Термопластичный каучук что это

Термоэластопласт (ТЭП): описание, виды и область применения

История термоэластопластов (ТЭП, TPE) берет свое начало в 1959 году, но в те времена материал не пользовался популярностью из-за несовершенной рецептуры и дороговизны производства. Применение передовых технологий позволило не только уменьшить затраты на изготовление, но и разработать множество видов термопластов для разных условий эксплуатации. Поэтому сегодня ТЭП широко востребован в различных отраслях промышленности: обувной и текстильной, химической, автомобильной, строительной и других.

Термоэластопласт: что это за материал

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

ТЭП или термопластичный каучук представляет собой полимерную композицию, которая в обычных условиях имеет свойства мягких резин, а при воздействии высоких температур сохраняет высокую текучесть и может использоваться для формовки готовых изделий. По эластичности TPE имеют свойства сшитых каучуков.

Термопластичные эластомеры подлежат многократной переработке, что позволяет значительно сократить выбросы в окружающую среду и затраты на изготовление новых товаров. В производстве изделий чаще всего используются методы экструзии и литья под давлением. Кроме того, допускается переработка путем каландрования и вальцевания.

Преимущества термопластов

Высокая цена на ТЭП, в сравнении с классической резиной, компенсируется высокими объемами производства. Литье под давлением обходится намного дешевле, чем вулканизация резино-технических изделий (РТИ). Кроме того, резина подвержена моральному устареванию. Со временем она теряет эластичность и становится ломкой. Термоэластопласты обладают обратным свойством: они остаются эластичными, а показатели прочности – увеличиваются. Материал также можно соединять методом сварки и с помощью клеевых составов.

Виды ТЭП

По составу и характеристикам, термоэластопласты условно разделяют на 6 групп. Далее подробнее поговорим об особенностях каждого из этих видов.

Стирольные блок-сополимеры (SBS, TPE-S)

В основе материала лежат 2-фазные блок-сополимеры с твердыми и мягкими включениями. Блоки стирольных концов отвечают за термопластичность, а средние – за эластомерные характеристики. На долю SBS приходятся наибольшие объемы производства. Материал широко используют в изготовлении таких изделий, как:

В результате гидрирования образуется SEBS. Данный термопласт превосходит СБС по термостойкости, устойчивости к механическим нагрузкам и химическому воздействию.

Термопластичные полиолефины (TPO)

Материал изготавливается на основе полипропилена и несшитого каучука. Для улучшения терморезистентности и свойств сжатия, используется незначительная поперечная сшивка. Данная технология применяется в производстве изделий, отвечающих повышенным требованиям к ударной вязкости. Например, TPO часто используется в изготовлении приборных панелей и бамперов для автомобилей. Такой материал имеет твердость по Шору А до 80.

Термопластические вулканизаты (TPV)

Материал имеет одинаковый состав с TPO, но компоненты подвергаются динамической вулканизации в процессе смешивания. Данный вид термоэластопластов активно используется в производстве уплотнений для автомобилей, труб и других изделий, где нужна устойчивость к температурам до +120°C. Материал имеет твердость по Шору А 45 и Д 45. На сегодняшний день многие компании освоили производство нового ТЭП на основе инженерных пластмасс с добавлением эластомеров. Эти материалы отличаются лучшей термостойкостью и устойчивостью к химическим веществам.

Термопластичные полиуретаны (TPU)

Эта разновидность термоэластопластов изготавливается на основе полиэфирных или полиэфир-уретановых волокон. Материал востребован в производстве изделий, рассчитанных на высокие механические нагрузки и подверженных износу:

Примечание: температура плавкости термоэластопласта составляет +70°C, поэтому обувь нельзя сушить на открытом огне, иначе подошва расплавится, а изделие придет в негодность.

TPU имеет твердость по Шору А 80.

Термопластичные сополиэфиры (TEEE)

Материал востребован в автомобильной промышленности и изготовлении промышленных шлангов. К достоинствам данного вида ТЭП относятся:

Твердость по Шору А 85, Д 75.

Термопластические полиэфирные блок-амиды (TPE-A)

Материал обладает хорошей стойкостью к высоким температурам и химическим веществам, а также образует прочные соединения с полиамидными пластмассами. Чаще всего используется в производстве оболочек кабелей и изделий для космической отрасли.

Ведущие страны-поставщики термоэластопластов

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

Россия стремительно наращивает производство термопластичных эластомеров, но нынешних объемов недостаточно для покрытия спроса, поэтому многие предприятия вынуждены использовать импортные материалы.

В тройку крупнейших поставщиков входят:

При ввозе термоэластопласта код ТН ВЭД является одним из ключевых сведений для таможенного оформления. На данную категорию товаров распространяются обозначения 4002192000 и 3901903000.

Источник

Термопластичный каучук для подошвы — плюсы и минусы, свойства

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

Термоэластопласт – это полимерный материал, объединяющий в себе эластичность каучука и термопластические свойства, придающие изделию высокую текучесть в расплавленном состоянии. Термопластичный каучук – самый востребованный в изготовлении подошвы для обуви. Он теплее ПВХ и обладает высокой прочностью. Но это далеко не все причины, по которым материал активно используется в обувной промышленности. В нашей статье рассмотрим свойства ТЭП подробнее.

ТЭП подошва – что это

ТЭП подошва представляет собой обувную подошву из синтетических полимеров, лишенную недостатков резины. Термоэластопласты обеспечивают хорошее сцепление изделия с различными поверхностями и высокую сопротивляемость деформациям.

ТЭП подошвы имеют интегральную структуру: наружный слой является монолитным, а внутренний – пористым. Такое решение позволило исключить зависимость твердости и истираемости подошв от плотности.

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

Термоэластопласт: подошва скользкая или нет

Материал отличается хорошим коэффициентом трения не только по сухому асфальту, но и заснеженным и мокрым дорогам. Подошва из термоэластапласта, имеющая рельефный протектор, практически не скользит даже в гололед. Благодаря этому свойству, изделия из ТЭП позволяют минимизировать травматизм в зимнее время.

Термоэластопласт подошва: характеристики

Обувные подошвы из ТЭП обладают следующими свойствами:

Плюсы и минусы термоэластопласта в изготовлении подошвы

Начнем с преимуществ материала.

Устойчивость к повреждениям

Материал практически не поддается разрушению. Во время активных занятий обувная подошва не разрушается от веток, битого стекла и других острых предметов.

Хорошее сцепление с дорогой

Полимерные подошвы обладают высоким коэффициентом трения, поэтому обувь практически не скользит по мокрым и заснеженным дорогам. Это позволяет избежать травматизма в неблагоприятную погоду. Кроме того, цвет подошвы не переносится на пол, а значит, в такой обуви можно ходить в помещении.

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

Превосходная амортизация

Подошва хорошо пружинит на асфальте и другой жесткой поверхности. Такая обувь не создает дополнительную нагрузку на костно-мышечную систему, поэтому после длительной носки нет дискомфорта. Кроме того, она не сковывает движений стопы. Обычно подошвы из ТЭП применяют в обуви для активного отдыха.

Экологическая безопасность

ТЭП – экологически чистый материал, не выделяющий токсичных веществ на солнце. Благодаря этому свойству материал востребован в производстве детской обуви и изделий для помещения. Еще одно достоинство ТЭП – допускается сочетание с другими веществами, что позволяет делать комбинированные подошвы.

Вторичная переработка

Материал поддается второй переработке. За счет этого сокращаются затраты на производство и вредные выбросы в окружающую среду. Благодаря низкой себестоимости производители могут выпускать недорогие изделия. По этой причине подошвы из ТЭП активно используются на китайских фабриках.

Износостойкость

Несмотря на низкую себестоимость, материал хорошо сопротивляется истиранию.

Стойкость к химическим веществам

Термоэластопласты противостоят кислотам, щелочам и природным органическим веществам. Это ощутимое достоинство для жителей городов, где дороги часто посыпают агрессивными реагентами.

Недостатки подошвы из ТЭП

Если сравнивать плюсы и минусы термопластичной подошвы из каучука, негативных свойств в разы меньше. Основным его недостатком является низкая термостойкость. Материал переносит жару и морозы, но при экстремально низких или высоких температурах он теряет свои характеристики.

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

Подошвы из обуви на любой сезон

Подошва из термоэластопласта отлично подходит для межсезонья благодаря легкому весу и амортизационным свойствам. Используется также в летней и зимней обуви, но нужно учитывать ограничения. ТЭП не подходит для южных регионов с экстремально высокими температурами. В таких условиях протектор может потерять рисунок при контакте с разогретым асфальтом. В северных регионах с сильными морозами эластомер может треснуть при изгибе.

Подобрать подходящий материал поможет компания «Углич-Пласт». Мы являемся производителем и предлагаем широкую разновидность ТЭП для обуви на любой сезон.

Источник

Термоэластопласт (ТЭП) — материал, его свойства и применение

Термоэластопласт (ТЭП, англ. TPE) или термопластичный каучук — полимерная смесь или соединение, которое при температуре плавления проявляет термопластичный характер, который позволяет его формовать в готовое изделие и которое в пределах его расчетного температурного диапазона обладает характеристиками эластомеров без сшивания в процессе изготовления. Этот процесс является обратимым, и изделия из TPE можно перерабатывать и переделывать.

История термопластичных эластомеров/каучуков (TPR / TPE)

Первый термопластичный эластомер стал доступен в 1959 году, и с тех пор появилось множество новых вариантов таких материалов. Существует шесть основных групп TPE, которые доступны коммерчески: стирольные блок-сополимеры (TPE-S), полиолефиновые смеси (TPE-O), эластомерные сплавы, термопластичные полиуретаны (TPE-U), термопластичные сополиэфиры (TPE-E) и термопластичные полиамиды (TPE-A).

Cвойства ТЭП

Несмотря на то, что ТЭП является термопластичным, он обладает эластичностью, аналогичной эластичности сшитого каучука. Ключевым индикатором является их мягкость или твердость, измеренная по шкале дюрометра Шора. Подобно сшитому каучуку, ТЭП доступны в виде очень мягких гелевых материалов от 20 Shore OO до 90 Shore A, после чего они входят в шкалу Shore D и могут быть произведены с целью получения значения твердости до 85 Shore D, которая обозначает очень твердый материал.

Конструкторы все чаще используют ТЭП из-за значительной экономии затрат, потому что их можно обрабатывать на оборудовании для переработки пластмасс. Обычный каучук, как натуральный, так и синтетический, представляет собой термореактивный материал, который должен подвергаться химической реакции сшивания во время формования или экструзии, обычно называемой вулканизацией. Благодаря этому процессу ТЭП обычно не обрабатывается в стандартном оборудовании для термопластов. Время, необходимое для завершения реакции вулканизации, зависит от многих факторов, однако в основном, это где-то между 1 минутой и несколькими часами. С другой стороны, термопластичные формовочные и экструзионные процессы, используемые для ТЭП, избегают стадии поперечной сшивки и могут достигать очень быстрых циклов, которые могут составлять всего 20 секунд. Для защиты окружающей среды затраты на издержки требуют, чтобы все больше и больше материалов подлежало переработке. Отходы от обработки ТЭП, отбракованные детали или продукты конечного использования можно легко перерабатывать, тогда как большинство термореактивных эластомеров заканчивают свою жизнь на полигоне.

Дополнительные преимущества по сравнению с термореактивной резиной, обеспечиваемые ТЭП, включают отличную цветоустойчивость и меньшую плотность.

Вот почему ТЭП являются одними из самых быстрорастущих сегментов пластмасс:

Основные показатели

Виды ТЭП (TPE)

Существует шесть основных групп ТЭП (TPE), доступных в продаже, и они перечислены в приблизительно возрастающем ценовом порядке:

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

Из-за широкого спектра ТЭП и постоянно расширяющихся применений крайне важно, чтобы инженеры и конструкторы изделий, использующих ТЭП, оставались в курсе последних новшеств от поставщиков отрасли. Ниже приведен список показателей, которых можно достичь с помощью материалов TPE.

ФИЗИЧЕСКИЕ СВОЙСТВА

Прочность на растяжение 0,5 — 2,4 Н / мм²

Ударная вязкость с прорезом Без разрыва Кг/ м²

Тепловой коэффициент расширения 130 x 10-6

Макс. Температура использования до 140 C

Плотность 0,91 — 1,3 г / см3

Источник

Что такое TPV? (1451 просмотров)

Что такое TPE?

Термопластичный эластомер

ТЭПы не требуют вулканизации, как резины, и обладают такой же прочностью, как и вулканизированный каучук.

Применение ТЭПов обеспечивает низкие затраты на производство и высокую производительность.

Главные функциональные свойства Термоэластопластов:

ТЭПы обладают всеми этими характеристиками, что придает ему Уникальность!

Виды TPE?

По своей структуре, Tермоэластопласты делятся на основные виды:

Что такое TPV?

Термопластичный вулканизат

TPV более 30 лет активно заменяют термореактивные каучуки, резины. ТПВ, один из перспективных видов Термоэластопластов соединяет в себе уникальность функциональных свойств Термопласта и Эластомера. В большинстве случаев, Эластомером (мягкой фазой) выступает каучук EPDM, (жесткой фазой) Термопластом – Полипропилен (РР).

EPDM обеспечивает TPV эластичность, РР обеспечивает стойкость к высоким температурам, прочность и технологичность при переработке.

Термопластичные вулканизаты TPV (EPDM/PP) получают смешиванием Полипропилена (PP) и каучука (EPDM) до гомогенного состояния и сбалансированного распределения фаз, с последующей вулканизации путем смешивания химических компонентов.

ТПВ, среди других термоэластопластов, преобладают такие свойства и их комбинации, как:

Сферы применения TPV

Автопром:

Строительство:

эластичные детали сотовых телефонов, эластичные корпуса клавиатуры компьютеров. Шарики для мышки. Ролики для подачи бумаги в оргтехнике.

Бытовая техника, сантехника:

Игрушки, спорт:

Медицинские изделия:

Модификатор:

Ключевые характеристики и преимущества TPV Почему выбирают TPV?

TPV имеют широкий интервал требуемой твердости, от 35 Shore A до 70

Стойкость к УФ излучению

Обладает превосходной стойкостью к УФ и Озоновому воздействию.

применяются как, в холодных, так и в теплых регионах.

TPV могут быть окрашены в любые цвета. Легко окрашиваются

Суперконцетратами на основе РР.

TPV повторно перерабатывается до 100%, поэтому не наносит вред

окружающей среде и природе.

TPV имеет хорошие адгезионные свойства. Благодаря этому, TPV

применятся для Со-экструзии и Многокомпонентного литья, с разными

Термопластам. Дополнительно TPV хорошо сваривается различными

Материалы конкуренты TPV

Обладая комплексом уникальных свойств и их комбинацией, ТПВ заменяет такие материалы:

Сравнение свойств эластичных материалов

Адгезия с PA и ABS

Стойкость к моющим средствам

Сравнение свойств Термореактивных резин на основе EPDM и Термопластичными вулканизатами TPV

Как видно из таблицы физические и эксплуатационные свойства EPDM и TPV очень близки. Так в чем же разница?

Основное различие в способе производства и как следствие в соотношении цена/качество.

Преимущества производства изделий из TPV позволяет:

У специалистов, которые используют для своей продукции резиновые смеси, может возникнуть разница во мнениях.

Оба типа материалов, термопластичные эластомеры и термореактивные каучуки, представляют собой разнообразные классы полимерных материалов, обладающих широким спектром свойств. Сравнение показывает, что присущие им свойства зависят от различных структур, входящих в состав двух наборов материалов, а также рецептурных добавок.

Оптимальный материал для конкретного применения будет зависеть от многих параметров, в том числе от конструкции изделия и условий его эксплуатации. Конструкторы изделий и узлов должны быть хорошо знакомы, как кермопластичными эластомерами, так и с термореактивными резинами, чтобы выбрать наиболее подходящий материал, обеспечивающий наилучшие свойства конечному изделию.

Для создания требуемых свойств и их комбинаций в ТПВ, используется от 20 до 30 различных добавок и ингредиентов. В Термоэластопластах обычно используются такие добавки, как:

Секрет успеха применения TPV зависит, как от развития рынка производства и синтеза добавок, так и от знания рецептуростроения Термоэластопластов. Именно этим обусловлен ежегодный рост развития TPV в 2 раза, а в некоторых отраслях и в 4 раза. Например, в строительстве и автопроме.

Компания РУСПЛАСТ уделяет большое внимание Термоэластопластам и искренне верит в развитие TPV. Нами были разработаны новые марки MASFLEX TPV с различной твердостью от 50 до 85 по ШОР А. Компания РУСПЛАСТ ежегодно тратит на НИОКР по разработке ТЭПов более 20 млн. рублей.

В ближайшей перспективе будут выпущены марки MASFLEX TPV:

TPE против EPDM: сделайте правильный выбор

Вы сравниваете TPE и EPDM для вашего нового проекта? Специалисты РУСПЛАСТ могут помочь вам с выбором материала, в том числе какой вид ТЭПа использовать. Мы можем обеспечить вас образцами материала и изделий, удовлетворяющих Ваши требования. Вы полюбите наши TPE MASFLEX, изготовленные по Вашему заказу и надеемся оцените, наше обслуживание. Приходите к нам, чтобы узнать больше о преимуществах TPEs, таких как TPV.

Источник

Термоэластопласты (ТЭП, ТПЭ)

Термоэластопласты или термопластичные эластомеры (ТЭП, TPE-E, TPC-ET, ТПЭ, TPE, ТПВ, TPV, TPE-S, TPE-O, TPE-U, PEEL, TEEE, COPE, TPU, TPUR, TP Urethane, PEBA, TPE-A, TPAE, TPA, TPSiV, TPR, TPE-V) – это полиматериалы, предоставляющие на сегодняшний день очень быстро развивающийся сегмент промышленности.

Термоэластопласты представляют собой синтетические полимеры, обладающие при обычных температурах свойствами резины, а при повышенных – способны размягчаться подобно термопластичным полимерам. ТЭП перерабатывается в резиновые изделия, минуя стадию вулканизации.

В целом структура ТЭП очень сложная, поэтому представить ее одним изображением достаточно сложно. Следует отметить, что структура материала состоит из двух микроскопических фаз: одна – низкомодульная и легкодеформируемая, а другая – жесткая, выполняющая функции связи между упругоэластичными зонами. При нагревании термоэластопластов выше температуры плавления их жесткая фаза расплавляется и позволяет полимеру вытекать в перерабатывающее оборудование.

Свойства термоэластопластов

Широкое применение ТЭП обусловлено отличительными свойствами данного материала. К таким свойствам можно отнести:

мягкость и упругость;

высокую технологичность и допустимость вторичной переработки;

высокую эластичность при низких температурах;

диэлектрические характеристики, которые позволяют применять в производстве изоляционные материалы;

термо- и климатоустойчивость;

устойчивость к слабым кислотам, растворам щелочей, солей, спиртам, воде и атмосферным воздействиям;

достаточно длинный эксплуатационный период;

Следует отметить, что термоэластопласты относятся к полностью перерабатываемым материалам, которые также не содержат хлор и серу. Новопроизведенные ТЭП не содержат в себе свинцовых стабилизаторов и прочих тяжелых металлов. К положительным свойствам можно отнести пониженную миграцию пластификатора.

Свойства термопластичных эластомеров обеспечивают длительное функционирование изделий без снижения эксплуатационных характеристик в условиях постоянно сменяющихся воздействий окружающей среды и атмосферных факторов (холод, повышенные температуры, низкая влажность и т.д.).

И последнее, что отличает ТЭП от резины – способность со временем улучшать свои прочностные показатели.

Ниже приведена сравнительно-оценочная характеристика различных ТЕП-ов и других полимерных материалов.

Напряжение при изгибе

Литье под давлением

Классификация методов получения ТЭП

Термопластичные эластомеры получают различными методами, в зависимости от класса сополимеров и природы исходных мономеров в соответствии с приведенной ниже классификацией:

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

К классу блок-сополимеров относятся сополимеры с чередующими мягкими и жесткими сегментами. Такие блоки имеют различных химический состав и структуру расположения.

Свойства таких термоэластопластов зависят от длины и количества блоков, последовательности соединения, средней молекулярной массы, химического строения блоков и молекулярно-массового распределения.

Также выделяют и полимерные смеси (относятся ко второму классу). Они наиболее часто применяются в промышленности в последнее время.

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

Технология получения диенсодержащих термоэластопластов

Далее рассмотрим технологию получения диенсодержащих термоэластопластов. Данный процесс включает в себя следующие стадии:

подготовка мономеров и растворителя;

выделение полимера из раствора;

сушка, гранулирование, упаковка термоэластопласта.

Обратимся к первому этапу производства – подготовка мономеров и растворителя. Так, в зависимости от характера примесей мономер и растворитель подвергается тщательной очистке щелочью, промывке водой, азеотропной дистилляции, ректификации, осушке оксидом алюминия. Из-за достаточно высокой чувствительности реакции полимеризации даже к небольшим количествам кислорода все процессы подготовки мономеров и растворителя проводят в атмосфере азота, допустимое содержание кислорода в котором не превышает 0,001% мас.

Наиболее ответственная стадия процесса получения термоэластопластов – процесс полимеризации. Правильный выбор аппаратурного оформления является основным условием оптимального проведения процесса. Молекулярно-массовое распределение относится к одной из важнейших характеристик термоэластопластов. От нее зависят их свойства. Бутадиен-стирольный ТЭП с узким ММР бутадиенового и стирольного блоков имеет значительно лучшие физико-механические показатели, чем сополимер с широким ММР.

Если обрыв цепей не происходит при проведении процесса полимеризации по механизму «живых» цепей, то в реакторе периодического действия или в проточном реакторе идеального вытеснения получается полимер с более узким молекулярно-массовым распределением, чем в проточном РИС. Из-за этого термопластичные эластомеры часто получают в реакторах периодического действия.

Ниже приведена технологическая схема получения бутадиен-стирольных термоэластопластов типа полистирол-полибутадиен-полистирол периодическим методом.

Схема получения бутадиен-стирольных термоэластопластов

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

1-4, 6, 7 – осушители и адсорберы;

5 – колонна азеотропной осушки;

9, 12, 14 – полимеризаторы;

11, 13, 15 – интенсивные смесители.

Мономеры и растворитель перед процессом полимеризации подвергаются дополнительной очистке и осушке. Растворитель осушается в аппаратах 1 и 2, заполненным активированным оксидом алюминия или при помощи молекулярных сит. С целью удаления из стирола ингибитора и влаги его пропускают последовательно через аппараты 3 и 4, заполненные адсорбентом. После отмывки от ингибитора бутадиен поступает на азеотропную осушку, проводимую в колонне 5, и осушку в осушителях 6 и 7. С целью получения шихты стирол смешивают в заданном соотношении с растворителем и с целью снижения влияния различных микропримесей на процесс полимеризации титруют инициатором в аппарате 8, то есть добавляют к раствору ограниченно-минимальное количество заранее подкрашенного литийорганического соединения до появления устойчивого цвета окраски.

Первый полистирольный блок термоэластопласта получают в полимеризаторе 9, в который направляется стирольная шихта из титратора 8 и рассчитанное количество инициатора. С целью поддержания необходимой температуры в рубашку полимеризатора подается теплоноситель. Полимеризацию в полимеризаторе 9 проводят до полной конверсии стирола. Далее «живой» полистирольный блок поступает на смешение с бутадиеновой шихтой. Эта бутадиеновая шихта получается при смешении рассчитанных количеств бутадиена и растворителя с дальнейшим титрованием инициатором в титраторе 10.

В последующем полистирольный блок смешивают с бутадиеновой шихтой в интенсивном смесителе 11 и отправляют на второй полимеризатор 12. Образование двухблочного сополимера осуществляется полимеризацией бутадиена до полной конверсии.

Далее «живой» двухблочный сополимер смешивают со стерильной шихтой в интенсивном смесителе 13 и направляют в полимеризатор 14 с целью получения трехблочного сополимера. После достижения полной конверсии стирола трехблочный сополимер подают на дезактивацию катализатора и стабилизацию полимера в интенсивный смеситель 15 и далее на выделение полимера из раствора. При получении трехблочного сополимера методом сочетания «живой» двухблочный сополимер смешивают со сшивающим агентом в интенсивном смесителе и всю реакционную массу подают в полимеризатор с целью завершения реакции сочетания. После чего полимер стабилизируют и выделяют из раствора.

Как правило, в крупных химических производствах используют непрерывные процессы, которые позволяют снизить эксплуатационные расходы вследствие устранения периодической загрузки исходных веществ и выгрузки продукта реакции, улучшить условия для возможности автоматизации процесса и обеспечить устойчивость технологического режима.

Для выделения полимера из раствора применяют всевозможные варианты водной и безводной дегазации. Данный процесс и его аппаратурное оформление аналогичны процессу выделения стереорегулярных каучуков из растворов. Для предотвращения слипания полимерной крошки в дегазаторах необходимо использовать антиагломераторы. При выделении полимера с большой характеристической вязкостью получается неслипающаяся крошка даже без применения антиагломератора.

Ниже приведена технологическая схема выделения ТЭП из раствора методом видной дегазации:

Схема выделения ТЭП из раствора методом видной дегазации

Термопластичный каучук что это. Термопластичный каучук что это фото. картинка Термопластичный каучук что это. смотреть фото Термопластичный каучук что это. смотреть картинку Термопластичный каучук что это.

1 – интенсивный смеситель;

3 – дегазатор первой ступени;

7 – колонна азеотропной осушки;

8, 11 – конденсаторы;

10 – ректификационная колонна;

12, 13 – кипятильники.

Полимеризат объединяют с циркуляционной водой в интенсивном смесителе 1. Эмульсию полимеризата подают в инжектор-крошкообразователь 2, после чего в дегазатор первой ступени 3. Из сепарационной части дегазатора 3 отводятся пары углеводородов и воды на разделение и последующую очистку. Из нижней части дегазатора 3 отводится пульпа полимера, которая потом подается на окончательную дегазацию в дегазатор второй ступени 4. Туда же направляется острый водяной пар.

Пары углеводородов и воды из сепарационной части дегазатора 4 отводятся в дегазатор первой ступени, а пульпа из дегазатора второй ступени выводится на выделение и сушку. Отделение крошки полимера от воды происходит на вибросите 5.

Частично обезвоженная крошка с вибросита направляется на сушку, а вода стекает в сборник 6 и далее возвращается на смешение с полимеризатом. Пары из дегазатора первой ступени 3 поступают в конденсатор 8, затем в сборник 9, в котором происходит его расслаивание. Нижний водный слой возвращается в линию циркуляционной воды, а избыток сбрасывается в канализацию.

Верхний углеводородный слой вместе со свежим растворителем подается в колонну азеотропной осушки 7. Из куба колонны 7 растворитель с высококипящими примесями направляется в ректификационную колонну 10. Из верхней части колонны 10 растворитель направляется на полимеризацию, а из нижней части кубовые остатки выводятся на утилизацию.

Для выделения из раствора полимеров, получаемых анионной полимеризацией, испытывались методы безводной дегазации, применение которых особенно целесообразно для полимеров с очень низким остаточным содержанием катализатора, что позволяет исключить стадию его отмывки. Вследствие меньших расходов энергии безводная дегазация имеет технико-экономические преимущества перед водной. Однако из-за серьезных трудностей, связанных с изготовлением высокопроизводительного оборудования методы безводной дегазации пока не нашли широкого применения в промышленности.

И последняя стадия процесса – сушка, гранулирование и упаковка. Сушку проводят в конвейерных воздушных сушилках или шнековых машинах. Заранее проведенное обезвоживание позволяет значительно сократить время сушки (примерно в 3 – 4 раза). Также существует возможность совмещения проведения процесса сушки и гранулирования. После гранулирования полученный продукт отправляется на упаковку.

Виды термоэластопластов

Ниже рассмотрим виды термоэластопластов. Всего из них выделяют шесть основных групп. Далее эти группы приведены приблизительно в возрастающем ценовом порядке.

Как правило, они основаны на двухфазных блок-сополимерах с твердыми и мягкими сегментами. Обеспечение термопластичных свойств происходит за счет стирольных концов, а эластомерные свойства – за счет бутадиеновых средних блоков. Стирольные блок-сополимеры при гидрировании обращаются в стирол-этилен-стирольные каучуки, так как за счет устранения связей С = С в бутадиеновой составляющей приводит к получению промежуточного блока этилена и бутилена. Такие каучуки характеризуются улучшенной термостойкостью, механическими свойствами и химической устойчивостью. Такого рода блок-сополимеры помимо обувной промышленности используются в адгезивах, модификации битума, рукоятках.

Такие материалы состоят из смеси полипропилена и несшитого этилен-пропиленового каучука. Иногда допустимо присутствие поперечной сшивки с целью улучшения свойств сжатия и терморезистентности. Свойства таких полиолефинов ограничены верхним пределом шкалы твердости, обычно 80 Shore A, а также эластомерными свойствами. Как правило, термопластичные полиолефины могут быть компонентами автомобильных бамперов и приборных панелей.

Эти материалы являются следующим шагом по показателям от термопластичных полиолефинов. Они включают в себя также соединения из полипропилена и этилен-пропиленового каучука, но они динамически вулканизированы на стадии смешения. В настоящее время внедряется ряд новых TPE-V, называемых «Super TPVs», которые основаны на инженерных пластмассах, смешанных с высокоэффективными эластомерами, которые могут обеспечить значительно улучшенную тепловую и химическую стойкость.

Такого рода материалы основаны либо на полиэфирных либо на полиэфир-уретановых типах и применяются в случаях, когда изделие должно отличаться по прочности на разрыв, должно быть устойчиво к истиранию и износостойкости. Полиуретаны нередко включают в состав промышленных ремней, проволоки и кабелей.

Обычно термопластичные сополиэфиры используются там, где необходима химическая стойкость и устойчивость к температурам до 140 градусов Цельсия. Также они обладают достойной устойчивостью к усталости и прочности на разрыв.

Термопластические полиэфирные блок-амиды

Они обладают хорошей термостойкостью, химически устойчивы ко многим соединениям, а также допустимо их склеивание с полиамидными пластмассами. Применение термопластических полиэфирных блок-амидов допустимо в аэрокосмических компонентах и кабельных оболочках.

Достойные эксплуатационные характеристики обуславливают широкое применение рассматриваемого материала в промышленности и не только. Так, в строительной области термопластичный эластомер используется в качестве уплотнителя окон и дверей, гибкой кровли, является составляющим асфальта, применяется для производства арматуры для трубопроводов, рукояток, накладок и противоударных частей для инструментов.

Термоэластопласты широко применяются и в обувной промышленности в изготовлении подошвы. Благодаря ТЭП основание обуви наделяется такими свойствами как: устойчивость к ультрафиолету и озону, отсутствием продуваемости в узлах, стойкостью к воздействию химикатов и реагентов для посыпки дорог, возможностью окрашивания подошвы в любой цвет, устойчивостью к растяжениям, сохранение эластичности при пониженных температурах и высокой прочностью на разрыв.

Термопластичные эластомеры не обошли стороной и медицинскую сферу. Так, из них получают следующие медицинские изделия:

системы переливания и хранения крови;

элементы медицинских инструментов;

компоненты больничных коек;

груши для аппаратов искусственного дыхания

Помимо всего вышеперечисленного ТЭП используется в производстве всевозможных аксессуаров для автомобилей – бамперов, оконных и дверных уплотнителей, деталей для интерьера, ковриков и прочих изделий.

Рассматривая сферу товаров массового потребления, следует отметить, что термопластичные эластомеры используются для производства детских игрушек, сосок, зубных щеток, сидений для велосипедов, бритвенных станков, различных легкогнущихся компонентов для бытовой техники.

Также данный материал отличается от остальных полимеров легкостью и дешевизной переработки, возможностью в широком пределе изменять свои свойства при синтезе и допускает вариант вторичной переработки.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *