Турбонаддув это для чего
Турбонаддув. Есть Плюсы и Минусы
Двигатель с турбонаддувом. Есть Плюсы и Минусы
Турбонаддув является наиболее эффективной системой повышения мощности двигателя. Помимо повышения мощности турбонаддув обеспечивает экономию топлива и снижение токсичности отработавших газов. В данной статье мы рассмотрим бензиновый и дизельный двигатель с турбонаддувом, а также принцип работы и всего его плюсы и минусы.
Что такое турбонаддув?
Турбонаддув — вид наддува, при котором воздух в цилиндры двигателя подается под давлением за счет использования энергии отработавших газов.
Турбонаддув применяется как на бензиновых, так и на дизельных двигателях. Вместе с тем, наиболее эффективен турбонаддув на дизелях вследствие высокой степени сжатия двигателя и относительно невысокой частоты вращения коленчатого вала. Сдерживающими факторами применения турбонаддува на бензиновых двигателях являются возможность наступления детонации, которая связана с резким увеличением частоты вращения двигателя, а также высокая температура отработавших газов и соответствующий нагрев турбонагнетателя.
Отличительной особенностью двигателя с турбонаддувом является наличие: турбокомпрессора, интеркулера, регулятора давления наддува, предохранительного клапана и других элементов.
Турбокомпрессор — является основным конструктивным элементом турбонаддува и обеспечивает повышение давления воздуха во впускной системе.
Интеркулер предназначен для охлаждения сжатого воздуха. За счет охлаждения сжатого воздуха повышается его плотность и увеличивается давление. Интеркулер представляет собой радиатор воздушного или жидкостного типа.
Основным элементом управления системы турбонаддува является регулятор давления наддува, который представляет собой перепускной клапан. Клапан ограничивает энергию отработавших газов, направляя их часть в обход турбинного колеса, тем самым обеспечивает оптимальное давление наддува. Клапан имеет пневматический или электрический привод. Срабатывание перепускного клапана производится на основании сигналов датчика давления наддува.
Также может устанавливаться предохранительный клапан. Он защищает системы от скачка давления воздуха, который может произойти при резком закрытии дроссельной заслонки. Избыточное давление может стравливаться в атмосферу с помощью блуофф-клапана или перепускаться на вход компрессора с помощью байпас-клапана.
Принцип работы двигателя с турбонаддувом
Работа системы турбонаддува основана на использовании энергии отработавших газов. Отработавшие газы вращают турбинное колесо, которое через вал ротора вращает компрессорное колесо. Компрессорное колесо сжимает воздух и нагнетает его в систему. Нагретый при сжатии воздух охлаждается в интеркулере и поступает в цилиндры двигателя.
Несмотря на то, что турбонаддув не имеет жесткой связи с коленчатым валом двигателя, эффективность работы системы во многом зависит от числа оборотов двигателя. Чем выше частота вращения коленчатого вала двигателя, тем выше энергия отработавших газов, быстрее вращается турбина, больше сжатого воздуха поступает в цилиндры двигателя.
В силу конструкции, турбонаддув имеет ряд негативных особенностей, среди которых с одной стороны задержка увеличения мощности двигателя при резком нажатии на педаль газа — турбояма, с другой — резкое увеличение давления наддува после преодоления турбоямы — турбоподхват.
Система с двумя параллельными турбокомпрессорами применяется в основном на мощных V-образных двигателях (по одному на каждый ряд цилиндров). Принцип работы системы основан на том, что две маленькие турбины обладают меньшей инерцией, чем одна большая.
При установке на двигатель двух последовательных турбин максимальная производительность системы достигается за счет использования разных турбокомпрессоров на разных оборотах двигателя. Некоторые производители идут еще дальше и устанавливают три последовательных турбокомпрессора — triple-turbo и даже четыре турбокомпрессора — quad-turbo.
Комбинированный наддув объединяет механический и турбонаддув. На низких оборотах коленчатого вала двигателя сжатие воздуха обеспечивает механический нагнетатель. С ростом оборотов подхватывает турбокомпрессор, а механический нагнетатель отключается. Примером такой системы является двойной наддув моторов TSI от Volkswagen.
Минусы двигателя с турбонаддувом
О плюсах мы поговорили в начале статьи, теперь расскажем про минусы двигателя с турбонаддувом. Обратная сторона повышения мощности мотора при сохранении общих характеристик, то есть форсирования, – более интенсивный износ узлов, как следствие, снижение ресурса силовой установки. Кроме того, турбины требуют применения специальных сортов моторных масел и строгого соблюдения рекомендуемых изготовителем сроков обслуживания. Еще более требователен к вниманию владельца воздушный фильтр.
Еще один явный недостаток системы турбонаддува – она очень чувствительна к износу поршневой группы. Возрастание давления картерных газов ощутимо снижает ресурс турбины. При продолжительной работе в таких условиях наступает «масляное голодание» и поломка турбокомпрессора. Причем повреждение этого агрегата вполне может привести к выходу из строя всего двигателя.
Наличие технически сложного турбонаддува двигателя делает мотор автомобиля более сложным, увеличивая число деталей, а значит, снижая общую надежность. К тому же, ресурс самого турбокомпрессора значительно меньше, чем аналогичный показатель двигателя в целом.
Что такое турбонаддув
Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.
Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.
Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.
Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.
Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?
Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.
Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.
Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.
В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.
Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.
Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.
По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.
Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.
Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.
На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах
Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.
Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.
Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».
Турбонаддув в автомобиле: принцип работы
В массовом сознании слова «турбо», «турбонаддув», «турбированный двигатель» прочно ассоциируются со спортивными машинами и мощными двигателями. При этом, немногие представляют себе устройство и принцип работы турбонаддува. Хотя ничего особенного сложного в нём нет.
Что такое турбонаддув в автомобиле
Турбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.
Устройство турбонаддува относительно простое:
Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.
Принцип работы турбонаддува
Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.
Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.
Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования.
Что такое турбояма или турболаг
Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.
На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.
Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто.
Читайте также: Чем отличается турбина от компрессора и что лучше?.
Плюсы и минусы турбонаддува
Использовать турбонаддув имеет смысл только в том случае, если крайне необходимо придать автомобилю более динамичный, спортивный характер. Это действительно отличный способ минимальными затратами повысить мощность двигателя. Турбирование увеличивает максимальную скорость машины и улучшает ее динамику.
Помимо увеличенного расхода горючего, турбонаддув имеет следующие недостатки:
Читайте также: Что такое турботаймер и для чего он нужен.
Все о принципах работы турбонаддува.
Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя автомобиля, используя для этого энергию выхлопных газов. Эту систему еще часто называют просто «турбина» – по названию основного агрегата, который под давлением нагнетает отработанные мотором газы в турбокомпрессор, а тот, в свою очередь, подает в цилиндры двигателя большее количество воздуха, чем атмосферный мотор.
Многие водители полагают, что турбированные моторы появились относительно недавно — во второй половине ХХ века, когда турбонагнетателями стали оснащать силовые установки автомобилей немецких марок Mercedes-Benz и BMW. На самом деле датой рождения турбированного двигателя считают 1911 год, когда американец Альфред Бюхи получил патент на промышленное изготовление системы, позволявшей в несколько раз увеличить мощность обычного двигателя. Надо отметить, что за 15 лет до этого события двое немцев, Готлиб Даймлер и Рудольф Дизель уже проводили испытание агрегатов, которые помогали более эффективно нагнетать воздух в цилиндры двигателя, но да патентования этой технологии дело так и не дошло.
Впрочем, первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет. Так что распространение технологии турбонаддува для легковых автомобилей застопорилось на долгие годы, тогда как турбины довольно активно применялись на грузовом и специальном транспорте. В США, фактической и юридической родине турбонагнетательной системы, производители легкового транспорта не спешили применять ее в серийном производстве, сделав ставку на большие по объему и прожорливые атмосферные моторы. Хотя первые серийные модели, на которых устанавливался турбонаддув, появились именно в Соединенных Штатах – это были Chevrolet Corvair Monza и Oldsmobile Jetfire.
Более экономная Европа, по которой, к тому же, в середине ХХ века ударил бензиновый кризис, начала склоняться к популярной ныне идее даунсайзинга – уменьшения рабочего объема двигателя с одновременным повышением его мощности. Добиться такого результата помогала система турбонаддува. За прошедшие с момента изобретения системы годы конструкторы усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков, который так и не был искоренен по прошествии времени, являлся повышенный расход топлива. И именно поэтому модели, оборудовавшиеся турбированными бензиновыми моторами, не снискали популярности в народе.
Выход из ситуации был найден в 1970-х годах, когда компания Mercedes-Benz выпустила на рынок свою первую модель, оснащенную дизельным двигателем с турбонаддувом – 300 SD.
Конструкторам удалось решить одну из главных проблем турбодвигателя – расход топлива, ведь, как известно, дизельный агрегат менее «прожорливый», чем бензиновый. Еще один несомненный плюс дизельного топлива – его отработанные газы имеют температуру ниже, чем бензиновые, стало быть, основные агрегаты системы турбонаддува можно было производить из менее тяжеловесных и жаростойких материалов. А это, в свою очередь, влияло на конечную стоимость автомобиля, что довольно скоро оценили покупатели.
Системы турбонаддува для бензинового и дизельного моторов конструктивно практически не имеют отличий. В эту систему входят такие компоненты: турбина, турбокомпрессор и интеркулер (промежуточный охладитель). Некоторые водители ошибочно считают, что между турбонаддувом и турбокомпрессором есть какая-то разница. Ее нет, так как компрессор – лишь составляющий элемент системы наддува.
Турбина представляет собой улиткообразный патрубок, в который попадают выхлопные газы. Они вращают крыльчатку находящегося в патрубке ротора, благодаря чему газы идут дальше в турбокомпрессор. Он также представлен в виде улиткообразного патрубка, в котором есть своя крыльчатка. Ротор турбины объединен с ротором турбокомпрессора, следовательно, чем быстрее вращается крыльчатка первого, тем быстрее крутится крыльчатка второго. Попадающая в турбокомпрессор воздушная смесь под давлением, которое создается вращением крыльчатки, подается к цилиндрам двигателя.
На входе в цилиндры стоит третий основной компонент турбонаддува – интеркулер, который охлаждает поступающий из турбокомпрессора воздух, чтобы повысить его плотность и уменьшить объем – тогда в цилиндры попадет больше воздуха, который, смешиваясь с топливом, сгорает более эффективно. А эффективное сгорание топлива позволяет поднять мощность двигателя, при этом расход топлива, идущий на образование топливовоздушной смеси в цилиндрах уменьшается.
Еще один немаловажный компонент системы турбонаддува – приводной нагнетатель (либо малый турбокомпрессор), который создает давление в турбине на малых оборотах и помогает избежать такого явления как турбояма (когда двигатель не может развить мощность на малых оборотах из-за недостаточного поступления в систему турбонаддува выхлопных газов).
Помимо указанных выше основных компонентов турбонаддува, в систему входят еще такие элементы как регулировочный, перепускной и стравливающий клапаны, а также выпускной коллектор, воздушные и масляные патрубки.
Регулировочный клапан помогает поддерживать давление в системе на установленном уровне и при необходимости сбрасывать его в трубу приемки. Функция перепускного клапана состоит в нагнетании воздуха обратно во впускные патрубки, откуда он снова попадает в турбину – это происходит, когда дроссельная заслонка закрыта. Стравливающий клапан отводит избыточный воздух из системы турбонаддува при закрытой дроссельной заслонке. Воздушные патрубки подают воздух в турбину, а по масляным патрубкам подается жидкость для смазки и охлаждения системы турбонаддува.
В настоящее время производится два основных вида турбин: одинарные и двойные. Первые устанавливаются в основном на рядные двигатели: они используют энергию выхлопных газов от всех цилиндров мотора и подают воздух во все цилиндры. Вторыми комплектуются силовые установки с V-образным расположением цилиндров. Они имеют два турбокомпрессора, которые подают воздух в определенные цилиндры. Иногда для повышения мощности двигателя на таких турбинах используют так называемый перекрестный выпускной коллектор, который аккумулирует выхлопные газы из всех цилиндров мотора и направляет этот, более мощный поток к компрессорам, что повышает давление в турбине, и, соответственно, мощность двигателя.
Революционной в деле турбонаддува стала идея применения изменяемой геометрии турбины. Она позволяет регулировать геометрию сопла турбины, создавая более мощные потоки воздуха уже на низких оборотах, вследствие чего многократно повышается мощность двигателя.