Техпроцесс 7нм что это значит

Разбираем мифы о техпроцессах 14 и 7 нм с техноблогером der8auer и размышляем о будущем индустрии

Не нуждающийся в особых представлениях техноблогер Roman Hartung, более известный под ником der8auer, провёл исследования транзисторов в процессорах Intel и AMD, выполненных по нормам технологических процессов 14 и 7 нанометров, соответственно. Для исследования были взяты старшие модели в настольных линейках компаний: Core i9-10900K, выпущенный на собственных мощностях Intel, и Ryzen 9 3950X, изготовленный силами TSMC.

реклама

С помощью сканирующего электронного микроскопа были получены изображения транзисторов в области расположения кеш-памяти второго уровня. Транзисторы кэша были выбраны в качестве эталона для сравнения, поскольку представляют собой стандартизированную структуру и не имеют большого разброса по параметрам в рамках одного блока.

Пристальное изучение полученных изображений полупроводниковой структуры показало несколько любопытных фактов. Так, различия ширины затвора транзистора у 14 и 7 нм техпроцессов оказались минимальны: 24 нм у Intel против 22 нм у AMD, высота затворов так и вовсе оказалась равна на уровне погрешности. Как видим, никакого кратного отличия, на которое намекают маркетинговые наименования техпроцессов, нет.

реклама

Всё это наводит на некоторые мысли. Так, рост производительности процессоров AMD RYZEN вероятнее всего может быть обусловлен в первую очередь именно инженерной работой и совершенствованием архитектуры, а не успехами TSMC в переименовании своих техпроцессов. Следовательно, ощутимый прирост от поколения к поколению будет зависеть от задела к модернизации, избранной AMD технологии чиплетов. Поскольку это первый опыт применения данной компоновки кристаллов, делать какие-то долгосрочные прогнозы сложно, но очевидно, что однажды возможности дальнейшего совершенствования будут исчерпаны, и AMD придётся у перейти к схеме +5% каждый год, либо менять парадигму и искать новые пути развития.

реклама

В то же время переход процессоров Intel на 10 и 7 нм может принести гораздо больший, чем можно предполагать, прирост, поскольку компания не увлекалась маркетингом нанометров, просто добавляя знаки + к своим 14 нанометрам, следовательно, новый техпроцесс может оказаться действительно значительно более продвинутым. Кроме того, Intel уже смотрит в будущее и проводит исследования в области альтернативных методов пространственной компоновки транзисторов и структур кристалла процессора.

Как бы то ни было, становится очевидно, что пресловутые числа в названиях техпроцессов не отражают физической реальности и размеров полупроводниковых элементов. Грядущие 5 и 3 нм от TSMC и Samsung, вероятнее всего, так же будут представлять из себя по сути 7++ и 7+++ технологии. Размеры элементов транзистора уменьшаются незначительно, увеличение плотности размещения транзисторов на единице площади достигается в первую очередь совершенствованием библиотек элементов, развитием программ-автотрассировщиков, оптимизацией самой структуры и компоновки блоков кристалла.

А значит, опасаться, что уже в текущем десятилетии мы упрёмся в физические ограничения создания транзистора на атомном уровне, не стоит. Тормозом станет, скорее, непомерная стоимость разработки и изготовления более совершенных степперов и проблема с созданием новых сверхмощных источников УФ-излучения. Впрочем, решение, возможно, уже не за горами и кроется в применении новых материалов, в частности соединений германия, гафния, либо графена. Но это уже совсем другая история.

Источник

Что означают термины 7nm и 10nm для процессоров и почему они имеют значение

Что означают термины «7nm» и «10nm» для процессоров и почему они имеют значение

Постараюсь объяснить просто. Процессоры производятся с использованием миллиардов крошечных транзисторов, электрических затворов, которые включаются и выключаются для выполнения расчетов. Для этого им требуется энергия, и чем меньше транзистор, тем меньше требуется мощность. «7nm» и «10nm» — это размеры этих транзисторов, а «nm» — нанометры. Именно они являются полезными для оценки производительности конкретного процессора.

Для справки, «10nm» — это новый технологический процесс Intel, который должен дебютировать в 4 квартале 2019 года, а «7nm» обычно относится к процессу TSMC, на котором основаны новые процессоры AMD и чип A12X Apple.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Так почему же эти новые процессы так важны?

Закон Мура, старое наблюдение о том, что количество транзисторов на чипе удваивается каждый год, а затраты вдвое сокращаются, удерживался в течение длительного времени. Еще в конце 90-х и начале 2000-х годов транзисторы сокращались вдвое каждые два года, что приводило к их значительному улучшению. Но дальнейшее уменьшение стало более сложным, и, например, мы не наблюдали уменьшения транзистора от Intel с 2014 года. Так что эти новые технологические процессы являются первыми крупными сокращениями за долгое время, особенно со стороны Intel, и представляют собой краткое возрождение закона Мура.

С появлением новых процессоров AMD на 7-нм процессорах TSMC и чипов A12X Apple, у них появляется шанс обойти Intel по производительности и создать здоровую конкуренцию монополии этой компании на рынке. По крайней мере до тех пор, пока 10-нм чипы Intel «Sunny Cove» не начнут поступать в продажу.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Что «nm» на самом деле означает

Процессоры выполнены с помощью фотолитографии, где образ процессора вытравливается на куске кремния. Точная методика выполнения этой операции обычно называется технологическим процессом и измеряется тем, насколько малым может быть изготовление транзисторов.

Поскольку более компактные транзисторы более энергоэффективны, они могут выполнять больше вычислений без перегрева, что обычно является ограничивающим фактором для производительности процессора. Это также позволяет уменьшить размеры матрицы, что снижает затраты и может увеличить плотность при тех же размерах, а это означает увеличение количества ядер на чип.

Плотность 7 нм в два раза выше, чем у предыдущего 14 нм узла, что позволяет таким компаниям, как AMD, выпускать 64-ядерные серверные чипы, что значительно превосходит их предыдущие 32 ядра (и 28 ядра Intel).

Важно отметить, что, хотя Intel все еще находится на 14-нм процессоре, а AMD собирается запустить свои 7-нм процессоры очень скоро, это не означает, что AMD будут работать в два раза быстрее. Производительность не соответствует размеру транзистора, и в таких маленьких масштабах эти значения уже не столь точны.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Мобильные чипы претерпят наибольшие улучшения

Уменьшение транзисторов — это не только производительность; оно также имеет огромное значение для маломощных чипов мобильных устройств и ноутбуков. С 7 нм (по сравнению с 14 нм) вы можете получить на 25% больше производительности при той же мощности, или вы можете получить ту же производительность за половину мощности.

Это означает более длительное время работы от батареи при одинаковой производительности и гораздо более мощные чипы для небольших устройств. Мы уже видели, как чип A12X от Apple выигрывал некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлажден и упакован внутри смартфона, И это только первый 7-нм чип, который появился на рынке.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Уменьшение узлов всегда является хорошей новостью, так как более быстрые и энергоэффективные чипы влияют практически на все аспекты технологического мира. 2019 год будет очень интересным для технических специалистов и, конечно, очень приятно видеть, что закон Мура еще не совсем мертв.

Спасибо, что читаете! Подписывайтесь на мои каналы в Telegram, Яндекс.Мессенджере и Яндекс.Дзен. Только там последние обновления блога и новости мира информационных технологий.

Респект за пост! Спасибо за работу!

Хотите больше постов? Узнавать новости технологий? Читать обзоры на гаджеты? Для всего этого, а также для продвижения сайта, покупки нового дизайна и оплаты хостинга, мне необходима помощь от вас, преданные и благодарные читатели. Подробнее о донатах читайте на специальной странице.

Заранее спасибо! Все собранные средства будут пущены на развитие сайта. Поддержка проекта является подарком владельцу сайта.

Источник

Что такое 10 нм, 7 нм или 5 нм в смартфоне? Техпроцесс для «чайников»

Появление этой статьи на Deep-Review было лишь вопросом времени. Многие читатели задавали одни и те же вопросы, суть которых сводилась к следующему: что реально отражает эта цифра (12, 10, 7 или 5 нм) в технических характеристиках смартфонов, где в процессоре те самые 5 нанометров? Что вообще такое техпроцесс и какой процессор лучше выбрать?

Даже в современных печатных книгах сплошь и рядом встречается распространенное заблуждение, будто эти цифры означают размеры транзисторов, из которых состоит процессор.

В общем, пришло время разобраться с этим вопросом!

Сразу предупреждаю, что статья рассчитана на самый широкий круг читателей, то есть, при желании все сказанное смогут понять даже дети.

Но прежде, чем говорить о нанометрах и техпроцессе, нужно разобраться с транзистором. Без понимания этого устройства весь наш дальнейший разговор будет лишен смысла.

Что такое транзистор в процессоре смартфона? Как он работает и зачем вообще нужен?

Транзистор — это основа любого процессора, памяти и других микросхем. Он представляет собой крошечное устройство, способное работать в двух режимах: усиления или переключения электрического сигнала. Нас интересует именно режим переключателя.

Основа любой вычислительной техники — это единички и нолики. Просмотр видео на смартфоне, прослушивание музыки, дополненная реальность и нейронные сети — все это работает на «единичках и ноликах»:

Именно для получения единиц и нулей мы используем транзисторы. Когда из этого миниатюрного устройства выходит ток, мы говорим, что это единица, когда нет никакого электрического сигнала — получаем ноль.

Соответственно, один транзистор — это совершенно бесполезная ерунда, которая не сможет сделать ничего. Даже, чтобы посчитать 2+2 нам нужны десятки транзисторов.

Итак, для создания транзистора мы берем немножко песка (условно какую-то часть одной песчинки) и делаем из него микроскопическую основу:

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Это будет наша кремниевая подложка (кремний получают именно из песка). Теперь нужно на эту основу нанести две области. Я думал, стоит ли погружаться в физику этого процесса и объяснять, как эти области делаются и что там происходит на уровне электронов, но решил не перегружать статью излишней информацией. Поэтому будем немножко абстрагироваться.

Итак, делаем две области: в одну ток подаем (вход в транзистор), а из другой — считываем (выход):

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Мы сделали эти области внутри кремниевой подложки таким образом, чтобы ток не смог пройти от входа к выходу. Он будет останавливаться самим кремнием (показан зеленым цветом). Чтобы ток смог пройти от входа к выходу по поверхности кремниевой подложки, нужно сверху разместить проводящий материал (скажем, металл) и хорошенько его изолировать:

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

А теперь самое важное! Когда мы подадим напряжение на этот изолированный кусочек металла, размещенный над кремниевой подложкой, он создаст вокруг себя электрическое поле. Изоляция никак не будет влиять на действие этого электрического поля. И здесь происходит вся «магия»: слой кремния под действием этого электрического поля начинает проводить ток от входа к выходу! То есть, когда мы подаем напряжение, ток может легко протекать между двумя областями:

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Вот и все! Осталось дело за малым — подключить «провода» (электроды) ко входу, выходу и кусочку изолированного металла, с помощью которого мы и будем включать/выключать транзистор. Назовем их так:

Для закрепления материала немножко поиграемся с этим транзистором.

Итак, транзистор находится под напряжением, то есть, электричество подается на исток. Но на затворе тока нет, так как на наш транзистор не «пришла единица». Соответственно затвор «закрыл» транзистор и ток по нему пройти дальше не сможет, так что и на выходе из транзистора мы получаем ноль:

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Теперь ситуация изменилась и на затворе транзистора появилось напряжение, которое создало электрическое поле, позволившее току пройти через транзистор от истока к стоку. Как результат — транзистор выдал единицу (есть электрический сигнал):

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Вот так все просто! То есть, основное напряжение поступает на вход ко всем транзисторам, но будет ли каждый конкретный транзистор пропускать этот ток дальше — зависит от незначительного напряжения на затворе. Это напряжение может появляться, например, когда другой транзистор, подключенный к этому, отправил электрический импульс («единичку»).

Этого знания более, чем достаточно для того, чтобы ответить на все остальные вопросы, касательно нанометров и логики работы процессора.

О том, какие физические процессы стоят за таким нехитрым переключателем, то есть, что именно заставляет электроны проходить по кремнию, когда над ним появляется электрическое поле, я рассказывать не буду. Возможно, о легировании кремния фосфором и бором, p-n переходах и электрических полях мы поговорим как-нибудь в другой раз. А сейчас перейдем к основному вопросу.

Что такое техпроцесс или где же спрятаны эти «7 нанометров»?

Предположим, у нас есть современный смартфон, процессор которого выполнен по 7-нм техпроцессу. Что внутри такого процессора имеет размер 7 нанометров? Предлагаю вам выбрать правильный вариант ответа:

Какой бы вариант вы ни выбрали, ваш ответ — неверный, так как ничего из перечисленного не имеет такого размера. Если бы этот же вопрос я задал лет 20 назад, правильным ответом была бы длина затвора (или длина канала, по которому протекает ток от стока к истоку):

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Стоп! Длина канала, ширина, площадь — да какая разница, что в чем измеряется!? Зачем вообще придумали эти названия техпроцессов, для чего они нужны простым людям? Что вообще должен показывать техпроцесс обычному покупателю? Зачем ему знать ту же длину затвора транзистора?

Давным давно один человек по имени Гордон Мур (основатель корпорации Intel) задумался о том, как быстро развиваются технологии. Под словом «развитие» он подразумевал рост количества транзисторов, помещающихся на одной и той же площади. Дело в том, что этот показатель напрямую влияет на скорость вычислений. Процессор, вмещающий всего 1 млн транзисторов будет работать гораздо медленней, чем тот, внутри которого находятся 10 млн транзисторов.

Более того, уменьшая размер транзистора, автоматически снижается его энергопотребление (ток, проходящий через транзистор пропорционален отношению его ширины к длине). Также уменьшается размер затвора и его емкость, позволяя ему переключаться еще быстрее. В общем, одни плюсы!

Так вот, этот человек наблюдал за историей развития вычислительной техники и заметил, что количество транзисторов на кристалле удваивается примерно каждые 2 года. Соответственно, размеры транзисторов уменьшаются на корень из двух раз.

Другими словами, нужно умножать каждую сторону квадратного транзистора на 0.7, чтобы его площадь уменьшилась вдвое:

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Повторюсь, до определенного момента эта цифра означала длину канала (или длину затвора), так как эти элементы уменьшались пропорционально размеру транзистора.

Но затем удалось сокращать длину затвора быстрее, чем другие части транзистора. С тех пор связывать размер затвора с техпроцессом стало не совсем корректно, так как это уже не отражало реального увеличения плотности размещения транзисторов на кристалле.

Например, в 250-нм техпроцессе длина затвора составляла 190 нанометров, но транзисторы не были упакованы настолько плотно по сравнению с предыдущим техпроцессом, чтобы называть его 190-нанометровым (по размеру затвора). Это не отражало бы реальную плотность.

Затем длина канала и вовсе перестала уменьшаться каждые два года, так как появилась новая проблема. При дальнейшем уменьшении длины канала, электроны могли обходить узкий затвор, так как блокирующий эффект был недостаточно сильным. Более того, такие утечки возникали постоянно, вызывая повышенное энергопотребление и нагрев транзистора (и, как следствие, всего процессора).

В общем, техпроцесс отвязали от длины затвора и взяли просто группу из нескольких транзисторов (так называемую ячейку) и площадь этой ячейки использовали для названия техпроцесса.

К примеру, в 100-нм техпроцессе ячейка из 6 транзисторов занимала, скажем, 100 000 нанометров (это условная цифра из головы). Компания упорно работала над уменьшением размеров транзисторов или увеличением плотности их размещения и через пару лет добилась того, что в новом процессоре эта же ячейка занимает уже 50 000 нм.

Не важно, уменьшился ли размер транзисторов или просто удалось упаковать их более плотно (за счет сокращения слоя металла и других ухищрений), можно смело говорить, что количество транзисторов на кристалле выросло в два раза. А значит мы умножаем предыдущий техпроцесс (100 нм) на 0.7 и получаем новенький процессор, выполненный по 70-нм техпроцессу.

Однако, когда мы дошли до 22-нанометрового техпроцесса, уменьшать длину затвора уже было нереально, так как электроны проходили бы сквозь этот затвор и транзисторы постоянно бы пропускали ток.

Решение оказалось простым и гениальным — нужно взять канал, по которому проходит ток и поднять его вверх, над кремниевой основной, чтобы он полностью проходил через затвор:

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Теперь всё пространство, по которому идет ток, управляется затвором, так как полностью им окружено. А раньше, как мы видим, этот затвор находился сверху над каналом и создавал сравнительно слабый блокирующий эффект.

С новой технологией, получившей название FinFET, можно было продолжать уменьшать длину затвора и размещать еще больше транзисторов, так как они стали более узкими (сравните на картинке ширину канала). Но говорить о размерах транзистора стало вообще бессмысленно. Не совсем понятно даже, как эти размеры теперь высчитывать, когда транзистор из плоского превратился в трехмерный.

Таким образом, техпроцесс полностью «оторвался» от каких-либо реальных величин и просто условно обозначает увеличение плотности транзисторов относительно предыдущего техпроцесса.

К примеру, длина канала в 14-нм процессоре от Intel составляет 24 нанометра, а у Samsung — 30 нанометров. Отличаются и другие метрики этих процессоров, сделанных, казалось бы, по одинаковому техпроцессу. Более того, длина затвора — не самая миниатюрная часть транзистора. В том же 14-нм процессоре ширина канала вообще состоит из нескольких атомов и составляет 8 нанометров! То есть, техпроцесс — это даже не описание самой маленькой части транзистора.

Другими словами, нанометровый техпроцесс не описывает размеры транзисторов. Сегодня это условная цифра, означающая плотность размещения транзисторов или увеличение количества транзисторов относительно предыдущего техпроцесса (что напрямую влияет на быстродействие процессора).

В любом случае, важно запомнить простое правило и пользоваться им при анализе характеристик смартфона:

Разница техпроцесса в 0.7 раз означает двукратное увеличение количества транзисторов

Для примера можем посмотреть на последние чипы от Apple. В 10-нм процессоре Apple A11 Bionic содержится 4.3 млрд транзисторов, а в 7-нм Apple A13 Bionic — 8.5 млрд транзисторов. То есть, видим, что техпроцесс отличается в 0.7 раз, а количество транзисторов — в 2 раза. Соответственно, 7-нм процессор гораздо производительней 10-нанометрового.

Продолжая аналогию, в 5-нм процессоре должно вмещаться в 2 раза больше транзисторов, чем в 7-нанометровом! Если вас не очень удивляет этот факт, обязательно почитайте на досуге мою заметку об экспоненциальном развитии технологий.

Итак, когда вы будете смотреть на два смартфона с 14-нм и 10-нм процессорами, то знайте что в последнем гораздо больше транзисторов, соответственно, его вычислительная мощность заметно выше. Так и следует пользоваться «техпроцессом» при выборе смартфона.

А если вам интересно, как эти бездушные транзисторы умеют «думать», делать сложные вычисления, показывать фильмы или проигрывать музыку, тогда ответы на эти вопросы читайте в нашем новом материале!

Алексей, глав. редактор Deep-Review

P.S. Не забудьте подписаться в Telegram на первый научно-популярный сайт о мобильных технологиях — Deep-Review, чтобы не пропустить очень интересные материалы, которые мы сейчас готовим!

Как бы вы оценили эту статью?

Нажмите на звездочку для оценки

Внизу страницы есть комментарии.

Напишите свое мнение там, чтобы его увидели все читатели!

Если Вы хотите только поставить оценку, укажите, что именно не так?

Источник

7 нм против 12: о чем говорит технологический процесс процессора

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

В сентябре 2019 года Apple представила три свежих смартфона: iPhone 11, iPhone 11 Pro и iPhone 11 Pro Max. Их главной фишкой, конечно же, оказались камеры, общие принципы работы которых мы обсуждали в отдельном материале. Тем не менее, отдельного внимания также заслужил и процессор новинок. Их «сердцем» стал Apple A13 Bionic, который создан по 7-нанометровому технологическому процессу. Производитель гордится этой цифрой, ведь до неё добрались далеко не все конкуренты. А вот у Xiaomi Redmi 8 Pro чип MediaTek Helio G90T. У него все 12 нм, и кичиться здесь точно нечем…

Вообще, в мире высоких технологий нет ничего быстрее, чем самые проворные микросхемы — процессоры. Они умеют обрабатывать миллиарды операций в секунду, а на их производство уходит настолько много невероятных технологий, что даже становится жутко. Микропроцессоры пошли в массовое производство в 90-х годах прошлого столетия. С того времени они пережили несколько ступеней развития, апогеем которого стало начало 21 века. Именно тогда производителям открылись все основные свойства кремния, и это дало возможность получать максимальную эффективность при минимальных затратах.

Сегодня темпы развития процессоров стремительно падают. Кремниевые технологии быстро приближаются к пределу своих физических возможностей. Да, их частоты всё ещё увеличиваются, но эффективность работы находится в стагнации. Про это в разрезе смартфонов и не только мы расскажем в данной статье.

Что собой в принципе представляет каждый микропроцессор

Каждый микропроцессор представляет собой специальную интегральную схему, которая расположена на микроскопическом кристалле кремния. Этот материал используется только из-за того, что обладает свойствами полупроводников: он проводит электроэнергию быстрее диэлектриков и медленнее металлов. Его можно сделать и изолятором, который останавливает движение зарядов, и проводником, который зажигает для них зелёный свет. Этим параметром получится управлять с помощью специальных примесей.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Внутри микропроцессора нашлось место для миллионов транзисторов, которые объединены невероятно тонкими проводниками. Для их производства используют алюминий, медь и другие материалы — они предназначены для того, чтобы переваривать информацию. Из них складываются внутренние шины, которые дают процессору возможность работать с математическими и логическими операциями, а также управлять остальными микросхемами устройства в общем и целом.

Одним из самых важных параметров качества микропроцессора всегда была частота работы его кристалла. Именно она определяет число действий, которые могут выполняться за отведённое время — это зависит от того, насколько быстро транзисторы могут переходить из закрытого состояния в открытое. На это далеко не в последнюю очередь влияет технология производства кремниевых пластин — основного компонента процессоров. Чем они меньше, тем разогнать их частоту обычно можно до больших значений.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Технологический процесс, который используется при производстве микропроцессоров, влияет на их размер. Если обрезать количество нанометров, о котором сегодня все говорят, можно уменьшить габариты самого чипа. Это сделает его не только более быстрым — он будет выделять меньше тепла и расходовать меньше энергии. Данные показатели всегда были очень важны в полноценных компьютерах, но теперь выходят чуть ли не на первое место и в современных смартфонах.

Какие этапы проходят процессоры во время производства

Даже если верить «Википедии», производство процессоров можно разделить на полтора десятка этапов. Мы решили вкратце расписать каждый из них именно для того, чтобы стало понятно, насколько сложный это процесс. В реальности же он ещё более замысловатый, уж поверьте.

1. Механическая обработка. На этом этапе производитель готовит пластины проводника с определённой геометрией и кристаллографической ориентацией, которая не может отличаться от эталона более чем на 5%. Отдельного внимания также заслуживает класс чистоты поверхности.

2. Химическая обработка. В рамках этого этапа с поверхности удаляются все мельчайшие неровности, которые были созданы во время механической обработки. Для этого, а также для получения необходимых нюансов формы используют плазмохимические методы, а также жидкостное и газовое травление.

3. Эпитаксиальное наращивание. В данном случае проходит добавление слоя полупроводника — осаждение его атомов на подложку. Именно на этом этапе образуется кристаллическая структура, аналогичная структуре подложки, которая часто выполняет роль только лишь механического носителя.

4. Получение маскировки. Чтобы защитить слой полупроводника от последующего проникновения примесей, на этом этапе на него добавляется специальное защитное покрытие. Это происходит путём окисления эпитаксиального слоя кремния, которое становится возможным за счёт высокой температуры или кислорода.

5. Фотолитография. На этом этапе на диэлектрической плёнке создаётся необходимый рельеф. Если до данного этапа в этом пункте статьи вы мало что вообще поняли, то наша задача выполнена — вы осознали, насколько сложно создать процессор, и можете двигаться к следующему пункту.

6. Введение примесей. Здесь речь, конечно же, про электрически активные примеси, которые нужны для образования изолирующих участков, а также электрических переходов, источниками которых могут быть твёрдые, жидкие и газообразные вещества. Для этого используется метод диффузии.

7. Получение омических контактов. Кроме этого, на данном этапе также создают пассивные элементы на пластине. Для этого используется фотолитографическая обработка на поверхности оксида, который покрывает области успешно сформированных структур.

8. Добавление слоёв металла. На этом этапе будущий процессор получает несколько дополнительных слоёв металла, общее количество которых может лихо отличаться и зависит от его уровня. Между ним нужно расположить диэлектрик, в котором есть сквозные отверстия.

9. Пассивация поверхности. Чтобы правильно протестировать кристалл, нужно максимально сильно очистить его от любых возможных загрязнений. Чаще всего это происходит в деионизированной воде на установках гидромеханической или кистьевой отмывки.

10. Тестирование пластины. Для этого обычно используются зондовые головки, которые установлены на специальных установках, используемых для разбраковки пластин. Кстати, до этого самого момента они находятся в неразрезанном на отдельные части состоянии.

11. Разделение пластины. На этом этапе пластину механически разделяют на отдельные кристаллы. Сейчас это делают не только из-за удобства, но и по причине поддержания электронной гигиены. В её рамках в воздухе должно быть критически малое количество пыли, а в процессе разрезания она появится.

12. Сборка кристалла. На этом этапе готовый кристалл упаковывают в специальный корпус, который в дальнейшем герметизируют. Здесь к нему также подключают все необходимые выводы, которые нужны для его дальнейшего использования — это практически готовый чип.

13. Измерения и испытания. На данном этапе происходит проверка чипа на соответствие заданным техническим параметрам. Да, даже в настолько точном и высокотехнологическом производстве случается брак, который возрастает при увеличении сложности задачи. Отсюда и немаленькая цена.

14. Контроль и маркировка. Это пара финальных этапов в производстве чипов. В данном случае их снова проверяют, потом наносят на них специальное защитное покрытие, а также упаковывают, чтобы доставить готовое изделие конкретному заказчику.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Хронология уменьшения размера технологического процесса

Чем меньше нанометров в технологическом процессе, тем:

Выше скорость работы. В сегменте мобильных процессоров самым быстрым сегодня считается Apple A13 Bionic, который выполнен по 7-нанометровому технологическому процессу — это максимально крутое значение, которое доступно на сегодняшний день в коммерческом секторе. За уменьшением техпроцесса зачастую следует именно увеличение производительности. Она сегодня жизненно нужна для использования нейронных сетей, для дополненной реальности, работы с графикой в любом месте и в удобное время. Да что там говорить, с выходом Apple Arcade мы ждём бум мобильных игр, и для них процессор также важен.

Техпроцесс 7нм что это значит. Техпроцесс 7нм что это значит фото. картинка Техпроцесс 7нм что это значит. смотреть фото Техпроцесс 7нм что это значит. смотреть картинку Техпроцесс 7нм что это значит.

Ниже выделение тепла. Сегодня мы акцентируем внимание именно на мобильных устройствах. Есть мнение, что в смартфонах разговоры о температуре процессоров не так актуальны, но это большая ошибка. При большой нагрузке процессоры нагреваются. Если температура становится критичной, они снижают скорость своей работы — это называется троттлингом. Чтобы избежать этого, нужно делать корпус толще, думать про дополнительный отвод тепла и так далее. При использовании более совершенного технологического процесса число подобных заморочек заметно снижается.

Меньше потребление энергии. В конце концов, уменьшение технологического процесса очень важно для увеличения времени автономной работы. Именно поэтому при оценке ёмкости аккумулятора недорого смартфона на Android не нужно сравнивать её с соответствующим показателем в iPhone и других флагманах. Даже с куда большим объёмом аккумулятора устройство может работать не так долго, как того хотелось бы. Тот же Xiaomi Redmi 8 Pro с процессором, который выполнен по устаревшему технологическому процессу (12 нм), не радует автономностью даже с достаточно большой батарейкой.

В заключение повторюсь — при выборе нового смартфона нужно не в последнюю очередь смотреть на технологический процесс чипсета. Прогресс преодолел планку в 12 нм ещё в 2016 году, поэтому в 2019-м эта цифра выглядит даже как-то смешно.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *