Турбо кей что это
990x.top
Простой компьютерный блог для души)
Turbo Key на материнской плате — что такое?
Turbo Key на материнской плате — это кнопка, позволяющая мгновенно увеличить производительность процессора путем безопасного разгона.
Существует приложение Asus Turbo Key, которое позволяет быстро увеличить мощность процессора (CPU) без изменения параметров биоса. Программа работает в нескольких режимах. Выбранный режим можно например активировать кнопкой включения компьютера — это настраивается в самом приложении. Кнопка Turbo Key на материнке — предположительно также позволяет задействовать выбранный режим программой.
Может быть в виде переключателя. Нажатие повышает тактовую частоту процессора увеличивая частоту HTT (зависит от выбранного варианта производительности в программе).
Приложение Turbo Key позволяет назначить активацию выбранного режима на кнопку Power Button Action (как понимаю это кнопка включения компьютера):
Информация о режимах утилиты на примере материнской платы ASUS M4N68T V2 с процессором Athlon II X2 250 (2 ядра/потока):
Конечно прирост мощности мизерный.
Данный вид разгона — безопасный и не нарушает гарантийные условия.
Надеюсь данный материал оказался полезным. Успехов.
Asus turbo key как пользоваться
В этой статье мы поговорим о технологиях Core Unlocker и Turbo Core, о дате анонса и выпуска этих технологий, также, как они работают, для чего они служат и чем они полезны. и так начнем.
Core Unlocker — это технология, разработанная всеми нами известной компании ASUS, которая была официально анонсирована на выставке Computex 2010 в конце марта этого года.
Целью эксклюзивной технологии Core Unlocker является разблокировка спящих процессорных ядер.
Принцип её работы очень прост:
Функция Core Unlocker позволяет мгновенно увеличить скорость процессора с помощью переключателя. В результате происходит разблокировка неактивных процессорных ядер (если таковые имеются в вашем процессоре). Turbo Key II позволит автоматически разогнать систему. Утилита GPU Boost позволяет разогнать интегрированное графическое ядро.
Закончился мой рассказ про Core Unlocker, я рассказал вам об этой технологии, добавлю ещё, что технология очень интересная, то, что нам казалось в прошлом невозможно(возможно только под ACC), компания ASUS воплотила в реальность! правда эта реальность только под сокет AM3 и AM2+.
Turbo Core чем-то похожа на Core Unlocker, только Turbo Core наобарот активные ядра разгоняет а бездействующие ядра находятся энергосберегающем состоянии.
Технология Turbo Core позволяет управлять процессорными ядрами в ситуации, отключив некоторые ядра, которые могут увеличить частоту нагруженых ядер процессора AMD.
ASUS Turbo Core, работает только на процессорах с разблокированным множителем(тоетсть Black Edition).
Большее количество ядер при том же энергопотреблении, что и у Intel 980X, позволяет назвать AMD Phenom II X6 отличным дешевым решением. Разница только в том, что процессоры AMD до сих пор 45нм. Кроме того, заявленное AMD энергопотребление ещё только предстоит подтвердить тестированиями. AMD в настоящее время утверждает, что все процессоры Phenom II X6 будут работать с TDP 95Вт или 125Вт, то есть теоретически можно купить Phenom II X6, который будет функционировать(технологиями о которых мы говорим) при томже энергопотреблении, что и Phenom II X4 965(а как мы знаем он мало кушает).
Технология Turbo Core позволяет ускорять однопоточные и малопоточные приложения, в то время как Turbo Unlocker влияет на производительность многопоточных
приложений.
В Phenom II X6 во время работы приложений задействованы не все ядра. Но что же с остальными ядрами? Они просто отдыхают, именно для этого компания ASUS разработала эксклюзивную технологию AMD Turbo Core
Что она делает? Она блокирует бездействующие ядра и вместо них прибавляет к рабочему 1 дополнительную частоту 500Ghz, к 4 ядрам прибавляется 400Ghz, а если работают все 6 ядер 200Ghz, тем самым, обеспечивая комфорт во время работы приложений.
Turbo Core действует, когда некоторые ядра ничего не делают. Когда они в безделье, частота этих ядер снижается до 800МГц, напряжение всего чипа увеличивается, а частота остальных работающих ядер повышается 500МГц это хорошая разгонная чистота. В любой другой ситуации процессор работает на обычной частоте.
Процессор обрабатывает весь мониторинг и управляет частотами и напряжением самостоятельно. Переход в режим Turbo Core, по-видимому, происходит достаточно быстро, чтобы не возникало проблем с потоками данных от Windows, движущихся от ядра к ядру. Режим Turbo Core включается с помощью детерминированной системы, основанной на текущих нагрузках и режиме работы (не температуре).
В режиме Turbo активна функция Cool’n’Quiet. На самом деле происходит следующее: когда CnQ видит, что частоты нескольких ядер должны быть снижены, то он также может увеличить частоты остальных ядер.
Это не столь отличное решение, как Intel Turbo. Бездействующие ядра на самом деле не отключаются, а просто падает наприжение и чистота ядра и они на время становятся слабыми. Однако если это работает действительно без каких-либо недостатков (например, активные ядра разгоняются, когда вы на самом деле нуждаетесь в них), то это безусловно лучше, чем отсутствие чего-либо подобного в современных Phenom II.
Еще я хочу поднять эту тему и написать ее потому-что то, что мультиядерность (вы можете не знать что это такое, но я потом объясню) связана с темой про технологии и ядра, и эта тема сейчас актуальна.
С каждым годом выходят все новейшие многоядерные процессоры, вы думаете это очень хорошо, вы ошибаетесь. Ядра делаются для выполнений компьютерных приложений, с каждым новым годом выходят все новые игры и программы и для них требуется все больше ядер. Это может не радовать, так как у каждого ядра своя технология и в будущем может не влезть в один процессор сразу 50 ядер (ну влезут, но их зделают по другой технологии они будут очень маленькими и от них не будет толку), но нашли выход «мультиядерность», для чего она служит? Зачем она? Объясняю, ученые смогли нарастить виртуальные процессорные ядра, они как бы создали их виртуально.
«Но почему данный вопрос приобрел актуальность?». Дело в том, что производители процессоров для настольных компьютеров не видят путей заметного увеличения производительности одноядерных процессоров. Дальнейшее повышение частоты становится все менее эффективным и все более проблематичным с технологической точки зрения, о чем наглядно свидетельствует отказ компании Intel от нового поколения высокочастотных процессоров с архитектурой NetBurst, не говоря уже о серьезной задержке с ростом частот процессоров Prescott. У AMD бог знает сколько времени частота процессоров топчется в районе 2.6-3.2 ГГц, и совсем не факт, что применение нового 0.09-микронного техпроцесса позволит ее значительно увеличить. У Intel подобного при переходе на такой же техпроцесс не произошло. Зато, что совершенно точно, новый, более тонкий, техпроцесс позволит значительно увеличить количество транзисторов в кристалле, то есть «напихать» туда больше кеш-памяти, больше исполнительных модулей и всего остального. И в том числе – просто разместить на одном кристалле несколько процессорных ядер.
Но если бы было все так просто – поставил 10 процессоров по 3 ГГц и получил один в 30 ГГц. В отличие от наращивания частоты, которое пропорционально увеличивает производительность любого приложения (в данном случае допускается некоторое ограничение быстродействия, связанное с производительностью подсистемы памяти), для эффективного использования нескольких процессоров необходимо иметь несколько параллельно работающих программ – независимых или в рамках одного приложения.
Процессорные ядра можно сравнить с лошадьми – ведь если вы запряжете в телегу двойку вместо одной лошади, она ведь вдвое быстрее не поедет, зато можно вдвое увеличить груз. И, таким образом, увеличить вдвое эффективную скорость перевозки грузов.
Если вас так заинтирисовала тема про мультиядерность, вот смотрите что я нашел на одном из сайтов:
цитата:
Группа разработчиков из Техасского университета в г. Остин под руководством профессоров Стивена Кеклера (Stephen Keckler), Дуга Берджера (Doug Burger) и Кэтрин Маккинли (Kathryn McKinley) работали над созданием прототипа процессора под кодовым обозначением TRIPS на протяжении нескольких лет. Группе удалось разработать и создать и прототип процессора, и соответствующие программные коды.
TRIPS открывает новый класс архитектуры процессоров под названием EDGE (аббревиатура от Explicit Data Graph Execution). В отличие от нынешней архитектуры, где одновременно происходит обработка одной команды, EDGE может обрабатывать несколько больших блоков сразу и притом более эффективно.
В основе схемотехнической архитектуры процессора – многократное использование небольшого числа стандартных блоков, что упрощает проектирование самого процессора.
В существующих многоядерных процессорах каждое ядро неспособно работать быстрее других, и увеличение производительности в этом случае происходит главным образом за счет усилий разработчиков программного кода. EDGE, по мнению разработчиков, представляет собой реальную и весьма многообещающую альтернативу многоядерности.
Каждый TRIPS-процессор, в настоящий момент, реализованный в кремннии по 130-нм технологии (170 млн. транзисторов на процессор), содержит два ядра. Каждое из них может выполнять до 16 неупорядоченных (с целыми числами или с числами в представлении с плавающей запятой) операций за такт.
Ядро состоит из блоков пяти различных типов, соединенных в единую микроархитектуру. Каждое ядро может реконфигурироваться программным образом либо в однопотоковую, либо в четырехпотоковую конфигурацию – в последнем случае 4 потока могут обрабатываться одновременно. Архитектура TRIPS позволяет максимально полно обеспечить масштабируемость будущих процессоров, полагают разработчики.
Теперь я думаю понятно, почему я поднял эту тему и написал именно в этой статье.
Может где-то в будущем эта технология будет во всех продоваемых процессорах.
И не надо говорить что 100-х ядерные процессоры есть, есть НО, их делают на заказ и очень долго делают, их ставят в серверные компьютеры, они не продаются!
Я думаю, эта статья поможет поменять ваше отношение к компании AMD в лудьшую сторону, как и меня. так как кампанию AMD любят не все, но ASUS помогают привлечь толпу людей выпуская новы.
Ещё на многих форумах я заметил, что эти две технологии путают, а иногда даже сравнивают, «запомните», Core Unlocker — разблокировка, Turbo Core — блокировка, и сравнивать их ни в коем случае не надо! Каждому нравится своя технология.
Но все, равно не какие технологии, не заменят наш полноценный разгон! Они только помогут.
Ну, впринцепи, эти технологии подходят для начинающих Оверов… ну ASUS постарались)))
Материал написан для конкурса статей ASUS
Драйвера, утилиты и инструкции для материнских плат Asus
Поддерживаемые операционные системы: Windows XP, Vista, 7
Для начала загрузки данного файла, найдите под пунктом номер 1 ссылку СКАЧАТЬ и нажмите на неё.
Для поиска других драйверов, утилит или инструкций, выберите один из вариантов под пунктом номер 2, чтобы перейти на главную страницу поиска или в другой раздел сайта.
Автоматический разгон: сравнение четырёх технологий
Asus OC Tuner
Самая большая проблема с автоматическими режимами разгона заключается в том, что они не учитывают нормальную масштабируемость режимов работы процессора. Разные процессоры работают по-разному: один чип Core i5-2500K может быть без проблем разогнан до частоты 4,5 ГГц, тогда как у другого аналогичного устройства потолок может оказаться в 4,3 ГГц. В компании Asus занялись этой проблемой и их метод включает чередование тестов работы системы на стабильность и пошагового разгона, что позволяет более точно определить потенциал оборудования. Ну а лучшая часть технологии от Asus состоит в запуске одним нажатием.
Пользователь просто кликает на «ОК», после чего компьютер перезагружается, около минуты находится в состоянии «черного экрана», после чего выводит на монитор новый набор рабочих напряжений и тактовых частот.
Хотя настройщик ОС не принимает в расчёт потенциал памяти XMP, однако он действительно увеличивает множитель до настроек DDR3-1866. В комбинации с максимальным разгоном процессора до 103 МГц BCLK, фактическая скорость передачи данных увеличивается до параметров DDR3-1923.
Руководство по разгону и TurboV EVO
Мы использовали настройки разгона, описанные в нашей статье для того, чтобы разогнать процессор Intel Core i7-2600K до 4,73 ГГц при рабочем напряжении 1,35В. Фактически, нам понадобилось установить рабочее напряжение в 1,335 Вт, а также активировать режим «Extreme» при показателе множителя 47х и 100,5 МГц BCLK.
Лучшая в разгоне памяти плата от Asus также позволяет нам использовать профиль XMP-2200 в режиме DDR3-2145.
Для того, чтобы утилита TurboV EVO от Asus активировала изменения рабочего режима, требуется всего одна перезагрузка Windows.
И в CPU-Z, и в AsusProbe II в рабочем меню отображаются изменения в питании ядра процессора, однако в TurboV EVO они не отображаются. Возможно, так происходит потому, что мы установили в BIOS фиксированный режим. Мы считаем, что относительно большой разрыв в разгонном потенциале между программным обеспечением и прошивкой объясняется разницей в режиме работы «Load-Line Calibration» при автоматическим (firmware) и ручным (software) методами.
Gigabyte Smart QuickBoost
Многие пользователи бояться использовать BIOS для разгона из-за риска сбоев оборудования. В Gigabyte эту проблему решили кардинально, совсем не трогая BIOS при разгоне и используя для этих целей приложения для Windows.
Пусть вас не обманывает напряжение на скриншоте CPU-Z. Режим «TwinTurbo» устанавливает рабочее напряжение на 1,38 — 1,39В; для активации Smart QuickBoost необходима перезагрузка.
Частота 4,2 ГГц является только базовым значением при разгоне в режиме «TwinTurbo». Если речь идёт о четырёхъядерном процессоре, то частота работы при активных двух ядрах будет составлять 4,3 ГГц, а при выполнении однопоточных операций её значение повысится до 4,4 ГГц.
Обзор технологий Core Unlocker и Turbo Core на материнских платах ASUS.
В этой статье мы поговорим о технологиях Core Unlocker и Turbo Core, о дате анонса и выпуска этих технологий, также, как они работают, для чего они служат и чем они полезны. и так начнем.
В этой статье мы поговорим о технологиях Core Unlocker и Turbo Core, о дате анонса и выпуска этих технологий, также, как они работают, для чего они служат и чем они полезны. и так начнем.
Функция Core Unlocker позволяет мгновенно увеличить скорость процессора с помощью переключателя. В результате происходит разблокировка неактивных процессорных ядер (если таковые имеются в вашем процессоре). Turbo Key II позволит автоматически разогнать систему. Утилита GPU Boost позволяет разогнать интегрированное графическое ядро.
Закончился мой рассказ про Core Unlocker, я рассказал вам об этой технологии, добавлю ещё, что технология очень интересная, то, что нам казалось в прошлом невозможно(возможно только под ACC), компания ASUS воплотила в реальность! правда эта реальность только под сокет AM3 и AM2+.
Turbo Core чем-то похожа на Core Unlocker, только Turbo Core наобарот активные ядра разгоняет а бездействующие ядра находятся энергосберегающем состоянии.
Технология Turbo Core позволяет управлять процессорными ядрами в ситуации, отключив некоторые ядра, которые могут увеличить частоту нагруженых ядер процессора AMD.
ASUS Turbo Core, работает только на процессорах с разблокированным множителем(тоетсть Black Edition).
Большее количество ядер при том же энергопотреблении, что и у Intel 980X, позволяет назвать AMD Phenom II X6 отличным дешевым решением. Разница только в том, что процессоры AMD до сих пор 45нм. Кроме того, заявленное AMD энергопотребление ещё только предстоит подтвердить тестированиями. AMD в настоящее время утверждает, что все процессоры Phenom II X6 будут работать с TDP 95Вт или 125Вт, то есть теоретически можно купить Phenom II X6, который будет функционировать(технологиями о которых мы говорим) при томже энергопотреблении, что и Phenom II X4 965(а как мы знаем он мало кушает).
Технология Turbo Core позволяет ускорять однопоточные и малопоточные приложения, в то время как Turbo Unlocker влияет на производительность многопоточных
приложений.
В Phenom II X6 во время работы приложений задействованы не все ядра. Но что же с остальными ядрами? Они просто отдыхают, именно для этого компания ASUS разработала эксклюзивную технологию AMD Turbo Core
Что она делает? Она блокирует бездействующие ядра и вместо них прибавляет к рабочему 1 дополнительную частоту 500Ghz, к 4 ядрам прибавляется 400Ghz, а если работают все 6 ядер 200Ghz, тем самым, обеспечивая комфорт во время работы приложений.
Turbo Core действует, когда некоторые ядра ничего не делают. Когда они в безделье, частота этих ядер снижается до 800МГц, напряжение всего чипа увеличивается, а частота остальных работающих ядер повышается 500МГц это хорошая разгонная чистота. В любой другой ситуации процессор работает на обычной частоте.
Процессор обрабатывает весь мониторинг и управляет частотами и напряжением самостоятельно. Переход в режим Turbo Core, по-видимому, происходит достаточно быстро, чтобы не возникало проблем с потоками данных от Windows, движущихся от ядра к ядру. Режим Turbo Core включается с помощью детерминированной системы, основанной на текущих нагрузках и режиме работы (не температуре).
В режиме Turbo активна функция Cool’n’Quiet. На самом деле происходит следующее: когда CnQ видит, что частоты нескольких ядер должны быть снижены, то он также может увеличить частоты остальных ядер.
Это не столь отличное решение, как Intel Turbo. Бездействующие ядра на самом деле не отключаются, а просто падает наприжение и чистота ядра и они на время становятся слабыми. Однако если это работает действительно без каких-либо недостатков (например, активные ядра разгоняются, когда вы на самом деле нуждаетесь в них), то это безусловно лучше, чем отсутствие чего-либо подобного в современных Phenom II.
Еще я хочу поднять эту тему и написать ее потому-что то, что мультиядерность (вы можете не знать что это такое, но я потом объясню) связана с темой про технологии и ядра, и эта тема сейчас актуальна.
С каждым годом выходят все новейшие многоядерные процессоры, вы думаете это очень хорошо, вы ошибаетесь. Ядра делаются для выполнений компьютерных приложений, с каждым новым годом выходят все новые игры и программы и для них требуется все больше ядер. Это может не радовать, так как у каждого ядра своя технология и в будущем может не влезть в один процессор сразу 50 ядер (ну влезут, но их зделают по другой технологии они будут очень маленькими и от них не будет толку), но нашли выход «мультиядерность», для чего она служит? Зачем она? Объясняю, ученые смогли нарастить виртуальные процессорные ядра, они как бы создали их виртуально.
«Но почему данный вопрос приобрел актуальность?». Дело в том, что производители процессоров для настольных компьютеров не видят путей заметного увеличения производительности одноядерных процессоров. Дальнейшее повышение частоты становится все менее эффективным и все более проблематичным с технологической точки зрения, о чем наглядно свидетельствует отказ компании Intel от нового поколения высокочастотных процессоров с архитектурой NetBurst, не говоря уже о серьезной задержке с ростом частот процессоров Prescott. У AMD бог знает сколько времени частота процессоров топчется в районе 2.6-3.2 ГГц, и совсем не факт, что применение нового 0.09-микронного техпроцесса позволит ее значительно увеличить. У Intel подобного при переходе на такой же техпроцесс не произошло. Зато, что совершенно точно, новый, более тонкий, техпроцесс позволит значительно увеличить количество транзисторов в кристалле, то есть «напихать» туда больше кеш-памяти, больше исполнительных модулей и всего остального. И в том числе – просто разместить на одном кристалле несколько процессорных ядер.
Но если бы было все так просто – поставил 10 процессоров по 3 ГГц и получил один в 30 ГГц. В отличие от наращивания частоты, которое пропорционально увеличивает производительность любого приложения (в данном случае допускается некоторое ограничение быстродействия, связанное с производительностью подсистемы памяти), для эффективного использования нескольких процессоров необходимо иметь несколько параллельно работающих программ – независимых или в рамках одного приложения.
Процессорные ядра можно сравнить с лошадьми – ведь если вы запряжете в телегу двойку вместо одной лошади, она ведь вдвое быстрее не поедет, зато можно вдвое увеличить груз. И, таким образом, увеличить вдвое эффективную скорость перевозки грузов.
Если вас так заинтирисовала тема про мультиядерность, вот смотрите что я нашел на одном из сайтов:
цитата:
Группа разработчиков из Техасского университета в г. Остин под руководством профессоров Стивена Кеклера (Stephen Keckler), Дуга Берджера (Doug Burger) и Кэтрин Маккинли (Kathryn McKinley) работали над созданием прототипа процессора под кодовым обозначением TRIPS на протяжении нескольких лет. Группе удалось разработать и создать и прототип процессора, и соответствующие программные коды.
TRIPS открывает новый класс архитектуры процессоров под названием EDGE (аббревиатура от Explicit Data Graph Execution). В отличие от нынешней архитектуры, где одновременно происходит обработка одной команды, EDGE может обрабатывать несколько больших блоков сразу и притом более эффективно.
В основе схемотехнической архитектуры процессора – многократное использование небольшого числа стандартных блоков, что упрощает проектирование самого процессора.
В существующих многоядерных процессорах каждое ядро неспособно работать быстрее других, и увеличение производительности в этом случае происходит главным образом за счет усилий разработчиков программного кода. EDGE, по мнению разработчиков, представляет собой реальную и весьма многообещающую альтернативу многоядерности.
Каждый TRIPS-процессор, в настоящий момент, реализованный в кремннии по 130-нм технологии (170 млн. транзисторов на процессор), содержит два ядра. Каждое из них может выполнять до 16 неупорядоченных (с целыми числами или с числами в представлении с плавающей запятой) операций за такт.
Ядро состоит из блоков пяти различных типов, соединенных в единую микроархитектуру. Каждое ядро может реконфигурироваться программным образом либо в однопотоковую, либо в четырехпотоковую конфигурацию – в последнем случае 4 потока могут обрабатываться одновременно. Архитектура TRIPS позволяет максимально полно обеспечить масштабируемость будущих процессоров, полагают разработчики.
Теперь я думаю понятно, почему я поднял эту тему и написал именно в этой статье.
Может где-то в будущем эта технология будет во всех продоваемых процессорах.
И не надо говорить что 100-х ядерные процессоры есть, есть НО, их делают на заказ и очень долго делают, их ставят в серверные компьютеры, они не продаются!
Материал написан для конкурса статей ASUS