Тпи телевизора что это
Технические характеристики трансформаторов ТПИ, параметры и подключение
Трансформаторы, как например, ТПИ 4-3 с техническими характеристиками импульсного преобразователя часто используются в блоках питания электронно-вычислительных устройств, радиолокационных средствах, измерительной аппаратуры и бытового оборудования. Для изменения токовых импульсов применяют ферромагнитные сердечники.
Поскольку трансформаторы используют для высокоточного оборудования, поэтому к ним применяют жесткие требования: они не меняют форму импульса при преобразовании. Такое свойство достигается путем емкости между витками. Небольшие сердечники снижают индукционное рассеивание. Все это позволяет повысить КПД трансформатора без изменения габаритов объекта.
Особенности и конструкция импульсных трансформаторов питания
В качестве основного элемента современных средств электропитания выступают импульсные трансформаторы. Их подразделяют по области применения и конструктивным особенностям. В зависимости от исполнения, они делятся:
Для всех вышеперечисленных токовых преобразователей свойственно наличие контурного магнитопровода, выполненного из специальных марок стали. Исключение составляют тороидальные трансформаторы, чей сердечник изготовлен из феррита и выполнен в форме круга.
Пластины из электротехнической стали практически не содержат кремниевых добавок, поскольку он приводят к потере мощности за счет влияния вихревых потоков на контур стержневого магнитопровода. Тороидальные модели производят из ферромагнитных или рулонных марок стали.
Частота импульсов зависит от толщины пластин электромагнитного стержня. Чем они тоньше, тем выше частота на выходе. Представляют они собой единую конструкцию, склеенную эпоксидной смолой. Провода в катушку наматывают внутри или снаружи, зависит от целей применения.
Формула
Технические характеристики и намоточные данные трансформаторов ТПИ
ТПИ служат для передачи кратковременных импульсов с наименьшими искажениями и действуют в переходящих процессах. Они позволяют менять уровни и полярность импульсного тока и согласовывать напряжение сопротивления генераторов с потребителями нагрузки, разделить потенциалы приемо-передающих устройств, и принимать сигналы от источника на определенных нагрузках. Они служат основным конвертирующим компонентом в оборудовании.
Существует несколько видов обмоток для ТПИ:
Применение каждого типа зависит от условий эксплуатации и требований целевого оборудования.
Применяется в блоках питания для радиоэлектроники. Сердечник выполнен из феррита марки Ф-720. Имеет длину и высоту 42 миллиметра, и ширину 20 мм. На внешние источники его устанавливают в качестве импульсных преобразователей, конвертируя колебания энергии в частоты до нескольких килогерц. Катушка имеет спиральную рядовую обмотку, выполненную из медной проволоки толщиной несколько сотых долей миллиметра. Изоляция сделана из технической пленки, количество выводов 18.
Трансформатор высокочастотных импульсов на ферритовом сердечнике. Обмотка выполнена из медной проволоки сечением несколько сотых долей миллимеметров. Витки идут рядами по спирали. Рассчитаны на превышение номинальных напряжений на вторичных катушках до 20%, в том числе короткое замыкание. Класс изоляции Е и рассчитан на перегрев более 75 градусов.
Трансформатор на Ш-образном сердечнике из феррита предназначен для преобразования колебания напряжения в импульсы высокой частоты. Имеет одну основную и несколько дополнительных обмоток. При максимальном разгоне устройства, он может выдавать мощность 1000 Вт. Однако это потребует внести необходимые элементы в схему его установки.
Трансформатор для преобразования колебаний в импульсы высокой частоты. Выполнен на ферритовом сердечнике со стальной рамой.
Представляет собой малогабаритный трансформатор с внешней изоляцией из технической бумаги.
Импульсный преобразователь выполнен на Ш-образном ферритовом сердечнике с типоразмерами 12х20 с зазором 1,3 мм. Обмотка выполнена из медного провода толщиной 0,45 мм.
Высокочастотный преобразователь импульсов и выпрямитель напряжения. Выполнен на ферритовом сердечнике М3000НМС с магнитной проницаемостью 3000. Имеет типоразмеры 12х20х15 и зазор 1,3 мм. Распиновка выводов следующая:
Малогабаритный преобразователь импульсного тока с Ш-образным ферритовым сердечником М3000НМС. В его состав входит 8 катушек с трехрядным шагом намотки. Сопротивление каждой из них не превышает 0,2 Ом, кроме IV и IVа, которое составляет 1,2 и 0,9 Ом соответственно.
Ферритовый трансформатор с выпрямителем тока и генератором импульсов высокой частоты. Изготовлен на сердечнике Ш-формы. Имеет восемь обмоток из проволоки ПЭВТЛ-2 с сечение 0,45 мм. Сопротивление основной обмотки составляет 1,2 Ом, вторичной 0,9 Ом. Шаг намотки трехрядный спиральный.
Импульсный преобразователь токов с Ш-образным сердечником из феррита М3000НМС.
Применение в импульсных источниках питания
ТПИ широко применяют в импульсных источниках питания в промышленности для газовых лазеров, триодных генераторов, магнетроны и другого оборудования. В бытовой сфере они установлены на компьютерах и телевизорах. Кроме преобразования импульсов они необходимы для стабилизации входящих напряжений, в том числе для защиты от короткого замыкания, чрезмерного перегрева повышении нагрузки.
Варианты схематических решений
Для создания распиновки и контуров импульсного трансформатора применяют специальную методологию расчетов под конкретные условия работы. Определение эксплутационных характеристик является важным условием для изготовления ТПИ с нужными параметрами.
Учитывают входные характеристики, коэффициенты преобразования частот, материал сердечника, в том числе его площадь и сечение. Только затем переходят к вычислению количеству витков, необходимых для правильного преобразования импульсов. Аналогичным образом узнаю сечение провода для обмоток.
Так для напряжения 300 В с коэффициентом преобразования 12 кГц необходим стержень из феррита площадью 82,5 кв. мм, провод сечением 0,43 мм. При заданных параметрах обмотка имеет 181 виток.
Как ремонтировать ТПИ
В процессе работе от перепадов напряжения происходят пробои катушек трансформатора. Для того чтобы заменить вышедшую из строя деталь, необходимо ее найти. Делают это с помощью мультиметра, прозвания выводы. Предварительно снимают металлический корпус.
Затем удаляют внешнюю изоляцию. Разматывать катушку следует аккуратно, делая пометки о количестве витков, номере шага и направлении.
Сборка производится уже в обратном порядке с соблюдением параметром намотки, которые были отмечены для себя на бумаге.
Технические характеристики трансформаторов ТПИ, параметры и подключение
Трансформаторы, как например, ТПИ 4-3 с техническими характеристиками импульсного преобразователя часто используются в блоках питания электронно-вычислительных устройств, радиолокационных средствах, измерительной аппаратуры и бытового оборудования. Для изменения токовых импульсов применяют ферромагнитные сердечники.
Поскольку трансформаторы используют для высокоточного оборудования, поэтому к ним применяют жесткие требования: они не меняют форму импульса при преобразовании. Такое свойство достигается путем емкости между витками. Небольшие сердечники снижают индукционное рассеивание. Все это позволяет повысить КПД трансформатора без изменения габаритов объекта.
Особенности и конструкция импульсных трансформаторов питания
В качестве основного элемента современных средств электропитания выступают импульсные трансформаторы. Их подразделяют по области применения и конструктивным особенностям. В зависимости от исполнения, они делятся:
Для всех вышеперечисленных токовых преобразователей свойственно наличие контурного магнитопровода, выполненного из специальных марок стали. Исключение составляют тороидальные трансформаторы, чей сердечник изготовлен из феррита и выполнен в форме круга.
Пластины из электротехнической стали практически не содержат кремниевых добавок, поскольку он приводят к потере мощности за счет влияния вихревых потоков на контур стержневого магнитопровода. Тороидальные модели производят из ферромагнитных или рулонных марок стали.
Частота импульсов зависит от толщины пластин электромагнитного стержня. Чем они тоньше, тем выше частота на выходе. Представляют они собой единую конструкцию, склеенную эпоксидной смолой. Провода в катушку наматывают внутри или снаружи, зависит от целей применения.
Принцип работы
Основная особенность трансформаторов импульсного типа (далее ИТ) заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.
Схема: подключение импульсного трансформатора
Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.
Временная диаграмма иллюстрирующая работу импульсного трансформатора
На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).
Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн
Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax — Вr
Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.
График смещения
Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).
Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.
Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:
Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:
Технические характеристики и намоточные данные трансформаторов ТПИ
ТПИ служат для передачи кратковременных импульсов с наименьшими искажениями и действуют в переходящих процессах. Они позволяют менять уровни и полярность импульсного тока и согласовывать напряжение сопротивления генераторов с потребителями нагрузки, разделить потенциалы приемо-передающих устройств, и принимать сигналы от источника на определенных нагрузках. Они служат основным конвертирующим компонентом в оборудовании.
Существует несколько видов обмоток для ТПИ:
Применение каждого типа зависит от условий эксплуатации и требований целевого оборудования.
Применяется в блоках питания для радиоэлектроники. Сердечник выполнен из феррита марки Ф-720. Имеет длину и высоту 42 миллиметра, и ширину 20 мм. На внешние источники его устанавливают в качестве импульсных преобразователей, конвертируя колебания энергии в частоты до нескольких килогерц. Катушка имеет спиральную рядовую обмотку, выполненную из медной проволоки толщиной несколько сотых долей миллиметра. Изоляция сделана из технической пленки, количество выводов 18.
Трансформатор высокочастотных импульсов на ферритовом сердечнике. Обмотка выполнена из медной проволоки сечением несколько сотых долей миллимеметров. Витки идут рядами по спирали. Рассчитаны на превышение номинальных напряжений на вторичных катушках до 20%, в том числе короткое замыкание. Класс изоляции Е и рассчитан на перегрев более 75 градусов.
Трансформатор на Ш-образном сердечнике из феррита предназначен для преобразования колебания напряжения в импульсы высокой частоты. Имеет одну основную и несколько дополнительных обмоток. При максимальном разгоне устройства, он может выдавать мощность 1000 Вт. Однако это потребует внести необходимые элементы в схему его установки.
Трансформатор для преобразования колебаний в импульсы высокой частоты. Выполнен на ферритовом сердечнике со стальной рамой.
Представляет собой малогабаритный трансформатор с внешней изоляцией из технической бумаги.
Импульсный преобразователь выполнен на Ш-образном ферритовом сердечнике с типоразмерами 12х20 с зазором 1,3 мм. Обмотка выполнена из медного провода толщиной 0,45 мм.
Высокочастотный преобразователь импульсов и выпрямитель напряжения. Выполнен на ферритовом сердечнике М3000НМС с магнитной проницаемостью 3000. Имеет типоразмеры 12х20х15 и зазор 1,3 мм. Распиновка выводов следующая:
Малогабаритный преобразователь импульсного тока с Ш-образным ферритовым сердечником М3000НМС. В его состав входит 8 катушек с трехрядным шагом намотки. Сопротивление каждой из них не превышает 0,2 Ом, кроме IV и IVа, которое составляет 1,2 и 0,9 Ом соответственно.
Ферритовый трансформатор с выпрямителем тока и генератором импульсов высокой частоты. Изготовлен на сердечнике Ш-формы. Имеет восемь обмоток из проволоки ПЭВТЛ-2 с сечение 0,45 мм. Сопротивление основной обмотки составляет 1,2 Ом, вторичной 0,9 Ом. Шаг намотки трехрядный спиральный.
Импульсный преобразователь токов с Ш-образным сердечником из феррита М3000НМС.
Принцип работы
Основная особенность трансформаторов импульсного типа (далее ИТ) заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.
Схема: подключение импульсного трансформатора
Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.
Временная диаграмма иллюстрирующая работу импульсного трансформатора
На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).
Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн
Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax — Вr
Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.
Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).
Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.
Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:
Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:
Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке ИТ, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:
Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.
Вторая по значимости величина, характеризующая работу ИТ, — перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:
Здесь:
Учитывая, что параметр индуктивности ИТ полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.
Видео: подробное описание принципа работы импульсного трансформатора
Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.
Применение в импульсных источниках питания
ТПИ широко применяют в импульсных источниках питания в промышленности для газовых лазеров, триодных генераторов, магнетроны и другого оборудования. В бытовой сфере они установлены на компьютерах и телевизорах. Кроме преобразования импульсов они необходимы для стабилизации входящих напряжений, в том числе для защиты от короткого замыкания, чрезмерного перегрева повышении нагрузки.
Варианты схематических решений
Для создания распиновки и контуров импульсного трансформатора применяют специальную методологию расчетов под конкретные условия работы. Определение эксплутационных характеристик является важным условием для изготовления ТПИ с нужными параметрами.
Учитывают входные характеристики, коэффициенты преобразования частот, материал сердечника, в том числе его площадь и сечение. Только затем переходят к вычислению количеству витков, необходимых для правильного преобразования импульсов. Аналогичным образом узнаю сечение провода для обмоток.
Так для напряжения 300 В с коэффициентом преобразования 12 кГц необходим стержень из феррита площадью 82,5 кв. мм, провод сечением 0,43 мм. При заданных параметрах обмотка имеет 181 виток.
Расчет импульсного трансформатора
Схема преобразователя
В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой: Р=1,3 х Рн.
Значение Рн отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Ргб), она должна быть не меньше мощности нагрузки:
Необходимые для вычисления параметры:
(полученный результат округляется в большую сторону)
Величина UI определяется выражением:
UI=U/2-Uэ ( U – питающее преобразователь напряжение; Uэ— уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).
Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:
Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.
Диаметр используемого в обмотке провода вычисляется по формуле:
Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:
Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.
Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) — важный элемент, устанавливаемый практически во всех современных блоках питания.
Различные модели импульсных трансформаторов
Как ремонтировать ТПИ
В процессе работе от перепадов напряжения происходят пробои катушек трансформатора. Для того чтобы заменить вышедшую из строя деталь, необходимо ее найти. Делают это с помощью мультиметра, прозвания выводы. Предварительно снимают металлический корпус.
Затем удаляют внешнюю изоляцию. Разматывать катушку следует аккуратно, делая пометки о количестве витков, номере шага и направлении.
Сборка производится уже в обратном порядке с соблюдением параметром намотки, которые были отмечены для себя на бумаге.
Расчет импульсного трансформатора
В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой: Р=1,3 х Рн.
Значение Рн отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Ргб), она должна быть не меньше мощности нагрузки:
Необходимые для вычисления параметры:
(полученный результат округляется в большую сторону)
Величина UI определяется выражением:
UI=U/2-Uэ ( U – питающее преобразователь напряжение; Uэ— уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).
Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:
Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.
Диаметр используемого в обмотке провода вычисляется по формуле:
Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:
Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.
Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.
Технические характеристики трансформаторов ТПИ, параметры и подключение
Трансформаторы, как например, ТПИ 4-3 с техническими характеристиками импульсного преобразователя часто используются в блоках питания электронно-вычислительных устройств, радиолокационных средствах, измерительной аппаратуры и бытового оборудования. Для изменения токовых импульсов применяют ферромагнитные сердечники.
Поскольку трансформаторы используют для высокоточного оборудования, поэтому к ним применяют жесткие требования: они не меняют форму импульса при преобразовании. Такое свойство достигается путем емкости между витками. Небольшие сердечники снижают индукционное рассеивание. Все это позволяет повысить КПД трансформатора без изменения габаритов объекта.
Особенности и конструкция импульсных трансформаторов питания
В качестве основного элемента современных средств электропитания выступают импульсные трансформаторы. Их подразделяют по области применения и конструктивным особенностям. В зависимости от исполнения, они делятся:
Для всех вышеперечисленных токовых преобразователей свойственно наличие контурного магнитопровода, выполненного из специальных марок стали. Исключение составляют тороидальные трансформаторы, чей сердечник изготовлен из феррита и выполнен в форме круга.
Пластины из электротехнической стали практически не содержат кремниевых добавок, поскольку он приводят к потере мощности за счет влияния вихревых потоков на контур стержневого магнитопровода. Тороидальные модели производят из ферромагнитных или рулонных марок стали.
Частота импульсов зависит от толщины пластин электромагнитного стержня. Чем они тоньше, тем выше частота на выходе. Представляют они собой единую конструкцию, склеенную эпоксидной смолой. Провода в катушку наматывают внутри или снаружи, зависит от целей применения.
Общие конструктивные схемы и типы импульсных трансформаторов
Различие конструктивных форм продиктовано широким диапазоном использования, зависит от мощности, напряжения и вида форм протяженности импульса, предназначения и эксплуатационных требований.
Основные типы обмоток и импульсных трансформаторов – это:
Основной тип форм поперечного сечения – круговая или прямоугольная, аналогичная силовым трансформаторам.
Обозначения в схемах:
l – длина магнитной линии средней величины;
l1, l2– внутренняя и наружная протяженность (длина) короткой и длинной линии;
h– длины обмоток, цифровой индекс обозначает катушку,
h0 – ширина окна для стержневых и броневых схем и длина ярма для тороидальных МС.
Δ – толщина катушки, с цифровым индексом – толщина изоляционного материала между двумя обмотками.
А1, А2 толщина обмоток;
a, b, c – стороны сечения прямоугольного МС и диаметр круглого МС;
S и S1–геометрическая и рабочая площадь сечений МС;
ka – коэффициент наполнения сечения электротехнической листовой или ленточной сталью;
λ – коэффициент использования протяженности МС.
Рис. №1. Конструктивная схема стержневого импульсного трансформатора.
Главная особенность импульсного трансформатора– небольшое количество витков в обмотках. Самыми экономичными считаются тороидальные ИТ, а менее всего – бронестержневые ИТ
Рис. №2. Схема обмотки броневого ИТ.
Рис. №3. Схема обмотки бронестержневого ИТ.
Рис. №4. Конструктивная схема ИТв виде торроида.
Рис. №5. Прямоугольное сечение ИТ поперечного плана.
Рис. №6. Поперечное сечение ИТ кругового типа.
Технические характеристики и намоточные данные трансформаторов ТПИ
ТПИ служат для передачи кратковременных импульсов с наименьшими искажениями и действуют в переходящих процессах. Они позволяют менять уровни и полярность импульсного тока и согласовывать напряжение сопротивления генераторов с потребителями нагрузки, разделить потенциалы приемо-передающих устройств, и принимать сигналы от источника на определенных нагрузках. Они служат основным конвертирующим компонентом в оборудовании.
Существует несколько видов обмоток для ТПИ:
Применение каждого типа зависит от условий эксплуатации и требований целевого оборудования.
Применяется в блоках питания для радиоэлектроники. Сердечник выполнен из феррита марки Ф-720. Имеет длину и высоту 42 миллиметра, и ширину 20 мм. На внешние источники его устанавливают в качестве импульсных преобразователей, конвертируя колебания энергии в частоты до нескольких килогерц. Катушка имеет спиральную рядовую обмотку, выполненную из медной проволоки толщиной несколько сотых долей миллиметра. Изоляция сделана из технической пленки, количество выводов 18.
Трансформатор высокочастотных импульсов на ферритовом сердечнике. Обмотка выполнена из медной проволоки сечением несколько сотых долей миллимеметров. Витки идут рядами по спирали. Рассчитаны на превышение номинальных напряжений на вторичных катушках до 20%, в том числе короткое замыкание. Класс изоляции Е и рассчитан на перегрев более 75 градусов.
Трансформатор на Ш-образном сердечнике из феррита предназначен для преобразования колебания напряжения в импульсы высокой частоты. Имеет одну основную и несколько дополнительных обмоток. При максимальном разгоне устройства, он может выдавать мощность 1000 Вт. Однако это потребует внести необходимые элементы в схему его установки.
Трансформатор для преобразования колебаний в импульсы высокой частоты. Выполнен на ферритовом сердечнике со стальной рамой.
Представляет собой малогабаритный трансформатор с внешней изоляцией из технической бумаги.
Импульсный преобразователь выполнен на Ш-образном ферритовом сердечнике с типоразмерами 12х20 с зазором 1,3 мм. Обмотка выполнена из медного провода толщиной 0,45 мм.
Высокочастотный преобразователь импульсов и выпрямитель напряжения. Выполнен на ферритовом сердечнике М3000НМС с магнитной проницаемостью 3000. Имеет типоразмеры 12х20х15 и зазор 1,3 мм. Распиновка выводов следующая:
Малогабаритный преобразователь импульсного тока с Ш-образным ферритовым сердечником М3000НМС. В его состав входит 8 катушек с трехрядным шагом намотки. Сопротивление каждой из них не превышает 0,2 Ом, кроме IV и IVа, которое составляет 1,2 и 0,9 Ом соответственно.
Ферритовый трансформатор с выпрямителем тока и генератором импульсов высокой частоты. Изготовлен на сердечнике Ш-формы. Имеет восемь обмоток из проволоки ПЭВТЛ-2 с сечение 0,45 мм. Сопротивление основной обмотки составляет 1,2 Ом, вторичной 0,9 Ом. Шаг намотки трехрядный спиральный.
Импульсный преобразователь токов с Ш-образным сердечником из феррита М3000НМС.
Данный блок питания был собран для зарядки LI-POL аккумуляторов. За основы была взята схема зарядки мобильного телефона на одном транзисторе, с некоторыми заменами. Схема из себя представляет простой блокинг-генератор на одном транзисторе.
В качестве транзистора можно изпользовать то, что чаще всего встречается в компьютерном бп — MJE13007, но по сути, можно любые транзисторы из этой линейки — MJE13001….13009. За основу взял уже готовый трансформатор от дежурки 5 вольт компьютерного блока питания. На входе сетевого питания стоит полноценный диодный мост из маломощных выпрямителей 1N4007 (1000Вольт 1 Ампер), также и небольшой резистор 1Ом 0,5 ватт — в качестве предохранителя, а также для снижения пусковых токов. После моста задействовал конденсатор 400В 2,2 (2,2-6,8мкФ) в качеств фильтра. Дальше питание поступает на схему генератора. Транзистор может чуток нагреваться при больших нагрузках, поэтому небольшая алюминиевая пластинка в роли теплоотвода не помешала бы. Выходное напряжение в большей степени зависит от задействованного стабилитрона в первичной цепи ( в моем случае 13Вольт) выходное напряжение получается е районе 14-15 Вольт, холостое, без нагрузки — до 21 Вольт.
На выходе задействовал стабилизатор тока, затем стабилизатор напряжения, очень советую стабилизатор тока построить на LM317, с моей схемой есть довольно сильный нагрев резисторов, и выходной ток зависит от напряжения блока питания.
Дальше уже стандартный стабилизатор напряжения на одном транзисторе. Величина выходного напряжения задается номиналом задействованного стабилитрона, а транзистор в роли усилителя тока стабилитрона.
Схема получилась довольно компактной, без проблем можно поместить в коробок от спичек. При холостом ходу никакого перегрева не наблюдал, все компоненты холодные. Работает все это дело бесшумно и очень стабильно.
Выходной ток схемы доходит до 600мА, поэтому для «чувствительных» аккумуляторов ток желательно стабилизировать, для сухих свинцовых аккумуляторов ( к примеру аккум от бесперебойника) стабилизировать ток не нужно.
Схему можно задействовать в качеств блока питания с любым нужным выходным напряжением, просто заменяя стабилитрон на базе транзистора генератора на любой нужный, с учетом того, что выходное напряжение блока в целом будет чуть выше (20-30%), чем номинал стабилитрона.
С уважением — АКА КАСЬЯН
Применение в импульсных источниках питания
ТПИ широко применяют в импульсных источниках питания в промышленности для газовых лазеров, триодных генераторов, магнетроны и другого оборудования. В бытовой сфере они установлены на компьютерах и телевизорах. Кроме преобразования импульсов они необходимы для стабилизации входящих напряжений, в том числе для защиты от короткого замыкания, чрезмерного перегрева повышении нагрузки.
Как перемотать трансформатор из блока питания ПК
Перед тем как начать перемотку трансформатора, его нужно разобрать. О простом методе разборки импульсного трансформатора из блока питания ПК можно прочитать тут.
Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.
Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый. В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части. То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.
Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.
Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT. При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.
Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.
Скачиваем и запускаем программу Lite-CalcIT. Вбиваем нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления. Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.
Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки. Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.
Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.
Ничего в расчете сложного нет. В ходе него я получил следующие параметры:
— Число витков первичной обмотки 38;
-Число витков вторичной обмотки 10+10 двумя жилами указанного провода.
Начинаем мотать транс.
38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.
Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.
Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.
После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому. Припаиваем контакт.
Кладем изоляцию. Все, первичка готова.
Пример намотки первичной обмотки на частоту 30 кГц.
По расчетам я получил количество витков первичной обмотки, равное 48. В первый слой я положил 35 витков.
Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.
Изолируем первичную обмотку от вторичной.
P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.
Мотаем вторичную обмотку импульсного трансформатора.
Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.
Оставляем хвост и изолируем.
Далее подпаиваем еще два провода к другим контактам.
Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.
Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.
В принципе можно и с отводом от середины так мотать, кому как удобней короче.
P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.
Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.
Косу, которая получилась, перед скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.
Варианты схематических решений
Для создания распиновки и контуров импульсного трансформатора применяют специальную методологию расчетов под конкретные условия работы. Определение эксплутационных характеристик является важным условием для изготовления ТПИ с нужными параметрами.
Учитывают входные характеристики, коэффициенты преобразования частот, материал сердечника, в том числе его площадь и сечение. Только затем переходят к вычислению количеству витков, необходимых для правильного преобразования импульсов. Аналогичным образом узнаю сечение провода для обмоток.
Так для напряжения 300 В с коэффициентом преобразования 12 кГц необходим стержень из феррита площадью 82,5 кв. мм, провод сечением 0,43 мм. При заданных параметрах обмотка имеет 181 виток.
Как ремонтировать ТПИ
В процессе работе от перепадов напряжения происходят пробои катушек трансформатора. Для того чтобы заменить вышедшую из строя деталь, необходимо ее найти. Делают это с помощью мультиметра, прозвания выводы. Предварительно снимают металлический корпус.
Затем удаляют внешнюю изоляцию. Разматывать катушку следует аккуратно, делая пометки о количестве витков, номере шага и направлении.
Сборка производится уже в обратном порядке с соблюдением параметром намотки, которые были отмечены для себя на бумаге.