Температура воздуха понижается с высотой потому что
Урок 21
С высотой температура воздуха понижается.
Поясните, почему происходят изменения температуры воздуха в течение суток.
Потому что в течение суток изменяется положение солнца над горизонтом.
Количество света и тепла, получаемое земной поверхностью, постепенно убывает в направлении от экватора к полюсам из-за уменьшения угла падения солнечных лучей ближе к полюсам.
Почему за бортом самолета температура воздуха очень низкая?
Потому что с высотой температура воздуха понижается.
Почему зимой холоднее, чем летом?
Потому что зимой угол падения солнечных лучей меньше, чем летом.
От чего зависит изменение температуры воздуха в течение суток?
От высоты Солнца над горизантом.
Можно. Через каждые 1000 метров температура уменьшается на 6 °C.
Высота вулкана Килиманджаро — 5895 м. Вычислите, на какой высоте температура воздуха будет 0 °C, если у подножия вулкана она составляет +24 °C.
1) 24 : 6 = 4;
2) 4 × 1000 = 4000 (м) — высота с температурой 0 °C.
Составьте задание и выполните его.
Термометр на вершине горы показывает 8 °C. Температура воздуха у подножия горы составляет 20 °C. Какова высота горы?
1) 20 – 8 = 12 (°C) — разница температуры у подножия и на вершине горы;
2) 12 : 6 = 2;
3) 2 × 1000 = 2000 (м) — высота горы.
Температура воздуха на высотах
В первых разделах мы познакомились в общих чертах со структурой атмосферы по вертикали и с изменениями температуры с высотой.
Здесь рассмотрим некоторые интересные особенности режима температуры в тропосфере и в вышележащих сферах.
В теплое время года, когда прилегающий к поверхности земли слой воздуха достаточно нагрет, характерно понижение температуры с высотой. При сильном прогреве приземного слоя воздуха величина вертикального градиента температуры превышает даже 1° на каждые 100 м поднятия.
Зимой, при сильном охлаждении поверхности земли и приземного слоя воздуха, вместо понижения наблюдается повышение температуры с высотой, т. е. возникает инверсия температуры. Наиболее сильные и мощные инверсии наблюдаются в Сибири, особенно в Якутии зимой, где преобладает ясная и тихая погода, способствующая излучению и последующему охлаждению приземного слоя воздуха. Очень часто инверсия температуры здесь распространяется до высоты 2—3 км, а разность между температурой воздуха у поверхности земли и верхней границы инверсии нередко составляет 20—25°. Инверсии характерны и для центральных районов Антарктиды. Зимой они бывают в Европе, особенно в восточной ее части, Канаде и других районах. От величины изменения температуры с высотой (вертикального градиента температуры) в большой степени зависят условия погоды и виды движений воздуха по вертикальному направлению.
Устойчивая и неустойчивая атмосфера. Воздух в тропосфере нагревается от подстилающей поверхности. Температура воздуха изменяется с высотой и в зависимости от атмосферного давления. Когда это происходит без обмена тепла с окружающей средой, то такой процесс называется адиабатическим. Поднимающийся воздух производит работу за счет внутренней энергии, которая расходуется на преодоление внешнего сопротивления. Поэтому при поднятии воздух охлаждается, а при опускании нагревается.
Адиабатические изменения температуры происходят по сухоадиабатическому и влажноадиабатическому законам. Соответственно различают и вертикальные градиенты изменения температуры с высотой. Сухоадиабатический градиент — это изменение температуры сухого или влажного ненасыщенного воздуха на каждые 100 м поднятия и опускания его на 1°, а влажноадиабатический градиент — это понижение температуры влажного насыщенного воздуха на каждые 100 м поднятия меньше чем на 1°.
При подъеме или опускании сухого, или ненасыщенного, воздуха температура его изменяется по сухоадиабатическому закону, т. е. соответственно падает или растет на 1° каждые 100 м. Эта величина не изменяется до тех пор, пока воздух при поднятии не достигает состояния насыщения, т. е. уровня конденсации водяного пара. Выше этого уровня вследствие конденсации начинает выделяться скрытая теплота парообразования, которая идет на нагревание воздуха. Это дополнительное тепло уменьшает величину охлаждения воздуха при подъеме. Дальнейшее поднятие насыщенного воздуха происходит уже по влажноадиабатическому закону, и температура его понижается не на 1° на 100 м, а меньше. Так как влагосодержание воздуха зависит от его температуры, то, чем выше температура воздуха, тем больше тепла выделяется при конденсации, а чем ниже температура, тем тепла меньше. Поэтому влажноадиабатический градиент в теплом воздухе меньше, чем в холодном. Например, при температуре у поверхности земли поднимающегося насыщенного воздуха +20° влажноадиабатический градиент в нижней тропосфере составляет 0,33—0,43° на 100 м, а при температуре минус 20° значения его колеблются от 0,78° до 0,87° на 100 м.
Влажноадиабатический градиент зависит и от давления воздуха: чем меньше давление воздуха, тем меньше при одной и той же начальной температуре влажноадиабатический градиент. Это происходит оттого, что при малом давлении плотность воздуха также меньше, следовательно, освободившаяся теплота конденсации идет на нагревание меньшей массы воздуха.
В таблице 15 приведены осредненные величины влажноадиабатического градиента при различной температуре и значениях
давления 1000, 750 и 500 мб, что приблизительно соответствует поверхности земли и высотам 2,5—5,5 км.
В теплое время года вертикальный градиент температуры в среднем равен 0,6—0,7° на 100 м поднятия. Зная температуру у поверхности земли, можно вычислить приближенные значения температуры на различных высотах. Если, например, у поверхности земли температура воздуха равна 28°, то, приняв, что вертикальный градиент температуры в среднем равен 0,7° на 100 м или 7° на каждый километр, получим, что на высоте 4 км температура равна 0°. Температурный градиент зимой в средних широтах над сушей редко превышает 0,4—0,5° на 100 м: Нередки случаи, когда в отдельных слоях воздуха температура с высотой почти не изменяется, т. е. имеет место изотермия.
По величине вертикального градиента температуры воздуха можно судить о характере равновесия атмосферы — устойчивое или неустойчивое.
При устойчивом равновесии атмосферы массы воздуха не проявляют тенденции к вертикальным перемещениям. В этом случае если некоторый объем воздуха сместить вверх, то он возвратится в первоначальное положение.
Устойчивое равновесие бывает тогда, когда вертикальный градиент температуры ненасыщенного воздуха меньше сухоадиабатического градиента, а вертикальный градиент температуры насыщенного воздуха меньше влажноадиабатического. Если при этом условии небольшой объем ненасыщенного воздуха воздействием извне поднять на некоторую высоту, то как только прекратится действие внешней силы, этот объем воздуха возвратится в прежнее положение. Происходит это потому, что поднятый объем воздуха, затратив внутреннюю энергию на свое расширение, при подъеме охлаждался на 1° на каждые 100 м (по сухоадиабатическому закону). Но так как вертикальный градиент температуры окружающего воздуха был меньше сухоадиабатического, то оказалось, что поднятый объем воздуха на данной высоте имел более низкую температуру, чем окружающий воздух. Обладая большей плотностью в сравнении с плотностью окружающего воздуха, он должен опускаться, пока не достигнет первоначального состояния. Покажем это на примере.
Предположим, что у поверхности земли температура воздуха равна 20°, а вертикальный градиент температуры в рассматриваемом слое равен 0,7° на 100 м. При этой величине градиента температура воздуха на высоте 2 км будет равна 6° (рис. 19, а). Под воздействием внешней силы поднятый с поверхности земли на эту высоту объем ненасыщенного или сухого воздуха, охлаждаясь по сухоадиабатическому закону, т. е. на 1° на 100 м, охладится на 20° и примет температуру, равную 0°. Этот объем воздуха окажется на 6° холоднее окружающего воздуха, а значит, и тяжелее вследствие большей плотности. Поэтому он начнет
опускаться, стремясь достичь первоначального уровня, т. е. поверхности земли.
Аналогичный результат получится и в случае подъема насыщенного воздуха, если вертикальный градиент температуры окружающей среды меньше влажноадиабатического. Поэтому при устойчивом состоянии атмосферы в однородной массе воздуха не происходит бурное образование кучевых и кучево-дождевых облаков.
Наиболее устойчивое состояние атмосферы наблюдается при небольших величинах вертикального градиента температуры, и особенно при инверсиях, так как в этом случае над нижним холодным, а следовательно и тяжелым, воздухом располагается более теплый и легкий воздух.
При неустойчивом равновесии атмосферы поднятый с поверхности земли объем воздуха не возвращается в первоначальное положение, а сохраняет движение вверх до уровня, на котором выравниваются температуры поднимающегося и окружающего воздуха. Для неустойчивого состояния атмосферы характерны большие вертикальные градиенты температуры, что вызывается нагреванием нижних слоев воздуха. При этом прогретые внизу массы воздуха, как более легкие, устремляются вверх.
Предположим, например, что ненасыщенный воздух в нижних слоях до высоты 2 км стратифицирован неустойчиво, т. е. его температура
с высотой уменьшается на 1,2° на каждые 100 м, а выше воздух, став насыщенным, имеет устойчивую стратификацию, т. е. его температура понижается уже на 0,6° на каждые 100 м поднятия (рис. 19, б). Попав в такую среду, объем сухого ненасыщенного воздуха станет подниматься по сухоадиабатическому закону, т. е. охлаждаться на 1° на 100 м. Тогда, если его температура у поверхности земли 20°, то на высоте 1 км она станет равной 10°, в то время как температура окружающей среды 8°. Будучи теплее на 2°, а следовательно и легче, этот объем устремится выше. На высоте 2 км он будет теплее окружающей среды уже на 4°, так как его температура достигнет 0°, а температура окружающего воздуха равна —4°. Будучи снова легче, рассматриваемый объем воздуха продолжит свой подъем до высоты 3 км, где его температура станет равной температуре окружающей среды (—10°). После этого свободное поднятие выделенного объема воздуха прекратится.
Для определения состояния атмосферы используются аэрологические диаграммы. Это диаграммы с прямоугольными осями координат, по которым отложены характеристики состояния воздуха. На аэрологических диаграммах нанесены семейства сухих и влажных адиабат, т. е. кривые, графически представляющие изменение состояния воздуха при сухоадиабатическом и влажноадиабатическом процессах.
На рисунке 20 представлена такая диаграмма. Здесь по вертикали изображены изобары, по горизонтали — изотермы (линии одинакового давления воздуха), наклонные сплошные линии — сухие адиабаты, наклонные прерывистые — влажные адиабаты, пунктирные — линии удельной влажности. На приведенной диаграмме нанесены кривые изменения температуры воздуха с высотой в двух пунктах в один и тот же срок наблюдения — 15 часов 3 мая 1965 г. Слева — кривая температуры по данным радиозонда, выпущенного в Ленинграде, справа — в Ташкенте. Из формы левой кривой изменения температуры с высотой следует, что в Ленинграде воздух устойчив. При этом до изобарической поверхности 500 мб вертикальный градиент температуры в среднем равен 0,55° на 100 м. В двух небольших слоях (на поверхностях 900 и 700 мб) зарегистрирована изотермия. Это указывает, что над Ленинградом на высотах 1,5—4,5 км находится атмосферный фронт, разделяющий холодные массы воздуха в нижних полутора километрах от теплового воздуха, расположенного выше. Высота уровня конденсации, определяемая положением температурной кривой по отношению к влажной адиабате, находится около 1 км (900 мб).
В Ташкенте воздух имел неустойчивую стратификацию. До высоты 4 км вертикальный градиент температуры был близок к адиабатическому, т. е. на каждые 100 м поднятия температура уменьшалась на 1°, а выше, до 12 км — больше адиабатического. Вследствие сухости воздуха облакообразования не происходило.
Над Ленинградом переход в стратосферу происходил на высоте 9 км (300 мб), а над Ташкентом значительно выше — около 12 км (200 мб).
При устойчивом состоянии атмосферы и достаточной влажности могут образоваться слоистые облака и туманы, а при неустойчивом состоянии и большом влагосодержании атмосферы возникает термическая конвекция, приводящая к образованию кучевых и кучево-дождевых облаков. С состоянием неустойчивости связано образование ливней, гроз, града, малых вихрей, шквала и т. п. Так называемая «болтанка» самолета, т. е. броски самолета при полете, также вызывается неустойчивым состоянием атмосферы.
Летом обычна неустойчивость атмосферы после полудня, когда нагреваются близкие к земной поверхности слои воздуха. Поэтому ливневые дожди, шквалы и подобные опасные явления погоды чаще наблюдаются после полудня, когда вследствие разбивающейся неустойчивости возникают сильные вертикальные токи — восходящие и нисходящие движения воздуха. По этой причине самолеты, летающие днем на высоте 2—5 км над поверхностью земли, больше подвергаются «болтанке», чем при ночном полете, когда вследствие охлаждения приземного слоя воздуха устойчивость его увеличивается.
Влажность воздуха с высотой также уменьшаете. Почти половина всей влажности сосредоточена в первых полутора километрах атмосферы, а в первых пяти километрах содержится почти 9 /10 всего водяного пара.
Для иллюстрации ежедневно наблюдаемого характера изменения температуры с высотой в тропосфере и нижней стратосфере в различных районах Земли на рисунке 21 приведены три кривые стратификации до высоты 22—25 км. Эти кривые построены по наблюдениям радиозондов в 3 часа дня: две в январе — Олекминск (Якутия) и Ленинград, а третья в июле — Тахта-Базар (Средняя Азия). Для первой кривой (Олекминск) характерно наличие приземной инверсии, характеризующейся повышением температуры от —48° у поверхности земли до —25° на высоте около 1 км. В этот срок тропопауза над Олекминском находилась на высоте 9 км (температура —62°). В стратосфере наблюдалось повышение температуры с высотой, значение которой на уровне 22 км приближалось к —50°. Вторая кривая, представляющая изменение температуры с высотой в Ленинграде, указывает на наличие небольшой приземной инверсии, затем изотермии в большом слое и понижение температуры в стратосфере. На уровне 25 км температура равна —75°. Третья кривая (Тахта-Базар) сильно отличается от северного пункта — Олекминска. Температура у поверхности земли выше 30°. Тропопауза находится на высоте 16 км, а выше 18 км происходит обычное для южного лета повышение температуры с высотой.
Погосян, Х.П. Атмосфера Земли/ Х.П. Погосян [и д.р.]. – М.: Просвещение, 1970.- 318 с.
Мы ответим на следующие вопросы.
1. Какая часть солнечного тепла и света достигает земной поверхности?
На пути солнечной энергии к поверхности Земли находится атмосфера. Она поглощает часть энергии, часть пропускает к земной поверхности, а часть отражает обратно в космос. Атмосфера поглощает около 17% энергии, отражает — около 31%, а пропускает к поверхности Земли оставшиеся 49%.
2. Почему не весь поток солнечной энергии доходит до земной поверхности?
Источниками энергии всех процессов, происходящих на поверхности Земли, является Солнце и недра нашей планеты. Солнце — главный источник. К верхней границе атмосферы доходит одна двухмиллиардная доля энергии, излучаемой Солнцем. Однако даже такая малая доля солнечной энергии полностью не достигает поверхности Земли. Часть солнечных лучей поглощается, рассеивается в тропосфере и отражается обратно в космическое пространство, а часть доходит до Земли и поглощается ею. тратится на ее нагрев. Нагрев атмосферного воздуха. Температура нижних слоев атмосферного воздуха зависит от температуры поверхности, над которой оно находится. Солнечные лучи, проходя сквозь прозрачный воздух, почти не нагревает его, наоборот, через облака и содержание примесей оно рассеивается, теряя часть энергии. Зато, как мы уже отмечали, нагревается земная поверхность, и уже от нее прогревается воздух.
3. Что называют подстилающей поверхностью?
Подстилающая поверхность — поверхность земли, которая взаимодействует с атмосферой, обменивается с ней теплом и влагой.
4. От каких условий зависит нагрев подстилающей поверхности?
Количество солнечного тепла и света, поступающего на земную поверхность, зависит от угла падения солнечных лучей. Чем выше Солнце над горизонтом, тем выше угол падения солнечных лучей, тем больше солнечной энергии получает подстилающая поверхность.
5. Что нагревает атмосферный воздух?
Солнечные лучи, проходя через атмосферу, мало ее нагревают. Нагревание атмосферы происходит от поверхности Земли, которая, поглощая солнечную энергию, превращает ее в тепловую. Частицы воздуха, соприкасаясь с нагретой поверхностью, получают тепло и уносят его в атмосферу. Так нагреваются нижние слои атмосферы. Очевидно, чем больше получает поверхность Земли солнечной радиации, тем сильнее она нагревается, тем сильнее нагревается от нее воздух.
6. Почему температура воздуха преимущественно понижается с высотой?
Атмосфера нагревается главным образом за счет энергии, поглощенной поверхностью. Поэтому температура воздуха понижается с высотой.
7. Как изменяется температура воздуха в течении дня?
Температура воздуха всегда меняется на протяжении суток. Она зависит от количества солнечного тепла, которое поступает на Землю. Самые высокие температуры на протяжении дня всегда в полдень, потому что в это время Солнце поднимается на самую большую высоту. Значит обогревает большую площадь. Далее оно начинает снижаться и температура так же понижается. На протяжении 24 часов самая низкая температура наблюдается ближе к утру (в 3-4 часа ночи). После восхода Солнца температура обратно начинает подыматься.
8. В какое время суток наблюдается максимальная и минимальная температура воздуха?
Минимальной температура воздуха будет в предрассветные часы. Это происходит потому, что всю ночь солнце находилось за горизонтом и воздух остывал. Максимальная температура воздуха обычно наблюдается в районе полудня, когда солнце достигает зенита и угол падения солнечных лучей максимальный. В это время дня и отмечается максимальная дневная температура, которая после полудня, как правило, начинает идти на убыль. А после заката, солнце вовсе перестает согревать землю и температура воздуха начинает стремиться к своей минимальной отметке.
Мы исследуем условия нагрева подстилающей поверхности и научимся объяснять изменения температуры воздуха в течении суток.
1. Солнечные лучи в атмосфере
2. Подстилающая поверхность
Впишите пропущенные слова.
Впишите пропущенные слова.
Количество солнечного тепла и света, поступающего на земную поверхность, зависит от угла падения солнечных лучей. Чем выше Солнце над горизонтом, тем больше угол падения солнечных лучей, тем больше солнечной энергии получает подстилающая поверхность.
Укажите, какую часть солнечной энергии поглощают различные виды подстилающей поверхности.
3. Изменение температуры воздуха в течение суток. По данным наблюдений за погодой в Москве 16 апреля 2013 г. (см. табл.) проанализируйте изменение температуры воздуха в течение суток. Время восхода и захода Солнца, максимальной высоты Солнца над горизонтом узнайте в Интернете по ссылке http://voshod-solnca.ru/.
Ночью температура воздуха понижалась от +14°С (в 20 ч), достигнув своего минимального значения +5°С (в 5 ч.). В течение этого времени подстилающая поверхность не освещалась Солнцем, поэтому охлаждалась, приземный слой воздуха также охлаждался.
Восход Солнца произошел в 5 ч. 39 мин. В течение 4 часов после восхода Солнца незначительно нагревало подстилающую поверхность, так как угол падения солнечных лучей был в это время был небольшой. С подъемом Солнца над горизонтом угол падения солнечных лучей увеличивается, подстилающая поверхность все больше нагревается, отдавая свое тепло нижнему слою воздуха.
Подъем температуры воздуха был отмечен между 9 и 14 часами, т.е. через 3 часа после восхода Солнца. Наибольшая высота Солнца наблюдалась в истинный полдень (12 ч. 40 мин.) После полудня подстилающая поверхность продолжала прогреваться, поэтому температура воздуха продолжала расти от +13°С (в 12 ч) до +16°С (в 14 ч.).
Солнце клонилось к закату, подстилающая поверхность все меньше получала тепла, и ее температура стала понижаться. Теперь уже воздух отдавал свое тепло подстилающей поверхности. С 20 часов температура воздуха стала понижаться от максимального значения +16°С (в 19 часов) до полуночи. В ночные часы следующего дня температура воздуха продолжала понижаться.
Таким образом, суточный ход температуры воздуха в Москве 16 апреля 2013 г. Характеризуется ночным понижением до минимального значения +3°С (в 7 ч) и дневным повышением до максимального значения +16°С (в 14 ч.) Суточная амплитуда температуры воздуха составила +16°С — +3°С = 13°С.
Школа географа-следопыта
Выполните работу на с. 126 учебника. Запишите ответы на следующие вопросы.
Изменился ли поток свет от лампы при изменении положения картонного квадрата без выреза? Нужно наглядно провести опыт и записать последовательно по учебнику.
Как изменилась площадь освещенной части при последовательном увеличении угла падения лучей на поверхность картонного квадрата без выреза? Нужно наглядно провести опыт и записать последовательно по учебнику.
При увеличении угла падения лучей площадь освещенной части тоже увеличивалась.
Изменилось ли количество света на единицу площади освещенной части (например, на 1 см.)? Нужно наглядно провести опыт и записать последовательно по учебнику.
Да, так как площадь увеличивалась, сответственно, и количество света на единицу площади освященной части изменялось.