Теорема ферми в чем суть

Поскольку мало кто владеет математическим мышлением, то я расскажу о наикрупнейшем научном открытии – элементарном доказательстве Великой теоремы Ферма – на самом понятном, школьном, языке.

Доказательство было найдено для частного случая (для простой степени n>2), к которому (и к случаю n=4) легко сводятся и все случаи с составным n.

Итак, нужно доказать, что уравнение A^n=C^n-B^n решения в целых числах не имеет. (Здесь значок ^ означает степень.)

Доказательство проводится в системе счисления с простым основанием n. В этом случае в каждой таблице умножения последние цифры не повторяются. В обычной, десятичой системе, ситуация иная. Например, при умножении числа 2 и на 1, и на 6 оба произведения – 2 и 12 – оканчиваются на одинаковые цифры (2). А, например, в семеричной системе для цифры 2 все последние цифры разные: 0х2=. 0, 1х2=. 2, 2х2=. 4, 3х2=. 6, 4х2=. 1, 5х2=. 3, 6х2=. 5, с набором последних цифр 0, 2, 4, 6, 1, 3, 5.

Благодаря этому свойству для любого числа А, не оканчивающегося на ноль (а в равенстве Ферма последняя цифра чисел А, ну или В, после деления равенства на общий делитель чисел А, В, С нулю не равна), можно подобрать такое множитель g, что число Аg будет иметь сколь угодно длинное окончание вида 000. 001. Вот на такое число g мы и умножим все числа-основания A, B, C в равенстве Ферма. При этом единичное окончание сделаем достаточно длинным, а именно на две цифры длиннее, чем число (k) нулей на конце числа U=А+В-С.

Вот, собственно, и вся подготовка равенства Ферма для краткого и завершающего исследования. Единственное, что мы еще сделаем: перепишем правую часть равенства Ферма – C^n-B^n, – используя школьную формулу разложения: C^n-B^n=(С-В)Р, или аР. А поскольку далее мы будем оперировать (умножать и складывать) только с цифрами (k+2)-значных окончаний чисел А, В, С, то их головные части можем в расчет не принимать и просто их отбросить (оставив в памяти лишь один факт: левая часть равенства Ферма является СТЕПЕНЬЮ).

Единственное, о чем стоит сказать еще, это о последних цифрах чисел а и Р. В исходном равенстве Ферма число Р оканчивается на цифру 1. Это следует из формулы малой теоремы Ферма, которую можно найти в справочниках. А после умножения равенства Ферма на число g^n число Р умножатеся на число g в степени n-1, которое, согласно малой теореме Ферма, также оканчивается на цифру 1. Так что и в новом эквивалентном равенстве Ферма число Р оканчивается на 1. И если А оканчивается на 1, то и A^n тоже оканчивается на 1 и, следовательно, число а тоже оканчивается на 1.

Итак, мы имеем стартовую ситуацию: последние цифры А’, а’, Р’ чисел А, а, Р оканчиваются на цифру 1.

Остается последний философский вопрос: почему число Р можно представить в виде P=q^(n-1)+Qn^(k+2)? Ответ простой: потому что любое целое число Р с 1 на конце можно представить в таком виде, причем ТОЖДЕСТВЕННО. (Можно представить и многими другими способами, но нам это не нужно.) Действительно, для Р=1 ответ очевиден: P=1^(n-1). Для Р=hn+1 число q=(n-h)n+1, в чем легко убедиться, решая уравнение [(n-h)n+1]^(n-1)==hn+1 по двузначным окончаниям. И так далее (но в дальнейших вычислениях у нас необходимости нет, так как нам понадобится представление лишь чисел вида Р=1+Qn^t).

Уф-ф-ф-ф! Ну вот, философия кончилась, можно перейти к вычислениям на уровне второго класса, разве что лишь еще раз вспомнить формулу бинома Ньютона.

И теперь правую часть равенства Ферма можно переписать в виде:
A^n=(а»n+1)^n+Dn^(k+2), где значение числа D нас не интересует.

А вот теперь мы переходим к решающему выводу. Число а»n+1 является двузначным окончанием числа А и, СЛЕДОВАТЕЛЬНО, согласно простой лемме ОДНОЗНАЧНО определяет ТРЕТЬЮ цифру степени A^n. И более того, из разложения бинома Ньютона
(а»n+1)^n, учитывая, что к каждому члену разложения (кроме первого, что погоды изменить уже не может!) присоединяется ПРОСТОЙ сомножитель n (основание счисления!), видно, что эта третья цифра равна а». Но с помощью умножения равенства Ферма на g^n мы k+1 цифру перед последней 1 в числе А превратили в 0. И, следовательно, а»=0.

Тем самым мы завершили цикл: введя а», мы нашли, что и q»=а», а в заключение и а»=0!

Ну и остается сказать, что проведя совершенно аналогичные вычисления и последующих k цифр, мы получаем заключительное равенство: (k+2)-значное окончание числа а, или С-В, – так же, как и числа А, – равно 1. Но тогда (k+2)-я цифра числа С-А-В РАВНА нулю, в то время как она нулю НЕ РАВНА.

Вот, собственно, и всё доказательство. Для его понимания вовсе не требуется иметь высшее образование и, тем более, быть профессиональным математиком. Тем не менее, профессионалы помалкивают.

Удобочитаемый текст полного доказательства расположен здесь:

Источник

Теорема Ферма для чайников? Не бойтесь, это не больно.

Мало ли доказанных, недоказанных и пока не доказанных теорем? Тут все дело в том, что Великая теорема Ферма являет собой самый большой контраст между простотой формулировки и сложностью доказательства.

Теорема ферми в чем суть. Теорема ферми в чем суть фото. картинка Теорема ферми в чем суть. смотреть фото Теорема ферми в чем суть. смотреть картинку Теорема ферми в чем суть.

1. Почему она так знаменита?

Великая теорема Ферма — задача невероятно трудная, и тем не менее ее формулировку может понять каждый с 5-ю классами средней школы, а вот доказательство — даже далеко не всякий математик-профессионал. Ни в физике, ни в химии, ни в биологии, ни в той же математике нет ни одной проблемы, которая формулировалась бы так просто, но оставалась нерешенной так долго.

2. В чем же она состоит? Начнем с пифагоровых штанов

Формулировка действительно проста — на первый взгляд. Как известно нам с детства, «пифагоровы штаны на все стороны равны».

Проблема выглядит столь простой потому, что в основе ее лежало математическое утверждение, которое всем известно:

Теорема Пифагора: в любом прямоугольном треугольнике квадрат, построенный на гипотенузе, равен сумме квадратов, построенных на катетах.

Замечательно. Ну и так далее.

Так вот, оказывается, что их НЕТ.

Вот тут начинается подвох. Простота — кажущаяся, потому что трудно доказать не наличие чего-то, а наоборот, отсутствие. Когда надо доказать, что решение есть, можно и нужно просто привести это решение.

Доказать отсутствие сложнее: например, некто говорит: такое-то уравнение не имеет решений. Посадить его в лужу? Легко: бац — а вот оно, решение! (приведите решение). И все, оппонент сражен.

А как доказать отсутствие? Сказать: «Я не нашел таких решений»? А может, ты плохо искал? А вдруг они есть, только очень большие, ну очень, такие, что даже у сверхмощного компьютера пока не хватает силенок? Вот это-то и сложно.

3. История: более 350 лет поиска решений

Теорема была сформулирована Пьером Ферма в 1637 году на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было здесь поместить:

Наоборот, невозможно разложить куб на два куба, биквадрат на два биквадрата и вообще никакую степень, большую квадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него.

Несколько позже сам Ферма опубликовал доказательство частного случая для n = 4, что добавляет сомнений в том, что у него было доказательство общего случая, иначе он непременно упомянул бы о нём в этой статье. Эйлер в 1770 году доказал теорему для случая n = 3, Дирихле и Лежандр в 1825 году — для n = 5, Ламе — для n = 7. Куммер показал, что теорема верна для всех простых n, меньших 100, и так далее.
Теорема ферми в чем суть. Теорема ферми в чем суть фото. картинка Теорема ферми в чем суть. смотреть фото Теорема ферми в чем суть. смотреть картинку Теорема ферми в чем суть. Доказательство самого Ферма для случая <\displaystyle n=4>n=4 в сорок пятом комментарии к «Арифметике» Диофанта
Фото: ru.wikipedia.org

Но все это были частные случаи, а не универсальное доказательство для ВСЕХ ЧИСЕЛ.

Над полным доказательством Великой теоремы работало немало выдающихся математиков, и эти усилия привели к получению многих результатов современной теории чисел.

Считается, что Великая теорема стоит на первом месте по количеству неверных доказательств. Многие начинающие математики считали своим долгом подступиться к Великой теореме, но доказать ее все никак не удавалось.

Сначала не удавалось сто лет. Потом еще сто. Среди математиков стал развиваться массовый синдром: «Как же так? Ферма доказал, а я что, не смогу, что ли?», и некоторые из них на этой почве свихнулись в полном смысле этого слова.

Некоторые пытались прославиться от обратного: доказать, что она не верна. А для этого, как мы говорили, достаточно просто-напросто привести пример: вот три числа, одно в кубе плюс второе в кубе — равно третьему в кубе. И они искали такие тройки чисел. Но безуспешно… И никакие компьютеры, ни с каким быстродействием, никогда не смогли бы ни проверить теорему, ни опровергнуть ее, ведь все переменные этого уравнения (в том числе и показатели степени) могут возрастать до бесконечности.

4. Наконец-то!

Наконец 23 июня 1993 года в Кембридже состоялась самая важная лекция по математике в ХХ веке. Лектором был Эндрю Уайлс, англичанин, профессор Принстонского университета. Эндрю Уайлс продемонстрировал ученым полное доказательство Великой теоремы Ферма.

Он шел к этому 30 лет, буквально с десятилетнего возраста. Его доказательство потом еще было уточнено и усовершенствовано в 1995 году, но самое главное — Великая теорема была доказана!

На это человечеству понадобилось 358 лет. Для доказательства была применена «самая высшая» и самая современная математическая наука. Поэтому изложить это доказательство в рамках заметочки никак нельзя, и читателям придется поверить на слово мне, математикам Кембриджа и Принстона и так далее.

Это доказательство закрыло сразу две страницы истории: 350-летний поиск доказательств Великой теоремы и бесконечные нашествия ферматистов на все математические кафедры всех университетов и институтов в мире.

5. Кто такие ферматисты?

Как сказано выше, формулировка Великой теоремы очень проста и понятна, поэтому есть стойкая иллюзия, что и доказательство ее также должно быть простым, понятным и вкладываться в знания алгебры в объеме 5−6 классов. Это породило неисчислимые толпы фанатиков, называемых ферматистами, которые пытались ее доказать, думали, что доказали, и атаковали кафедры и отдельных ученых с исписанными тетрадками в клеточку наперевес. Как все фанатики, они нетерпимы к критике, полны намерений снести все преграды и страшно самоуверенны. Обычно их толстые труды сразу выбрасывают или дают студентам кафедры теории чисел для поиска ошибки в качестве упражнения. Теорема ферми в чем суть. Теорема ферми в чем суть фото. картинка Теорема ферми в чем суть. смотреть фото Теорема ферми в чем суть. смотреть картинку Теорема ферми в чем суть. Фото: francis.naukas.com

Как правило, все доказательства сводятся к нехитрым алгебраическим преобразованиям: там прибавил, тут вычел, возвел все в квадрат, извлек квадратный корень, свернул по формулам сокращенного умножения, применил бином Ньютона — и вот оно, доказал.

Интересно, что бОльшая часть доморощенных ферматистов даже не понимает сути теоремы — они доказывают не то, что уравнение с показателями степени больше 2 не имеет целых решений, а просто пытаются доказать, что х в степени N + y в степени N равно z в степени N, что, как вы уже, я надеюсь, понимаете, лишено всяческого смысла.

И ведь доказывают! Ошибка, как правило, возникает при очередном возведении уравнения в квадрат и последующем извлечении корня. Казалось бы: возвели в квадрат, потом извлекли корень — так на так и получится, но они всегда забывают о том, что х в квадрате и (минус х) в квадрате равны. Это элементарно, Ватсон!

Кафедры отбивались, как могли.

Учёный секретарь одного из московских академических институтов, не избежавшего нашествия ферматистов, однажды был в отпуске в Молдавии и на рынке купил какую-то снедь, которую ему завернули в местную газету.
Вернувшись с рынка, он стал просматривать этот листок и наткнулся на заметку, в которой сообщалось, что местный школьный учитель доказал теорему Ферма, и, как следствие, пелись всякие дифирамбы высокому уровню областной науки.
Учёный секретарь вырезал эту заметку, а по возвращении в Москву вставил её в рамку и повесил на стену своего кабинета. Теперь, когда на него «нападал» очередной ферматист, он широким жестом приглашал того ознакомиться с «текущим положением дел». Жизнь явно стала легче.
(Саймон СИНГХ, «ВТФ»).

Я думаю, после всего, что между нами было, читатели уже смогут оценить попавшуюся мне как-то на кафедре в куче таких рукописей, тетрадок и бандеролей телеграмму:

ДОКАЗАЛ ТЕОРЕМУ ФЕРМА ТЧК ИКС СТЕПЕНИ Н ПЛЮС ИГРЕК СТЕПЕНИ Н РАВНО ЗЕТ СТЕПЕНИ Н ТЧК. ДОКАЗАТЕЛЬСТВО ДВТЧ ПЕРЕНОСИМ ИГРЕК СТЕПЕНИ Н ПРАВУЮ ЧАСТЬ ТЧК ПОДРОБНОСТИ ПИСЬМОМ

Источник

Теорема Ферма и 380 лет на ее доказательство

Теорема ферми в чем суть. Теорема ферми в чем суть фото. картинка Теорема ферми в чем суть. смотреть фото Теорема ферми в чем суть. смотреть картинку Теорема ферми в чем суть.

Не много идей и рассуждений занимали мысли и внимание ученых-математиков и самоучек так долго, как Великая теорема Ферма. Эта теорема – самое известное математическое утверждение, на доказательство которого понадобилось больше 380 лет. Более того, в 1908 году ажиотаж вокруг нее был накален после обещания присудить премию за ее решение.

Вся сложность доказательства этой теоремы состояла в том, что нужно было доказать отсутствие решения. Казалось, что ее суть так легко понять, но как тяжело было ее решить!

Доказательство этой единой математической теоремы тесно связано с развитием истории математики, формированием новых направлений и углублением человеческого знания об абстракциях. О том, кто доказал теорему Ферма и сколько времени на это ушло, мы поговорим в этой статье.

Юрист Пьер де Ферма – «король среди любителей математики»

Пьер де Ферма (1601-1665) – французский судья и самоучка, известен как автор самой сложной теоремы всех времен. Свою карьеру и жизненный путь Ферма связал с юриспруденцией, и работал в местном парламенте маленького городка Кастр (до 1789 года «парламентом» во Франции называли суды).

Помимо блестящей карьеры в суде, Пьер также увлекался математикой, был самоучкой, черпая свои знания из книг и переписки со своими сверстниками, учеными и философами того времени – Декартом, Паскалем, Бернардом де Бесси и другими. Несмотря на его статус любителя, профессиональные математики ценили переписку с Пьером Ферма и называли его «королем среди любителей». Главный интерес он проявлял к теории чисел, которая в начале 17 столетия стала очень популярной во Франции благодаря новым изданиям трудов древнегреческих математиков. Изучая их, Ферма смог обосновать основные проблемы решения многочисленных задач, которые стали основными для развития классической теории чисел.

Больше всего влияния на Пьера Ферма оказала книга «Арифметика», изучая которую он исписывал поля собственными рассуждениями, впоследствии изменившими развитие математического мышления. В этой книге греческий математик и отец алгебры Диофант Александрийский описывал натуральные числа Пифагора. На основании «Арифметики» Ферма, решая задачи сложных уравнений с несколькими неизвестными, сформулировал легендарное утверждение, позже названное в его честь Великой теоремой Ферма. Доказательство теоремы заняло около 380 лет.

Наибольший научный вклад Ферма в развитие математики в том, что он обратил внимание на роль, которую занимают простые числа.

Великая теорема Ферма

Особый интерес к натуральным числам возродился в начале 17 столетия, после издания «Арифметики» Диофанта. Эта книга стала особо популярной среди ученых и философов, которые пытались рационально объяснить мироустройство, исключая всякое божественное начало. Среди них был и Пьер Ферма.

Во время чтения «Арифметики» ему в голову пришла идея заменить показатель степени 2 в теореме Пифагора любым другим числом. Тогда он понял: решения такому суждению не существует, и это можно доказать. Но само доказательство не записал из-за отсутствия места в книжке. На страницах книги II, обдумывая задачу 8, Ферма записал только следующее:

«Невозможно разложить куб на два куба, биквадрат на два биквадрата, на две степени с тем же показателем. Я нашел этому поистине чудесное доказательство, но поля книги слишком узки для него».

Рассуждение Ферма о простых числах стало широко известным после того, как в 1670 году его сын Самюэль опубликовал книгу «Арифметика», но уже с комментариями отца. Путь доказательства занял более чем 350 лет. Сотни математиков пытались доказать утверждение Ферма, а получилось это лишь у Эндрю Уайлса в 1993 году.

Знаменательно, что очевидной практической ценности Великая теория Ферма не имеет. Но ее формулировка будоражила умы сотен математиков, что, в свою очередь, действительно приносило плоды в развитии теории математики. Помимо легендарной Великой (или «Последней», как ее еще называют) теоремы Ферма, не менее важную роль в развитии математики занимает другая теорема – малая.

Малая теорема Ферма – это еще одно знаменитое рассуждение, которое Ферма описал в письме к своему другу в 1640 году. Читается эта теорема так: если целое число п не делится на простое число р, то п р — 1 —1 делится на число р.

Доказательство этой теоремы не заняло столько времени и усилий, как в случае с ее предшественницей, но ее роль в развитии математического мышления несомненно бесценна. Сегодня она является одной из самых важных теорем элементарной теории чисел, криптографии и современной алгебры.

Великая теорема Ферма: доказательство

Великая теорема Ферма не была детально объяснена даже самым автором. Может быть, его бумаги затерялись, но, скорее всего, в этом он сам не видел необходимости.

Все дело в том, что скупое, на наш взгляд, объяснение утверждения на полях книжки «Арифметика» непонятно для нас, но так не будет казаться, если учесть контекст, в котором Ферма развивал свои идеи. На протяжении своей жизни он вел активную переписку с другими учеными и любителями математики, и это были долгие дискуссии в письменной форме, где очень важно было понимание логичности и чередования писем. Это было общество, члены которого понимали друг друга с полуслова. Поэтому в многословности в такой среде просто не было необходимости.

Другим предположением, почему Ферма не развил детальное объяснение своей теоремы, в том, что он не был профессиональным математиком, как, к примеру, Рене Декарт или Франсуа Виет, и тем более он не пытался достичь признания в этой сфере, помимо одобрения друзей и единомышленников, которое, очевидно, уже получил. Но, тем не менее, Ферма понимал оригинальность своих идеи и подходов, а также то, что его методы мышления помогают другим математикам.

Увлекаясь теорией простых чисел, Ферма понимал, что натуральные числа не являются бесконечными. Он полагал, что найденный им метод является общим, и его можно будет использовать, чтобы доказать любые теоремы натуральных чисел. Но реальность оказалась иной. Метод оказался не таким универсальным, как рассуждал Ферма. И на доказательство этого ученым понадобилось более трех столетий.

В начале 1990-х годов теорему Ферма уже доказали для показателей разных степеней вплоть до 4 000 000. Но все-таки ученые продолжали искать показатель, для которого теорема окажется ложной.

Математик из Принстонского университета Эндрю Уайлс смог доказать теорему в 1993 году, исполнив свою мечту, которая появилась у него в 10-летнем возрасте. На протяжении долгих лет он следил за многочисленными методами, с помощью которых разные ученые пытались доказать теорему Ферма. И в 1986 году, оставив все свои проекты, он сам занялся доказательством этой теории, которое заняло 7 лет.

В своем доказательстве он использовал сложные методы вычисления. Его работа опиралась на труды гигантов из разных направлений математики. Теорема Ферма – это сложная головоломка, решить которую стало возможным, сочетая поэтапно разные подходы и методы доказательства. Исписывая тысячи страниц, Уайлс смог доказать Великую теорему Ферма.

Это был долгий путь, который заключался в подсчете бесконечностей, рассмотрении всех ранее использованных подходов с целью найти собственный метод доказательства. Сначала Уайлс подсчитал все эллиптические функции, а также модулярные эллиптические функции, где как одних, так и других бесконечно много, чтобы показать, что их вычисления эквивалентны. Хотя этот подход оказался неэффективным, он помог осознать, куда двигаться дальше. Эти вычисления помогли Уайлсу понять, что нужно вместо доказательства гипотезы Таниямы-Симуры для эллиптических кривых, доказать эту же гипотезу лишь для полустабильных кривых.

Далее он обратился к теории Галуа, и с ее помощью смог определить эллиптические уравнения и доказать, что можно провести ассоциацию с элементами модулярных форм. Так Уайлсу удалось переформулировать задачу в более податливые понятия. Но это был только первый шаг, который занял два года.

Позднее он пробовал решить теорему с помощью теории Ивасавы, но ее оказалось недостаточно, поэтому Уайлс использовал еще и инструменты системы Эйлера. Однако позже он понял, что самым подходящим подходом является подход Колывагина-Флаха. И здесь новая тактика начала приносить плоды.

В начале 1993 года Уайлс подключил к решению теоремы друга Ника Каца. Они решили, что в основании нового университетского курса «Вычисления на эллиптических кривых» они смогут поэтапно изложить теорему Ферма. Во время этого курса проверялись разные этапы доказательства.

Окончательные результаты и первое публичное доказательство Уайлс представил на конференции в Кембридже в июне 1993 года. Для этого эму понадобилось три часа. Рукопись занимала 200 страниц. Потом решение задачи подтвердил комитет экспертов, и, после уточнения нескольких неточностей, в 1995 году теорема Ферма официально была доказана.

Вклад Пьера Ферма в развитие науки

История математики просто немыслима без вклада ученого-самоучки Пьера Ферма. Но из-за уединенного образа жизни и узкого круга общения его идеи ученые смогли оценить лишь после его смерти и благодаря его сыну Сэмюелю, который в 1870 году начал публиковать наброски и размышления отца.

Ферма и его идеи во многом стали основополагающими для развития новых математических теорий. Его сильной стороной был творческий подход и неограниченность рамками одной дисциплины: Ферма применял алгебраические методы в геометрических задачах, что заложило основания аналитической геометрии. Поэтому справедливо считать, что Ферма, наравне с Декартом, повлиял на формирование аналитической геометрии, а также то, что в своей переписке с Паскалем он заложил основы теории вероятности.

Идеи и подходы Пьера Ферма были настолько неординарными, что его рассуждения и толкования решения задач повлияли на Ньютона и даже Галилея, а другой французский математик Марен Мерсенн в своей книге «Универсальная гармония» вообще назвал Ферма математическим гением.

Кстати, если вам интересно, как развить мышление, лучше понимать абстракции и удерживать в голове длинные формулы, замечать закономерности и создавать новые идеи, предлагаем вам попробовать наши программы «Мнемотехники» и «ТРИЗ на практике». И пусть напрямую с математикой они не связаны, зато представленная в них информация, упражнения и задания прекрасно подходят для повышения уровня интеллекта, а его, как вы знаете, можно использовать в любой области.

Желаем удачи и до встречи на уроках наших курсов!

Источник

Великая теорема Ферма

Для целых чисел n больше 2 уравнение x n + y n = z n не имеет ненулевых решений в натуральных числах.

Вы, наверное, помните со школьных времен теорему Пифагора: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Возможно, вы помните и классический прямоугольный треугольник со сторонами, длины которых соотносятся как 3 : 4 : 5. Для него теорема Пифагора выглядит так:

Это пример решения обобщенного уравнения Пифагора в ненулевых целых числах при n = 2. Великая теорема Ферма (ее также называют «Большой теоремой Ферма» и «Последней теоремой Ферма») состоит в утверждении, что при значениях n > 2 уравнения вида x n + y n = z n не имеют ненулевых решений в натуральных числах.

История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно. Дело в том, что математика для Ферма была чем-то вроде хобби, а не профессиональным занятием. Он переписывался с ведущими математиками своего времени, однако публиковать свои работы не стремился. Научные труды Ферма в основном обнаружены в форме частной переписки и обрывочных записей, часто сделанных на полях различных книг. Именно на полях (второго тома древнегреческой «Арифметики» Диофанта. — Прим. переводчика) вскоре после смерти математика потомки и обнаружили формулировку знаменитой теоремы и приписку:

«Я нашел этому поистине чудесное доказательство, но поля эти для него слишком узки».

Увы, судя по всему, Ферма так и не удосужился записать найденное им «чудесное доказательство», и потомки безуспешно искали его три с лишним века. Из всего разрозненного научного наследия Ферма, содержащего немало удивительных утверждений, именно Великая теорема упорно не поддавалась решению.

Кто только не брался за доказательство Великой теоремы Ферма — всё тщетно! Другой великий французский математик, Рене Декарт (René Descartes, 1596–1650), называл Ферма «хвастуном», а английский математик Джон Уоллис (John Wallis, 1616–1703) — и вовсе «чертовым французом». Сам Ферма, правда, все-таки оставил после себя доказательство своей теоремы для случая n = 4. С доказательством для n = 3 справился великий швейцарско-российский математик XVIII века Леонард Эйлер (1707–83), после чего, не сумев найти доказательств для n > 4, в шутку предложил устроить обыск в доме Ферма, чтобы найти ключ к утерянному доказательству. В XIX веке новые методы теории чисел позволили доказать утверждение для многих целых чисел в пределах 200, однако, опять же, не для всех.

В 1908 году была учреждена премия в размере 100 000 немецких марок за решение этой задачи. Призовой фонд был завещан германским промышленником Паулем Вольфскелем (Paul Wolfskehl), который, согласно преданию, собирался покончить жизнь самоубийством, но так увлекся Великой теоремой Ферма, что передумал умирать. С появлением арифмометров, а затем и компьютеров планка значений n стала подниматься всё выше — до 617 к началу Второй мировой войны, до 4001 в 1954 году, до 125 000 в 1976 году. В конце XX столетия мощнейшие компьютеры военных лабораторий в Лос-Аламосе (Нью-Мексико, США) были запрограммированы на решение задачи Ферма в фоновом режиме (по аналогии с режимом экранной заставки персонального компьютера). Таким образом удалось показать, что теорема верна для невероятно больших значений x, y, z и n, но строгим доказательством это послужить не могло, поскольку любые следующие значения n или тройки натуральных чисел могли опровергнуть теорему в целом.

Наконец в 1994 году английский математик Эндрю Джон Уайлс (Andrew John Wiles, р. 1953), работая в Принстоне, опубликовал доказательство Великой теоремы Ферма, которое, после некоторых доработок, было признано исчерпывающим. Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был. Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку. Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел. С уверенностью можно утверждать лишь одно: сегодня мы точно знаем, что теорема верна. Большинство математиков, я думаю, безоговорочно согласятся с Эндрю Уайлсом, который заметил по поводу своего доказательства: «Теперь наконец мой ум спокоен».

Теорема ферми в чем суть. Теорема ферми в чем суть фото. картинка Теорема ферми в чем суть. смотреть фото Теорема ферми в чем суть. смотреть картинку Теорема ферми в чем суть.

Французский математик и юрист. Родился в Бомон-де-Ломань (Beaumont-de-Lomagne). Изучал право, работал судьей. В свободное время увлекался математикой и внес значительный вклад в развитие различных отраслей этой науки, за что получил прозвище «король любителей». Помимо теории чисел (так называется область математики, к которой относится Великая теорема Ферма) еще до Ньютона разработал многие основы дифференциального исчисления, а совместно с Блезом Паскалем (Blaise Pascal, 1623–62) основал теорию вероятностей. В оптике сформулировал принцип Ферма, согласно которому преломление света на границе двух сред обусловлено различной скоростью распространения света в различных средах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *