Термисторная защита электродвигателей что это

Термисторная (позисторная) защита электродвигателей

Зашита асинхронных электродвигателей от перегрева традиционно реализуется на основе, тепловой токовой защиты. В подавляющем большинстве двигателей, находящихся в эксплуатации, используется тепловая токовая защита, которая недостаточно точно учитывает фактические температурные режимы работы электродвигателей, а также его температурные постоянные времени.

В косвенной тепловой защите асинхронного электродвигателя биметаллические пластины включают в цепи питания статорных обмоток асинхронною электродвигателя, а при превышении максимально допустимого тока статора, биметаллические пластины, нагреваясь, отключают питание статора от источника электроэнергии.

Недостатком этого метода является то, что защита реагирует не па температуру нагрева обмоток статора, а на количество выделенного тепла без учета времени работы в зоне перегрузок и реальных условий охлаждения асинхронного электродвигателя. Это не позволяет в полной мере использовать перегрузочную способность электродвигателя и снижает производительность оборудования, работающего в повторно-кратковременном режиме из-за ложных отключений.

Сложность конструкции тепловых реле, недостаточно высокая надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру защищаемого объекта. При этом датчики температуры устанавливаются на обмотке двигателя.

Термочувствительные защитные устройства: термисторы, позисторы

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое воздействует на обмотку пускателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открыт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.

Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства. Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого электродвигателя.

Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Термисторная защита электродвигателей и реле термисторной защиты двигателя

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Термисторная (позисторная) защита электродвигателей

Сложность конструкции тепловых реле к пускателям электродвигателей, недостаточная надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру обмоток электродвигателя. При этом датчики температуры устанавливаются на обмотке двигателя. Другими словами, осуществляется непосредственный контроль измерения нагрева двигателя. Прямая защита двигателя через контроль температуры обмотки даже при тяжелейших условиях окружающей среды обеспечивает полную защиту двигателя, оснащенного температурными датчиками с положительным коэффициентом сопротивления (PTC). Температурные датчики PTC встроены в обмотки электродвигателя (укладываются в обмотку двигателя изготовителем двигателей).

Термочувствительные защитные устройства: термисторы, позисторы

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Рисунок 1 – Зависимость сопротивления позисторов и термисторов от температуры: а – последовательное соединение позисторов; б – параллельное соединение термисторов

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Характеристика позисторов показана на рисунке.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3.5 мм и толщиной 1 мм, покрытый кремне-органической эмалью, создающей необходимую влагостойкость и электрическую прочность изоляции.

Рассмотрим схему позисторной защиты, показанную на рисунке 2.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

К контактам 1, 2 схемы (рисунок 2, а) подключаются позисторы, установленные на всех трёх фазах двигателя (рисунок 2, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта и работают в ключевом режиме. В цепь коллектора транзистора VT3 оконечного каскада включено выходное реле К, которое подает сигнал на обмотку пускателя электродвигателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало, транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открьт (большой потенциал). Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. При этом ток в обмотке реле К недостаточен для его срабатывания.

Рисунок 2 – Аппарат позисторной защиты с ручным возвратом: а – принципиальная схема; б – схема подключения к двигателю

После охлаждения двигателя его пуск возможен после нажатия кнопки «возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Достоинства и недостатки термисторной (позисторной) защиты

Виды термисторных реле различных производителей:

Реле термисторной защиты двигателя TER-7 ELCO (Чехия)

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Реле термисторной защиты электродвигателя РТ-М01-1-15 (МЕАНДР, Россия)

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Реле контроля температуры двигателя E3TF01 230VAC (PTC), 1 CO, TELE Серия ENYA (Австрия)

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Реле контроля температуры двигателя MTR01, MTR02 BMR (Чехия)

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Реле термической защиты Grundfos MS 220 C Grundfos/Ziehl (Германия)

Реле контроля температуры двигателя серии 71.91 и 71.92 Finder (Италия)

Термисторное реле определения температуры для промышленного применения.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Реле Finder термисторной защиты двигателя [71.91.8.230.0300]

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Реле Finder термисторной защиты двигателя (с памятью) [71.92.8.230.0401]

Источник

Термисторная защита электродвигателей

2021-04-03 Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.Промышленное Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.3 комментария

Наряду с автоматами защиты двигателей, тепловыми реле, в современных двигателях для защиты от перегрева применяются температурные датчики на основе термисторов и позисторов.

В отличии от традиционных способов, например тех же тепловых реле, где защита асинхронных двигателей от перегрузки осуществляется на основе теплового воздействия тока, нагревающего биметаллическую пластину реле, термисторная защита реагирует непосредственно на температуру обмоток двигателя.

Защита при помощи тепловых реле, автоматов защиты двигателей, является косвенной тепловой защитой, так как не взаимодействует непосредственно с обмотками двигателя. То есть она реагирует не на фактическую температуру нагрева обмоток статора, а на количество выделенного тепла без учета времени работы в зоне перегрузок и реальных условий охлаждения двигателя.

В определенных случаях такая защита может быть не достаточно эффективна, так как не позволяет определить с достаточной точностью действительную температуру нагрева электродвигателя. Это относится, в частности, к электродвигателям с продолжительным периодом запуска, частыми включениями-выключениями и т.д.

В случае защиты на основе PTC-датчиков, контроль за степенью нагрева обмоток статора осуществляется напрямую, так как датчики встроены в обмотки, то есть имеют с ней непосредственный контакт.

Благодаря этому обеспечивается защита двигателя от перегрузки, асимметрии и обрыва фаз, недостаточного охлаждения, так как все эти причины так или иначе приводят к нагреву обмоток, а следовательно к срабатыванию датчиков.

Также важной особенностью такого типа защиты является то, что срабатывание зависит только от температуры двигателя и не зависит от нагрузки на сам двигатель.

Термисторные датчики не защищают электродвигатель в случае короткого замыкания, а также пробоя изоляции.

Принцип действия терморезисторов

Термисторы и позисторы относятся к полупроводниковым термосопротивлениям, принцип работы которых основан на изменении сопротивления в зависимости от температуры. В зависимости от типа, они могут иметь как прямую, так и обратную нелинейную характеристику зависимости сопротивления от температуры.

NTC (Negative Temperature Coefficient) датчики, они же термисторы представляют собой полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления (ТКС). То есть при при достижении заданной температуры их сопротивление резко уменьшается.

PTC (Positive Temperature Coefficient ) позисторы наоборот, имеют положительный температурный коэффициент сопротивления (ТКС). Для данного типа характерно резкое увеличение своего сопротивления при достижении заданной температуры. Для электродвигателей чаще применяется именно этот тип защиты.

На каждую обмотку асинхронного двигателя монтируется по одному температурному датчику, то есть всего получается три датчика. Подключение датчиков, в зависимости от типа, может быть выполнено как параллельно, в случае применения термисторов, так и последовательно, в случае позисторов.

Помимо достоинств, есть у данной защиты и один недостаток, если это можно назвать недостатком. Дело в том, что датчики нельзя напрямую подключить к коммутационному устройству, например контактору. Требуется некое промежуточное звено, которое в начале проанализирует значение температуры с датчика, а потом уже выдаст сигнал на включение или отключение. Таким устройством является реле термисторной защиты.

Реле термисторной защиты

Реле термисторной защиты обеспечивает прямое измерение температуры обмотки двигателя, некоторые модели имеют функцию контроля исправности датчиков (обрыв и короткое замыкания).

Рассмотрим работу термисторного реле на примере устройства Siemens 3RN1012-1CK00.

Для индикации работы встроены два светодиода (READY/TRIPPED), сигнализирующие соответственно о рабочем состоянии реле и его срабатывании. Данный тип реле имеет возможность ручного, автоматического и дистанционного сброса в исходное состояние. По умолчанию осуществляется автоматический сброс. Ручной сброс производится кнопкой TEST/RESET на передней панели реле. При нажатии кнопки TEST/RESET более 2 секунд вызывается функция тестирования и происходит симуляция расцепления. Для дистанционного сброса необходимо подключить внешний выключатель на клеммы Y1 и Y2.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

В нормальном режиме работы, пока сопротивление подключенных датчиков не достигает порога срабатывания, исполнительное реле включено и через NO контакты сигнал приходит на контактор. При превышении температурного порога, хотя бы одного из датчиков, реле выключается. Возврат в исходное рабочее состояние происходит автоматически после охлаждения термисторов.

Источник

Тепловые реле и термисторная зашита. Принцип действия, выбор реле.

1. Тепловые реле

Принцип действия тепловых реле

Определение. Тепловые реле — это электрические аппараты, предназначенные для защиты электродвигателей от токовой перегрузки. Наиболее распространенные типы тепловых реле — ТРП, ТРН, РТЛ и РТТ.

Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. Эта зависимость представлена на рис. 22 (кривая 1).

При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рис. 22 устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.

При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ниже кривой для объекта.

Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.

Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент линейного (объемного) расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки.

Примечание. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим коэффициентом расширения. Именно это явление используется в тепловых реле.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Рис. 22. Времятоковые характеристики теплового реле и защищаемого объекта

Широкое распространение в тепловых реле получили материалы: инвар (малое значение a); немагнитная или хромоникелевая сталь (большое значение a).

Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя.

Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.

Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле, переключая его контакты и разрывая цепь питания.

Времятоковые характеристики теплового реле

Основной характеристикой теплового реле является времятоковая характеристика, представляющая собой зависимость времени срабатывания от тока нагрузки. В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.

При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле. При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.

Влияние температуры окружающей среды на работу теплового реле

Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.

При температуре, сильно отличающейся от номинальной, необходимо:

— либо проводить дополнительную (плавную) регулировку теплового реле;

— либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.

Примечание. Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.

Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).

Конструкция тепловых реле

Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт. Наиболее распространенные серии тепловых реле: ТРП, ТРН, РТЛ, РТТ.

Тепловые реле токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены, главным образом, для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.

Двухфазное тепловые реле ТРН (рис. 23) реле встраивается в магнитные пускатели. Реле ТРН состоит из пластмассового корпуса, разделенного на три ячейки. В крайних ячейках размещены нагревательные элементы, в средней — температурный компенсатор, регулятор тока срабатывания, механизм расцепителя, размыкающий контакт мостикового типа и рычаг ручного возврата.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Рис. 23. Тепловое реле ТРН

Шкала регулятора разбита на 10 делений: пять в сторону увеличения и пять в сторону уменьшения. Цена одного деления 5%. Вследствие этого ток уставки можно регулировать в пределах ±25% от номинального тока.

При протекании тока перегрузки через нагревательный элемент основная биметаллическая пластинка, деформируясь (показано пунктиром), перемещает вправо толкатель, связанный жестко с биметаллической пластинкой температурного компенсатора.

Направление деформации пластинки температурного компенсатора противоположно направлению деформации основной пластинки. Деформация незначительна по абсолютной величине.

Вследствие этого, несмотря на противодействие, пластинка температурного компенсатора начинает перемещаться тоже вправо. Защелка освобождается, и штанга расцепителя под действием пружины отходит вверх, а контакты реле размыкаются.

Тепловые реле РТЛ предназначены для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от несимметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0,1 до 86 А.

Тепловые реле РТЛ могут устанавливаться как непосредственно на пускатели ПМЛ, так и отдельно от пускателей (в последнем случае они должны быть снабжены клеммниками КРЛ). Разработаны и выпускаются реле РТЛ и клеммники КРЛ, которые имеют степень защиты ІР20 и могут устанавливаться на стандартную рейку. Номинальный ток контактов равен 10 А.

Тепловые реле РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от несимметрии в фазах.

Реле РТТ применяют в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660 В частотой 50 или 60 Гц, в целях постоянного тока напряжением 440 В.

Выбор тепловых реле

Номинальный ток теплового реле выбирают исходя из номинальной нагрузки электродвигателя. Выбранный ток теплового реле составляет (1,2–1,3) номинального значения тока электродвигателя (тока нагрузки), т. е. тепловое реле срабатывает при 20–30% перегрузке в течение 20 минут:

Iном.т.р ≥ (1,2–1,3) Iном.дв..

Примечание. При выборе теплового реле с регулируемым током срабатывания необходимо стремиться к тому, чтобы ток уставки находился в центре диапазона регулирования.

При выборе тепловых реле предпочтительнее выбирать трехполюсное реле серии РТЛ, а при больших токах — 3 однополюсных реле серии РТТ.

Постоянная времени нагрева электродвигателя зависит от длительности токовой перегрузки. При кратковременной перегрузке в нагреве участвует только обмотка электродвигателя и постоянная нагрева 5–10 минут.

При длительной перегрузке в нагреве участвует вся масса электродвигателя и постоянна нагрева 40–60 минут. Поэтому применение тепловых реле целесообразно лишь тогда, когда длительность включения превышает 30 минут.

2. Термисторная (позисторная) защита электродвигателей

Назначение термочувствительных защитных устройств

Сложность конструкции тепловых реле, недостаточно высокая надежность систем защиты на их основе, привели к созданию тепловой защиты, реагирующей непосредственно на температуру защищаемого объекта. При этом датчики температуры устанавливаются на обмотке двигателя.

В качестве датчиков температуры используют термисторы и позисторы.

Определение. Термисторы и позисторы — полупроводниковые резисторы, изменяющие свое сопротивление от температуры.

Термисторы представляют собой полупроводниковые резисторы с большим отрицательным ТСК (температурным коэффициентом сопротивления). При увеличении температуры сопротивление термистора уменьшается, что используется для схемы отключения двигателя. Для увеличения крутизны зависимости сопротивления от температуры, термисторы на три фазы включаются параллельно (рис. 24, б).

Позисторы являются нелинейными резисторами с положительным ТСК. При достижении определенной температуры сопротивление позистора скачкообразно увеличивается на несколько порядков.

Для усиления этого эффекта позисторы разных фаз соединяются последовательно. Зависимость сопротивления позисторов от температуры показана на рис. 24, а.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.

Рис. 24. Зависимость сопротивления позисторов и термисторов от температуры: а — последовательное соединение позисторов; б — параллельное соединение термисторов

Защита с помощью позистоpoв является более совершенной. В зависимости от класса изоляции обмоток двигателя берутся позисторы на температуру срабатывания 105, 115, 130, 145 и 160 °С. Эта температура называется классификационной.

Гарантийный срок службы позисторов 20000 ч. Конструктивно позистор представляет собой диск диаметром 3,5 мм и толщиной 1 мм, покрытый кремнеорганической эмалью, обеспечивающей влагостойкость и электрическую прочность изоляции.

Работа схем позисторной защиты

Рассмотрим схему позисторной защиты, показанную на рис. 25.

К контактам 1, 2 схемы (рис. 25, а) подключаются позисторы, установленные на всех трех фазах двигателя (рис. 25, б). Транзисторы VТ1, VT2 включены по схеме триггера Шмидта. В цепь коллектора транзистора VT3 оконечного каскада включено реле К, которое воздействует на обмотку пускателя.

При нормальной температуре обмотки двигателя и связанных с ним позисторов сопротивление последних мало. Сопротивление между точками 1-2 схемы также мало. Транзистор VT1 закрыт (на базе малый отрицательный потенциал), транзистор VТ2 открыт. Отрицательный потенциал на коллекторе транзисторе VT3 мал, и он закрыт. Ток в обмотке реле К недостаточен для его срабатывания.

Термисторная защита электродвигателей что это. Термисторная защита электродвигателей что это фото. картинка Термисторная защита электродвигателей что это. смотреть фото Термисторная защита электродвигателей что это. смотреть картинку Термисторная защита электродвигателей что это.б

Рис. 25. Аппарат позисторной защиты с ручным возвратом: а — принципиальная схема; б— схема подключения к двигателю

При нагреве обмотки двигателя сопротивление позисторов увеличивается. При определенном значении этого сопротивления отрицательный потенциал точки 3 достигает напряжения срабатывания триггера. Релейный режим триггера обеспечивается эммитерной обратной связью (сопротивление в цепи эммитера VТ1) и коллекторной обратной связью между коллектором VT2 и базой VT1.

При срабатывании триггера VТ2 закрывается, а VT3 — открывается. Срабатывает реле К, замыкая цепи сигнализации и размыкая цепь электромагнита пускателя, после чего обмотка статора отключается от сети.

После охлаждения двигателя его пуск возможен после нажатия кнопки

«Возврат», при котором триггер возвращается в начальное положение.

В современных электродвигателях позисторы защиты устанавливаются на лобовой части обмоток двигателя. В двигателях прежних разработок позисторы можно приклеивать к лобовой части обмоток.

Термочувствительная защита электродвигателей предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру электродвигателя. Это касается, прежде всего, электродвигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременный режим работы) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты).

Примечание. Термисторная защита эффективна также при сильном загрязнении электродвигателей или выходе из строя системы принудительного охлаждения.

Недостатками термисторной защиты является то, что с термисторами или позисторами выпускаются далеко не все типы электродвигателей. Это особенно касается электродвигателей отечественного производства.

Термисторы и позисторы могут устанавливаться в электродвигатели только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации электродвигателя.

Термисторная защита требует наличия специального электронного блока: термисторного устройства защиты электродвигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *