Треугольнике известно что найдите угол ответ дайте в градусах ответ
Треугольнике известно что найдите угол ответ дайте в градусах ответ
На окружности отмечены точки A и B так, что меньшая дуга AB равна 72°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 72°. Треугольник AOB — равнобедренный. Значит,
Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 54° = 36°.
Читатели, знакомые с теоремой «Угол между хордой и касательной равен половине дуги, стягиваемой хордой», могут решить эту задачу в одно действие: ∠ABC = 72° : 2 = 36°.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 56°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 56°. Треугольник AOB — равнобедренный. Значит,
Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 62° = 28°.
Читатель, знающий правило «Угол между хордой и касательной равен половине дуги, стягиваемой хордой», может решить эту задачу в одно действие:
Найдите угол ABC. Ответ дайте в градусах.
Впишем в окружность квадрат так, как показано на рисунке. Стороны квадрата отсекают на окружности равные дуги. Поэтому градусная мера дуги AC, на которую опирается угол ABC, составляет полного угла 360°, т. е. равна 270°. Угол ABC вписанный, поэтому он равен половине дуги, на которую опирается. Следовательно, угол ABC равен 135°.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 92°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 92°. Треугольник AOB — равнобедренный. Значит,
Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 44° = 46°.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 152°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Пусть точка O — центр окружности. Угол AOB — центральный и равен дуге, на которую опирается. Значит, угол AOB равен 152°. Треугольник AOB — равнобедренный. Значит,
Таким образом, поскольку угол OBC прямой, угол ABC равен 90° − 14° = 76°.
Найдите угол . Ответ дайте в градусах.
Угол опирается на дугу, градусная мера которой составляет
всей окружности, т.е.
градусов. Вписанный угол равен половине дуги, на которую он опирается, т.е.
Найдите угол . Ответ дайте в градусах.
Угол опирается на дугу, которая составляет четверть окружности, т.е. 90°. Так как угол
— вписанный, то он равен половине дуги, т.е. 45°
Найдите угол . Ответ дайте в градусах.
Проведем дополнительные построения. Угол — центральный и равен 135°. Угол
опирается на ту же дугу, что и угол
, но является вписанным, поэтому равен половине угла
т.е. 67,5°.
Найдите угол . Ответ дайте в градусах.
Центральный угол равен 135°. Большая дуга
равна 360°-135°=225°. Угол
опирается на эту дугу, но является вписанным и равен половине этой дуги, т.е. 112,5°.
Найдите угол . Ответ дайте в градусах.
Проведём дополнительное построение, как показано на рисунке. Заметим, что тангенс угла равен единице, следовательно, центральный угол
равен 45°. Угол
опирается на ту же дугу, что и
, но является вписанным и равен половине угла
, т. е. 22,5°.
Треугольнике известно что найдите угол ответ дайте в градусах ответ
Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен 30°.
Площадь треугольника равна половине произведения его сторон на синус угла между ними. Поэтому
Площадь треугольника ABC равна 4, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.
Средняя линия отсекает от треугольника подобный ему с коэффициентом подобия Площади подобных фигур относятся как квадрат коэффициента подобия. Тогда
У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне?
Выразим площадь двумя способами:
Тогда,
В треугольнике угол
равен
внешний угол при вершине
равен
Найдите угол
Ответ дайте в градусах.
Внешний угол треугольника равен сумме несмежных с ним углов этого треугольника. Поэтому