Термомеханическая прокатка что это

Технологии термомеханической обработки стали

Фактически весь прокат, который выпускается на современных прокатных станах, производится с использованием термомеханической обработки.

Особенности термомеханической обработки

Термомеханической обработкой (ТМО) называют совмещение пластической деформации и термического воздействия, целью которого является формирование требуемой структуры обрабатываемого металла.

Объединение операций пластического деформирования и термообработки, максимальное их сближение и создание единого процесса термомеханической обработки обеспечивают заметное повышение механических характеристик (прочности, вязкости и т.д.), что позволяет экономить до 15…40% металла и более, или увеличить долговечность изделий.

При ТМО оба процесса — пластическая деформация и термическая обработка — могут совмещаться в одной технологической операции, а могут проводиться и с разрывом по времени. Но при этом обязательным условием является прохождение фазовых превращений в условиях повышенной плотности дефектов решетки, возникающих благодаря пластической деформации металла.

Термомеханическая обработка стали выполняется главным образом по трем схемам: высокотемпературная (ВТМО), низкотемпературная (НТМО) и предварительная термомеханическая обработка (ПТМО). Также к термомеханической обработке относят технологи контролируемой прокатки и ускоренного охлаждения.

Высокотемпературная термомеханическая обработка

ВТМО (рис. 123, а) — термообработка с деформационного нагрева с последующим низким отпуском. Высокотемпературная термомеханическая обработка практически устраняет развитие отпускной хрупкости в опасном интервале температур, повышает ударную вязкость при комнатной температуре и понижает температурный порог хладоломкости.

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.Рис. 123. Схема режимов термомеханической обработки стали: а – высокотемпературная термомеханическая обработка (ВТМО); б – низкотемпературная термомеханическая обработка (НТМО)

Высокотемпературную термомеханическую обработку эффективно используют для углеродистых, легированных, конструкционных, пружинных и инструментальных сталей.

Сущность ВТМО заключается в том, что непосредственно после горячей обработки давлением (прокатки, штамповки), когда сталь имеет температуру выше Ас3 и аустенитную структуру, проводится резкое охлаждение – закалка. За короткое время между окончанием прокатки (или штамповки) и закалкой рекристаллизация произойти не успевает. В связи с этим наклеп упрочнение, которые возникли при пластической деформации во время прокатки или штамповки, не устраняются и остаются в стали после ее остывания.

При этом, чем короче промежуток времени между окончанием прокатки и закалкой, когда сталь имеет высокую температуру, тем больше сохранится дислокаций и тем больше будет эффект упрочнения. Практически, этот отрезок времени составляет несколько секунд, в течение которых частично происходит рекристаллизация, что снижает эффект упрочнения. Это один из главных недостатков способа ВТМО.

Низкотемпературная термомеханическая обработка (аусформинг)

При использовании технологии НТМО сталь сначала нагревают до аустенитного состояния. После выдержки при высокой температуре, производят сначала охлаждение до температуры, выше температуры начала мартенситного превращения (400…600 ºС), но ниже температуры рекристаллизации, а затем при этой температуре осуществляют обработку давлением и закалку (рис. 123, б).

Низкотемпературная термомеханическая обработка, хотя и обеспечивает более высокое повышение прочностных характеристик, но не снижает склонности стали к отпускной хрупкости. Кроме того, она требует высоких степеней деформации (75…95 %), для обеспечения которых требуется мощное оборудование, так как сталь прокатывается не в горячем а в теплом состоянии.

Низкотемпературную термомеханическую обработку применяют к среднеуглеродистым легированным сталям, закаливаемым на мартенсит.

Предварительная термомеханическая обработка

ПТМО выполняется по следующей технологической схеме: холодная пластическая деформация (повышает плотность дислокаций), дорекристаллизационный нагрев (обеспечивает полигонизацию структуры феррита), закалка со скоростного нагрева, отпуск. При этом перерыв между холодной деформацией и нагревом под закалку не регламентируется, что значительно упрощает технологический процесс ПТМО.

Высокотемпературная поверхностная термомеханическая обработка (ВТМПО)

Сущность такой обработки заключается в том, что деталь подвергается поверхностному нагреву токами высокой частоты и одновременно обкатывается роликами. В результате в поверхностном слое детали, разогретом до аустенитного состояния, происходит наклеп и после закалки образуется мартенситная структура, в которой наследуется дополнительное упрочнение, полученное при обкатке роликами. В отличие от обычной высокотемпературной термомеханической обработки (ВТМО) разупрочнения вследствие разрыва по времени между наклепом и закалкой в данном случае не происходит. Метод ВТМПО очень эффективен при упрочнении шеек и галтелей коленчатых валов и других ответственных деталей.

Контролируемая прокатка

Контролируемая прокатка является фактически разновидностью ВТМО, и представляет собой эффективный способ повышения прочности, пластичности и вязкости низколегированных сталей.

Технология контролируемой прокатки заключается в таком выборе режимов прокатки и охлаждения после неё, которые обеспечат получение мелкого и однородного зерна в готовом прокате, что, в свою очередь, обеспечит более высокий уровень механических свойств. Наиболее часто контролируемая прокатка применяется при производстве листов.

Достижение требуемой микроструктуры обычно осуществляется понижением температуры прокатки в трех — пяти последних проходах до 780…850 °С с одновременным увеличением степени деформации до 15…20 % и выше за проход. Соответственно, использование технологии контролируемой прокатки требует наличия более мощного и прочного оборудования. После прокатки обычно производится отпуск при температуре 100…200 °С для сохранения высоких значений прочности.

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.Рис. 124. Межклетьевое подстуживание проката

При контролируемой прокатке, за счет снижения температуры деформации в установках ускоренного межклетьевого охлаждения (рис. 124), в сочетании с ускоренным охлаждением готового проката (рис. 125), структура стали формируется с мелким зерном феррита, как следствие повышается предел текучести, снижается температура и улучшается свариваемость. Контролируемая прокатка позволяет получить зерно перлита диаметром 5…10 мкм и менее, что приводит к упрочнению стали на 10…30 % при сохранении высокой пластичности и вязкости.

Контролируемая прокатка имеет 3 стадии получения необходимой структуры стали: деформация в зоне рекристаллизации аустенита, деформация некристаллизующегося аустенита и деформация в двухфазной аустенитно-ферритной области.

Подстуживание раската до более низкой температуры перед контролируемой прокаткой может производиться и на воздухе.

Например, такая схема реализована на стане 3600 Мариупольского металлургического комбината «Азовсталь».

Ускоренное охлаждение проката

Технология ускоренного охлаждения металла применяется на разных участках производства проката, в частности, между клетями прокатного стана (межклетьевое охлаждение), непосредственно после выхода проката из чистовой клети, а также при закалке металла после специального нагрева в различных нагревательных устройствах. Такая технология применяется как для листового, так и для сортового проката, при этом конструкции охлаждающих установок принципиально отличаются.

Ускоренное охлаждение можно разделить на одностадийное и двухстадийное. Одностадийное охлаждение осуществляется в устройствах, в которых прокат охлаждается водой, например, в проводящих трубах или линях ламинарного охлаждения. Одностадийное охлаждение уменьшает окалинообразование, но недостатком такого охлаждения, в частности, является то, что при последующем охлаждении в бунтах или рулонах происходит значительный разброс механических свойств по длине и разнородная структура по сечению, что отрицательно сказывается на качестве продукции.

Двухстадийная технология состоит из водяного и интенсивного воздушного охлаждений. Одним из первых внедренных в промышленности способов двухстадийного охлаждения является способ ― “Стилмор”, который применяется в основном при производстве катанки.

При водяном охлаждении сохраняется достигнутая при горячей прокатке мелкозернистая структура. А последующий интенсивный обдув воздухом приводит к образованию очень мелкозернистой перлитной структуры, которая исключает необходимость использования применяемого обычно патентирования катанки перед волочением.

В настоящее время известны различные способы ускоренного охлаждения проката. Все они характеризуются видом охлаждающей среды, организацией подачи ее на охлаждаемую поверхность проката и отвода отработанного охладителя. Известны такие способы: охлаждение металла в баках со спокойной водой, спрейерное (струйное) охлаждение, охлаждение водовоздушной смесью, охлаждение в сплошном потоке воды в устройствах камерного типа (камерное охлаждение).

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.Рис. 126. Конструкция камеры охлаждения проката (разработка ИТЦ «Аусферр»)

Для начала рассмотрим камерное охлаждение проката. В зависимости от взаимного направления движения проката и воды различают два типа камер: прямоточные и противоточные. В прямоточных камерах (рис. 126) движение воды и металла совпадают, поэтому для сбора отработанной воды применяются специальные устройства механического дробления струи, поскольку она выходит из установки с высокой скоростью. Это приводит к удлинению участка охлаждения и повышению стоимости установки.

Противоточный способ охлаждения является более эффективным, с точки зрения теплообмена. Скорость охлаждения поверхности металла в противоточных устройствах приблизительно в 4…5 раз выше, чем в прямоточных, при одном и том же расходе воды. Длина камеры охлаждения значительно меньше, что создает предпочтение при размещении этих устройств на действующих прокатных станах.

Фирма SMS Meer разработала свою технологию ускоренного охлаждения, которая получила название LOOP. Данная технология используется для понижения температуры подката перед чистовой группой клетей до 780…950 ºС (PQR-процесс).

Такого понижения температуры относительно просто добиться в вышеописанных камерных установках. Однако после подстуживания раскат имеет неравномерное температурное поле с большим перепадом температур до нескольких сотен градусов, что делает его прокатку фактически невозможным. Поэтому необходимо обеспечить условия для выравнивания температуры по сечению перед задачей раската в чистовую группу.

На настоящий момент существует две концепции обустройства линии подстуживания для обеспечения требуемой температуры самоотпуска раската:

Первый вариант получил достаточно широкое распространение. Расстояние между группами клетей в этом случае должно составлять 50…65 метров. Обычно на стане с термомеханической обработкой проката секция ускоренного охлаждения расположена перед калибровочным блоком, а также после него. Следует также отметить, что данная компоновка оборудования имеет существенный недостаток: наличие длинного участка самоотпуска противопоказано для некоторых марок стали, которые должны прокатываться при высокой температуре.

Второй вариант предусматривает обустройство петли температурной стабилизации, что позволяет существенно экономить место в цеху для стана (рис. 127).

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.Рис. 127. Схема стана с технологией Multiline-LOOP: 1 – черновая и промежуточные группы клетей; 2 – камеры охлаждения проката; 3 – петля для выравнивания температуры по сечению; 4 – чистовой блок клетей FRS

Такая технология также лишена вышеописанного недостатка, поскольку раскат может или напрямую поступать в чистовую группу без подстуживания или проходить через секции охлаждения и петлю температурной стабилизации рис 128.

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.Рис. 128. Вид линии охлаждения LOOP

Данная технология уже реализована на станах заводов «GerdauAcominas» (Бразилия) и «Voest-Alpine» (Австрия).

Применение петли большой длины позволяет реализовать низкотемпературную (с температурой 760 °С) чистовую прокатку с градиентом температуры по сечению катанки в пределах 30…60 °С.

На листовых станах для ускоренного охлаждения применяют линии ламинарного охлаждения (рис. 125), которые обеспечивают высокую равномерность охлаждения. Также применяют и системы интенсивного (спреерного) охлаждения.

Источник: Скляр В. О. Инновационные и ресурсосберегающие технологии в металлургии. Учебное пособие. – Донецк.: ДонНТУ, 2014. – 224 с.

Источник

Термомеханическая обработка

В условиях рыночной экономики производство любой продукции, в том числе и металлопроката, должно быть осуществлено с минимально возможными затратами, чтобы составлять достойную конкуренцию на рынке: кто произвел продукт приемлемого качества и при этом сумел на это затратить минимальное количество ресурсов, тот и молодец.

Определение ТМО и примеры ее применения

Термомеханическая обработка представляет собой совокупность операций пластической деформации и термической обработки, проводящихся (в зависимости от схемы ТМО) в различной последовательности [1, стр. 1].

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.

А вот что говорит один из гуру ТМО, М.Л. Бернштейн: [2, стр. 7] «Термомеханическую обработку следует понимать как совокупность операций деформации, нагрева и охлаждения (в различной последовательности), в результате которых формирование окончательной структуры металлического сплава, а следовательно и его свойств, происходит в условиях повышенной плотности несовершенств строения, созданных пластической деформацией».

Вот некоторые позитивные примеры использования ТМО:

— внедрение ТМО позволяет снизить расход стали при производстве деталей машин и механизмов за счет уменьшения их сечения, сокращения расхода запасных частей, заменить в ряде случаев легированные стали на углеродистые [1, стр. 4];
— технологии, использующие ТМО, как правило, являются ресурсосберегающими, поскольку ликвидируется один вид (а иногда и два) термической обработки – нормализация или закалка и отпуск [5, стр. 20];
— с помощью ТМО можно повысить хладостойкость и жаропрочность изделий, сохранив при этом коррозионную стойкость сталей;
— повышение эксплуатационных свойств позволяет либо снизить вес конструкции, либо уменьшить потребность в запасных частях [3, стр. 23].

Пока все это звучит как реклама супермодного бытового комбайна, который и пылесосит, и бутерброды делает, и гладит, и стирает, а что именно из себя представляет — неизвестно, и как им пользоваться — тоже непонятно. Будем разбираться.

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.

Изучение и создание схем ТМО

Раз уж мы дело имеем с сочетанием деформации и термической обработки, то
1) ТМО металлов и сплавов целесообразно применять во всех случаях, когда целесообразна и простая термическая обработка, т. е. когда в сплавах возможны:
а) превращения в твердом растворе, связанные с изменением растворимости одного компонента в другом, [1, стр. 7]как, например, в случае дисперсионнотвердеющих жаропрочных сплавов;
б) полиморфные превращения [1, стр. 7], как, например, в сталях;
2) исследования в области термомеханической обработки сводятся к изучению влияния пластической деформации на превращения в термически обрабатываемых сплавах и на структуру и свойства после этих превращений.

Схемы ТМО

Схем ТМО, как уже понятно из определений выше, существует множество: в зависимости от того, какой сплав мы деформируем, как мы деформируем, в каком температурном интервале, как охлаждаем, нагреваем, выдерживаем, какая из этих операций за какой следует и т.д, и т.п. и какую структуру при этом получаем, и схема ТМО, и ее название будут разными.

А теперь «пробежимся галопом» по различным схемам ТМО. Как видно из таблицы ниже [2, стр. 22-23], их у нас целый букет!

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.

Остановлюсь лишь немного на тех процессах ТМО, с которыми встречался сам — это НТМО и ВТМО.

Высокотемпературная термомеханическая обработка. ВТМО

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.

Применение этого процесса очень заманчиво, т.к. сравнительно легко вписывается в действующие на металлургических заводах технологические схемы горячей обработки давлением типа прокатки, волочения, ковки и т.д, и может быть осуществлен на тех же прокатных станах. В принципе, в начале процесс меняется мало: греем примерно до тех же температур, что и при прокатке, потом деформируем, НО теперь еще температуру деформации нужно контролировать и после деформации необходимо осуществить закалку.

На стадии же разработки режима деформации и закалки теперь необходимо еще и задумываться не только о формоизменении, а еще и о том, что внутри металла происходит, поэтому и к режиму деформации нужно подходить немного иначе!

Деформацию при ВТМО осуществляют выше порога рекристаллизации, а это значит, что рекристаллизация идет полным ходом: продеформировали аустенит — зерна его вытянулись, дислокации внутри них размножились, и во время междеформационной паузы вместо старых деформированных зерен родились и выросли новые рекристаллизованные. Затем металл снова продеформивали, снова зародились рекристаллизованные зерна. и так далее до последнего прохода, как и при обычной прокатке.

А вот после последнего прохода, который также осуществляется выше порога рекристаллизации, необходимо осуществить немедленную закалку, чтобы зафиксировать сотояние аустенита, полученное после деформации (повышенная плотность дислокаций, вероятно, особые конфигурации дислокаций типа полигональной субструктуры внутри зерен аустенита).

Как раз в этом и состоит особенность ВТМО — зафиксировать это состояние за счет немедленной закалки. Если это сталь, то структура, полученная аустенитом в результате деформации и немедленной закалки, наследуется мартенситом, а если это аустенитный сплав типа нержавейки или жаропрочного сплава, то мы просто получаем аустенит с унаследованной дислокационной структурой и сидящими внутри него атомами легирующих элементов (пересыщенный твердый раствор).

В случае сталей за закалкой следует отпуск мартенсита, а в случае аустенитных сплавов — старение.

Конечно же, надо понимать, что ограничения вносит размерный фактор: очень трудно резко охладить прокат большого сечения и удержать протекание рекристаллизации во внутренних слоях, где и температура больше, чем на поверхности, и скорость охлаждения меньше.

Итак, что нужно знать для разработки режима ВТМО?

Входные данные для разработки режима ВТМО

2. Из предыдущего пункта понятно, что нужно контролировать температуру металла. На предприятиях чаще всего это делают с помощью пирометров, вот только они измеряют температуру поверхности, а в центре она совсем другая.

3. Нужно специальное дополнительное оборудование для охлаждения металла после деформации (установка охлаждения со спреями, бак с водой и т.п.), возможно, и иное вспомогательное оборудование типа кантователей или манипуляторов, с помощью которых металл можно в бак закинуть и потом достать.

5. Понимать, какие превращения происходят в конкретном сплаве во время нагрева, деформации и охлаждения. Для этого нужны специальные исследования с применением пластометров, электронных, оптических и даже просвечивающих микроскопов, рентгеновских лучей, оборудованием для испытания мех. свойств и т.д.

Низкотемпературная термомеханическая обработка.

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.

а — для сталей, б — для стареющих сплавов, где полиморфного превращения нет

При НТМО деформацию осуществляют ниже порога рекристаллизации аустенита, т.е. никакого образования новых зерен не происходит, а зерна аустенита просто раскатываются, как тесто под скалкой, и накапливают дислокации.

Термомеханическая прокатка что это. Термомеханическая прокатка что это фото. картинка Термомеханическая прокатка что это. смотреть фото Термомеханическая прокатка что это. смотреть картинку Термомеханическая прокатка что это.

Если мы имеем дело с НТМО стали, то деформация такая осуществляется в температурном диапазоне когда и рекристаллизации нет, и полиморфного превращения еще не происходит, так что температурный интервал этот невелик. В случае же аустенитных сплавов дела обстоят получше: аустенит устойчив в очень широком интервале температур.

После последнего прохода (если мы говорим о прокатке) сталь немедленно закаляют, фиксируя таким образом структуру, образовавшуюся в результате деформации, после чего проводят отпуск.

Для разработки режима НТМО знать нужно то же, что и при разработке схемы НТМО, так что см. выше.

Основная проблема с применением НТМО заключается в том, что при низких температурах, когда нет рекристаллизации (мощнейшего процесса разупрочнения), накопление дефектов кристаллической решетки (см. статью о методах упрочнения) происходит интенсивнее, чем в случае ВТМО, поэтому сопротивление деформации аустенита весьма велико, а значит, и оборудование использовать нужно более мощное, а оно не везде есть.

В заключение

Сегодня широко освоены различные схемы ВТМО и НТМО в первую очередь при изготовлении таких изделий, как лист и сортовой прокат (круг, квадрат, полоса). Все эти изделия объединяет одно — простое поперечное сечение.

Меньшее применение ТМО пока наблюдается при изготовлении заготовок и деталей машин, что скорее всего связано со сложностью профиля, а следовательно, и усложнением условий достижения однородности по сечению структуры и свойств [5, стр. 26]: плоский лист равномерно охладить проще, чем какую-нибудь хитрую деталь с меняющейся толщиной, — для этого требуется создавать специализированные охлаждающие устройства. К тому же есть проблемы и на простом профиле, когда толщина проката очень велика, что также ведет к неравномерности условий охлаждения по сечению.

Таким образом, термомеханическая обработка сегодня является перспективным методом получения изделий из сталей и сплавов с необходимым комплексом свойств, а также методом повышения эффективности производства, но «поле» это еще пахать и возделывать придется не одному поколению, т.к. проблем еще много. и это хорошо: ученым-металлургам, прокатчикам, металловедам и технологам на предприятиях еще будет чем заняться!

Ссылки

1. Григорьев А.К., Коджаспиров Г.Е. Термомеханическое упрочнение стали в заготовительном производстве. Л.: Машиностроение, 1985. 143 с.

2. Бернштейн М.Л. Термомеханическая обработка металлов сплавов, М:Металлугия, 1968, том 1, 1172 с.

3. Коджаспиров Г.Е. Термомеханическая обработка — эффективный способ регулирования структуры и свойств металлических материалов и основа ресурсберегающих технологий // Тезисы докладов Российской научно-технической конференции «Инновационные наукоемкие технологии для России». СПб. 1995. С. 23.

4. Коджаспиров Г.Е., Алферов В.П., Воробьев Ю.П. Опыт объединения «Кировский завод» в повышении хладостойкости сталей для трактора «Кировец». Л.: ЛДНТП, 1986. 27 с.

5. Шаврин О.И., Исмаилов М.М. Управление анизотропностью упрочнения при термомеханической обработке // Повышение прочности и долговечности деталей машин. Ижевск, 1974. С. 20-28.

6. Шаврин О.И., Дементьев В.Б., Засыпкин А.Д. О повышении точности горячекатаных труб ВТМО с винтовым обжатием // Бернштейновские чтения по термомеханической обработке. М. 1999. С. 37.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *