP-запрос/ARP-ответ. Для примера, я проверил процедуру на компьютере с операционной системой Windows 7. Ниже представлен дамп ARP-пакетов. В данном примере был очищен arp-cache на маршрутизаторе Cisco и на Windows-компьютере. После этого был запущен пинг от маршрутизатора к компьютеру.
Из представленного дапма видно, что сперва маршрутизатор отправляет ARP-запрос и получает ARP-ответ. Но ARP-запрос от маршрутизатора не приводит к появлению требуемой записи в ARP-таблице Windows-компьютера, поэтому, в свою очередь, компьютер отправляет ARP-запрос и получает ARP-ответ от маршрутизатора.
Механизм Gratuitous ARP используется для оповещения устройств в рамках широковещательного домена о появлении новой привязки IP-адреса и MAC-адреса. Когда сетевой интерфейс устройства получает настройки IP (вручную или по DHCP), устройство отправляет Gratuitous ARP сообщение, чтобы уведомить соседей о своём присутствии. Gratuitous ARP сообщение представляет собой особый вид ARP-ответа. Поле opcode принимает значение 2 (ARP-ответ). MAC-адрес получается как в заголовке Ethernet, так и в теле ARP-ответа является широковещательным (ff:ff:ff:ff:ff:ff). Поле Target IP Address в теле ARP-ответа совпадает с полем Sender IP Address.
Механизм Gratuitous ARP используется для многих целей. Например, с помощью Gratuitous ARP можно уведомить о смене MAC-адреса или обнаружить конфликты IP-адресов. Другой пример — использование протоколов резервирования первого перехода (First Hop Redundancy Protocols), например, HSRP у Cisco. Напомню, HSRP позволяет иметь виртуальный IP-адрес, разделённый между двумя или более сетевыми устройствами. В нормальном режиме работы обслуживание виртуального IP-адреса (ответы на ARP-запросы и т.д.) обеспечивает основное устройство. При отказе основного устройства обслуживание виртуального IP-адреса переходит ко второму устройству. Чтобы уведомить о смене MAC-адреса ответственного устройства, как раз отправляется Gratuitous ARP-сообщения.
В примере ниже представлено Gratuitous ARP сообщение при включении сетевого интерфейса маршрутизатора с настроенным IP-адресов 198.18.0.1.
Если на маршрутизаторе настроен secondary IP-адрес, при переходе интерфейса в состояние UP будут отправлены Gratuitous ARP уведомления для каждого IP-адреса интерфейса. В примере ниже представлены Gratuitous ARP сообщения, отправляемые при включении интерфейса маршрутизатора с основным IP-адресом 198.18.0.1 и secondary IP-адресом 198.18.2.1.
Безусловно, маршрутизатор будет отвечать на ARP-запросы как для основного, так и для secondary IP-адреса.
Логично предположить, что как только устройство получает Gratuitous ARP, сразу добавляется новая запись в ARP-таблицу. Однако это не так. Если в таблице устройства отсутствовала ARP-запись, связанная с IP-адресом из Gratuitous ARP сообщения, новая запись добавлена не будет. При необходимости отправить трафик будет сформирован ARP-запрос и получен ARP-ответ. Только после этой процедуры новая запись добавится в ARP-таблицу.
Пример на маршрутизаторе Cisco. Включим debug arp и подключим в широковещательный домен новое устройство с адресом 198.18.0.200. До подключения нового устройства ARP-таблица маршрутизатора выглядит следующим образом:
Включаем новое устройство с адресом 198.18.0.200. Получаем debug-сообщение о приходе Gratuitous ARP:
Новая запись не появилась. Делаем пинг до нового адреса:
Debug-сообщения показывают, что прошла процедура ARP-запрос/ARP-ответ. Проверяем ARP-таблицу:
Новая запись появилась.
ARP и NAT на маршрутизаторах Cisco
Примечание: для тестов использовался маршрутизатор C4321 с программным обеспечением 15.4(3)S3 и межсетевой экран Cisco ASA5505 c программным обеспечением 9.1(6)6.
Компьютер Wireshark с адресов 198.18.0.250 в нашем случае будет обозначать подключение к внешней сети (например, к Интернет-провайдеру). С помощью сниффера Wireshark будем просматривать обмен сообщениями ARP между маршрутизатором и компьютером.
Настройки интерфейсов маршрутизатора:
Добавим правило динамического NAT, чтобы транслировать адрес компьютера из LAN (192.168.20.5) во внутренний глобальный адрес 198.18.0.5 при обращении к компьютеру во вне (Wireshark). Добавим правило статического PAT для публикации TCP порта 3389 (RDP) компьютера из LAN под глобальным адресом 198.18.0.2.
Посмотрим ARP-таблицу на маршрутизаторе:
Видим, что в ARP-таблице присутствуют статические записи как для внешнего интерфейса маршрутизатора (198.18.0.1), так и для внутренних глобальных адресов из правил динамического и статического NAT.
Сделаем clear arp-cache на маршрутизаторе и посмотрим в Wireshark, какие Gratuitous ARP уведомления будут отправлены с внешнего интерфейса:
Как видно, маршрутизатор уведомил о готовности обслуживать адрес интерфейса, адрес из правила динамического NAT и адрес из правила статического NAT.
А теперь представим ситуацию, когда провайдер расширяет пул публичных адресов, выданных клиенту, за счёт другой подсети. Предположим, дополнительно к IP-подсети 198.18.0.0/24 на внешнем интерфейсе маршрутизатора мы получаем от провайдера новый пул 198.18.99.0/24 и хотим публиковать наши внутренние сервисы под новыми IP-адресами. Для наглядности приведу схему с провайдером:
Добавим правило статического PAT для публикации TCP порта 3389 (RDP) компьютера из LAN под новым глобальным адресом 198.18.99.2:
Если снова посмотреть ARP-таблицу маршрутизатора командой show arp, увидим, что статическая запись для IP-адреса 198.18.99.2 не добавилась.
Чтобы иметь возможность отправлять ARP-запросы в новую сеть 198.18.99.0/24 с компьютера Wireshark, расширим маску его сетевых настроек до 255.255.0.0 (/16). Напомню, для нашего примера компьютер Wireshark выступает в роли маршрутизатора Интернет-провайдера.
После ввода clear arp-cache сниффер по-прежнему показывает Gratuitous ARP только для трёх IP-адресов: 198.18.0.1, 198.18.0.2, 198.18.0.5. Для нового адреса 198.18.99.2 Gratuitous ARP не срабатывает. Попробуем открыть tcp-порт 3389 адреса 198.18.99.2 и одновременно посмотреть сниффер:
Неуспех. Проверим ARP-таблицу:
Настройка Proxy ARP на интерфейсе маршрутизатора:
Отключить Proxy ARP на всех интерфейсах маршрутизатора можно глобально:
Данная настройка имеет приоритет над настройками Proxy ARP, применёнными на интерфейсах.
Помимо команды ip proxy arp в настройках интерфейса существует команда ip local-proxy-arp. Данная команда работает только когда ip proxy arp включён на интерфейсе и позволяет маршрутизатору отвечать на ARP-запросы, даже если целевой IP-адрес находится в той же IP-подсети, откуда ARP-запрос поступил. Пример настройки:
Данная настройка может пригодится, если мы хотим, чтобы трафик в рамках одного широковещательного домена шёл через интерфейс нашего маршрутизатора. Данную задачу можно реализовать с использованием Protected port (PVLAN edge) настроек на L2-коммутаторе (switchport protected).
Включение Proxy ARP на внешнем интерфейсе маршрутизаторе позволит решить проблему с новым пулом адресов, выданных провайдером. Попробуем открыть tcp-порт 3389 адреса 198.18.99.2 после включения Proxy ARP на интерфейсе маршрутизатора и одновременно посмотреть сниффер:
Успех. Маршрутизатор отвечает на ARP-запрос и порт открывается. Таким образом, функциональность Proxy ARP также можно использовать при необходимости трансляции адресов в новый пул.
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
В семиуровневой модели OSI на различных уровнях имеются разные типы адресов. На канальном это MAC-адрес, а на сетевом это IP-адрес. И для того чтобы установить соответствие между этими адресами используется протокол Address Resolution Protocol – ARP. Именно о нем мы поговорим в этой статье.
Полный курс по Сетевым Технологиям
В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer
Адресация
Адреса 2-го уровня используются для локальных передач между устройствами, которые связаны напрямую. Адреса 3-го уровня используются устройств, которые подключены косвенно в межсетевой среде. Каждая сеть использует адресацию для идентификации и группировки устройств, чтобы передачи прошла успешно. Протокол Ethernet использует MAC-адреса, которые привязаны к сетевой карте.
Чтобы устройства могли общаться друг с другом, когда они не находятся в одной сети MAC-адрес должен быть сопоставлен с IP-адресом. Для этого сопоставления используются следующие протоколы:
Address Resolution Protocol
Устройству 3го уровня необходим протокол ARP для сопоставления IP-адреса с MAC-адресом, для отправки IP пакетов. Прежде чем устройство отправит данные на другое устройство, оно заглянет в свой кеш ARP где хранятся все сопоставления IP и MAC адресов, чтобы узнать, есть ли MAC-адрес и соответствующий IP-адрес для устройства, которому идет отправка. Если записи нет, то устройство-источник отправляет широковещательное сообщение каждому устройству в сети чтобы узнать устройству с каким MAC-адресом принадлежит указанный IP-адрес. Все устройства сравнивают IP-адрес с их собственным и только устройство с соответствующим IP-адресом отвечает на отправляющее устройство пакетом, содержащим свой MAC-адрес. Исходное устройство добавляет MAC-адрес устройства назначения в свою таблицу ARP для дальнейшего использования, создает пакет с новыми данными и переходит к передаче.
Проще всего работу ARP иллюстрирует эта картинка:
Первый компьютер отправляет broadcast сообщение всем в широковещательном домене с запросом “У кого IP-адрес 10.10.10.2? Если у тебя, то сообщи свой MAC-адрес” и на что компьютер с этим адресом сообщает ему свой MAC.
Когда устройство назначения находится в удаленной сети, устройства третьего уровня одно за другим, повторяют тот же процесс, за исключением того, что отправляющее устройство отправляет ARP-запрос для MAC-адреса шлюза по умолчанию. После того, как адрес будет получен и шлюз по умолчанию получит пакет, шлюз по умолчанию передает IP-адрес получателя по связанным с ним сетям. Устройство уровня 3 в сети где находится устройство назначения использует ARP для получения MAC-адреса устройства назначения и доставки пакета.
Кэширование ARP
Поскольку сопоставление IP-адресов с MAC-адресами происходит на каждом хопе в сети для каждой дейтаграммы, отправленной в другую сеть, производительность сети может быть снижена. Чтобы свести к минимуму трансляции и ограничить расточительное использование сетевых ресурсов, было реализовано кэширование протокола ARP.
Статические и динамические записи в кеше ARP
Существуют записи статического ARP-кэша и записи динамического ARP-кэша. Статические записи настраиваются вручную и сохраняются в таблице кеша на постоянной основе. Статические записи лучше всего подходят для устройств, которым необходимо регулярно общаться с другими устройствами, обычно в одной и той же сети. Динамические записи хранятся в течение определенного периода времени, а затем удаляются.
Для статической маршрутизации администратор должен вручную вводить IP-адреса, маски подсети, шлюзы и соответствующие MAC-адреса для каждого интерфейса каждого устройства в таблицу. Статическая маршрутизация обеспечивает больший контроль, но для поддержания таблицы требуется больше работы. Таблица должна обновляться каждый раз, когда маршруты добавляются или изменяются.
Динамическая маршрутизация использует протоколы, которые позволяют устройствам в сети обмениваться информацией таблицы маршрутизации друг с другом. Таблица строится и изменяется автоматически. Никакие административные задачи не требуются, если не добавлен лимит времени, поэтому динамическая маршрутизация более эффективна, чем статическая маршрутизация.
Устройства, которые не используют ARP
Когда сеть делится на два сегмента, мост соединяет сегменты и фильтрует трафик на каждый сегмент на основе MAC-адресов. Мост создает свою собственную таблицу адресов, которая использует только MAC-адреса, в отличие от маршрутизатора, который имеет кэш ARP адресов, который содержит как IP-адреса, так и соответствующие MAC-адреса.
Inverse ARP
Inverse ARP (InARP), который по умолчанию включен в сетях ATM, строит запись карты ATM и необходим для отправки одноадресных пакетов на сервер (или агент ретрансляции) на другом конце соединения. Обратный ARP поддерживается только для типа инкапсуляции aal5snap. Для многоточечных интерфейсов IP-адрес может быть получен с использованием других типов инкапсуляции, поскольку используются широковещательные пакеты.
Reverse ARP
Proxy ARP
Прокси-ARP был реализован для включения устройств, которые разделены на физические сегменты сети, подключенные маршрутизатором в той же IP-сети или подсети для сопоставления адресов IP и MAC. Когда устройства не находятся в одной сети канала передачи данных (2-го уровня), но находятся в одной и той же IP-сети, они пытаются передавать данные друг другу, как если бы они находились в локальной сети. Однако маршрутизатор, который отделяет устройства, не будет отправлять широковещательное сообщение, поскольку маршрутизаторы не передают широковещательные сообщения аппаратного уровня. Поэтому адреса не могут быть сопоставлены.
Прокси-сервер ARP включен по умолчанию, поэтому «прокси-маршрутизатор», который находится между локальными сетями, отвечает своим MAC-адресом, как если бы это был маршрутизатор, к которому адресована широковещательная передача. Когда отправляющее устройство получает MAC-адрес прокси-маршрутизатора, он отправляет данные на прокси-маршрутизатор, который по очереди отправляет данные на указанное устройство.
Proxy ARP вызывается следующими условиями:
Когда proxy ARP отключен, устройство отвечает на запросы ARP, полученные на его интерфейсе, только если IP-адрес назначения совпадает с его IP-адресом или если целевой IP-адрес в ARP-запросе имеет статически настроенный псевдоним ARP.
Serial Line Address Resolution Protocol
Serial Line ARP (SLARP) используется для последовательных интерфейсов, которые используют инкапсуляцию High Link Level Link Control (HDLC). В дополнение к TFTP-серверу может потребоваться сервер SLARP, промежуточное (промежуточное) устройство и другое устройство, предоставляющее услугу SLARP. Если интерфейс напрямую не подключен к серверу, промежуточное устройство требуется для пересылки запросов сопоставления адреса на сервер. В противном случае требуется напрямую подключенное устройство с сервисом SLARP.
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
Что такое ARP? Объясняем на пальцах
Powered by модель OSI
ARP-протокол
Многие называют его протоколом «2,5 уровня»: ARP должен работать поверх уровня ethernet (это условие выполняется), но поверх ARP должен работать хотя бы один протокол сетевого уровня. Однако в ARP не инкапсулируется ни один из протоколов третьего уровня модели OSI. Таким образом получается подобие уровня 2.5, что-то среднее между канальным и сетевым.
Что за ARP-таблица?
Здесь можно обратить внимание на широковещательный адрес ( broadcast ). Поле «адрес назначения Ethernet» заполняется единицами ( ff:ff:ff:ff:ff:ff ). Коммутатор, получив такой широковещательный фрейм, отправляет его всем компьютерам сети, как бы обращаясь ко всем с вопросом: «если Вы владелец этого ip адреса (ip адреса назначения), пожалуйста сообщите мне Ваш mac адрес».
Как это работает?
Один из хостов, которые получили этот широковещательный пакет, видит, что IP-адрес принадлежит ему. И в ответ шлет свой MAC-адрес. Соответственно запись связки IP-MAC заносится в ARP-таблицу. В следующий раз, понятное дело, это операция (для конкретного устройства с этим IP) уже не понадобится.
Наглядно:
Итак. у нас есть два ПК1 и ПК2. Придумаем им IP и MAC-адрес
Давайте из ПК1 запустим команду Ping
ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=15ms TTL=57
Reply from 192.168.1.2: bytes=32 time=15ms TTL=57
Reply from 192.168.1.2: bytes=32 time=14ms TTL=57
Reply from 192.168.1.2: bytes=32 time=17ms TTL=57
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 14ms, Maximum = 17ms, Average = 15ms
Это очень краткое и поверхностное изложение протокола ARP — далеко не все аспекты работы лежат на поверхности. Дальше — самостоятельная работа. Stay Tuned!