волновой пучок определение форма записи основные параметры
Волновой пучок определение форма записи основные параметры
ГЛАВА 2. ФОРМИРОВАНИЕ И РАСПРОСТРАНЕНИЕ ВОЛНОВЫХ ПУЧКОВ
2.1 Моды свободного пространства 5
2.1.1 Параболическое приближение
Волновой лазерный пучок в силу своей высокой направленности имеет много общего с плоской волной. Отличие же его от плоской волны состоит в том, что распределение интенсивности в нем неоднородно (мощность пучка, в основном, сконцентрирована вблизи оси), а фазовый фронт несколько отличается от плоского. Поэтому решение приведенного волнового уравнения, описывающее распространение такого пучка, будем искать в виде
Если в выражении (2.1.2) пренебречь второй производной u по z по сравнению c первой, то на основании (1.2.20) получим уравнение
Полученное уравнение относится к уравнениям параболического типа, а само приближение, в рамках которого оно было получено, называется параболическим приближением. Нетрудно показать, что уравнению (2.1.3) будет удовлетворять так называемый гауссов пучок, амплитуда которого меняется по поперечной координате по гауссовому закону.
2.1.2 Свойства основной моды
Для гауссова пучка можно записать выражение
Интегрируя (2.1.6), получаем
Когерентный световой пучок с гауссовым распределением поля имеет фундаментальное значение в теории волновых пучков. Этот пучок называют основной модой в отличие от других мод более высокого порядка, которые будут рассматриваться ниже. Вследствие особой важности рассмотрим свойства гауссова пучка с длиной волны l более подробно. Для этого выразим комплексный параметр q через два действительных параметра пучка R и w
Физический смысл этих параметров становится ясным при подстановке соотношения (2.1.9) в (2.1.4). Видно, что R есть радиус кривизны волнового фронта, а w характеризует изменение поля Е в поперечной плоскости. Распределение поля в этой плоскости, как видно из рис. 2.1.1, подчиняется закону Гаусса и w равно расстоянию, на котором амплитуда поля убывает в е раз по сравнению с полем на оси.
На расстоянии z от горловины
Из сопоставления соотношений (2.1.9) и (2.1.11) легко получить следующие важные в практическом отношении выражения:
Образующая пучка w(z) представляет собой гиперболу, асимптота которой наклонена к оси под углом
Этот угол равен углу дифракции основной моды в дальней зоне.
Для расчета комплексного фазового сдвига на расстоянии z от горловины пучка воспользуемся соотношениями (2.1.7) и (2.1.11); в результате получим
Интегрирование уравнения (2.1.15) дает
2.1.3. Моды высших порядков
В прямоугольной системе координат x, y, z решение уравнения (2.1.3) может быть записано в виде
Из выражения (2.1.23) видно, что фазовая скорость с ростом индекса увеличивается.
После некоторых преобразований можно получить
Полиномы Лагерра низших порядков равны:
Как и для случая прямоугольных координат, параметры w и R одинаковы для всех цилиндрических волн, а разность фаз, как и ранее, зависит от индексов моды и определяется уравнением
Графические распределения амплитуды поля для некоторых низших мод приведены на рис. 2.1.3. Для наглядности под каждым графиком приведена картина, наблюдаемая на экране при падении на него светового пучка, соответствующего определенной моде.
Как эрмито-гауссовые, так и лагерро-гауссовые моды, реализуемые на практике, характеризуются, как правило, большим значением радиуса кривизны волнового фронта. Поэтому их с хорошей степенью приближения можно отнести к поперечным электромагнитным волновым пучкам вида ТЕМ. С учетом поперечных индексов эти пучки часто обозначаются как пучки ТЕМmn или ТЕМpl.
2.1.4. Преобразование волновых пучков с помощью линз
Как известно, линзы широко применяются либо для фокусировки лазерного пучка в пятна небольших размеров, либо для соответствующего преобразования диаметра и кривизны волнового фронта пучка с целью ввода в данную оптическую систему. Идеальная линза или система линз не изменяет поперечного распределения поля моды свободного пространства. Иначе говоря, входная основная гауссова мода после прохождения линзовой системы сохраняется, а моды высших порядков преобразуются на выходе в моды тех же порядков. Однако при этом параметры мод R(z) и w(z) претерпят изменения. Рассмотрим соотношение между входными параметрами, обозначаемыми индексом 1, и соответствующим выходными параметрами с индексом 2.
Идеальная тонкая линза с фокусным расстоянием f преобразует сферическую волну радиуса R 1, слева от линзы в сферическую волну с радиусом R 2 справа так, что
где q 1,2 измерены непосредственно у линзы.
Эта формула получается непосредственно из выражений (2.1.8) и (2.1.9).
Более сложные оптические системы, такие, как комбинация линз, газовые линзы или толстые линзы, следует рассматривать как последовательность тонких линз, расположенных на различных расстояниях. Для расчета прохождения пучка лазера через сложные системы, таким образом, достаточно последовательного приложения к системе соотношений (2.1.28) и (2.1.29).
2.1.5. Геометрооптическое описание распространения и преобразования волновых пучков
Решение многих важных в практическом отношении задач существенным образом упрощается, если воспользоваться связью, которая существует между оптикой гауссовых пучков и геометрической оптикой. Сферическому волновому фронту гауссова пучка в любом поперечном сечении можно поставить в соответствие пучок лучей, исходящих из одной и той же точки О 1 ( рис. 2.1.6 ).
Для каждого параксиального луча отношение координаты y 1 точки его пересечения с плоскостью П 1 к лучевому углу q 1 равно r 1, т.е.
где матрица ABCD является матрицей передачи луча. Разделим уравнение (2.1.32) на уравнение (2.1.33)
Геометрооптические методы расчета характеристик эрмито-гауссовых или лагерро-гауссовых пучков, распространяющихся в оптических системах, широко используются в современной оптике. Обширная практика их применения, многократные сопоставления результатов расчетов с экспериментальными данными, не оставляют сомнений в их правильности и эффективности.
2.1.6. Расчет поля дифрагированной волны методом разложения по модам свободного пространства
Скалярная теория дифракции, рассмотренная в первой главе, дает универсальный подход расчета поля дифракции волновых пучков на различного рода препятствиях. Однако составленные на основе дифракционных интегралов программы машинного расчета поля дифракции для ближней и дальней зон весьма сложны и имеют существенные отличия.
Свойство ортогональности мод свободного пространства дает возможность использовать для расчета поля дифракции иной подход, основанный на разложении поля пучка, претерпевающего дифракцию, по модам свободного пространства. Оно во многих случаях оказывается более простым и позволяет на основе одного алгоритма рассчитывать поля в ближней и дальней зонах дифракции. Этот метод особенно эффективен в случае слабого дифрагирования лазерных пучков. Плавный профиль изменения амплитуды лазерного пучка в плоскости апертурного разложения позволяет исключить в разложении моды со слишком высокими индексами, что сокращает время расчета и повышает его точность.
Распространение Гауссова пучка: понятие перетяжки пучка, глубины фокусировки, качества пучка, расходимости
Гауссов пучок
Гауссово распределение симметрично убывает по мере удаления от центра пятна (центра интенсивности, проиллюстрировано на рис. 1). Формула распределения:
(1)
Рисунок 1. Вид пятна сфокусированного пучка лазерного пучка,перетяжкой пучка называется минимальный диаметр пучка, интенсивность в пределах которого составляет не ниже 13.5% максимального значения
Профиль интенсивности не остается постоянным при распространении пучка в пространстве, следовательно, есть зависимость перетяжки (минимального диаметра) w(z) от траектории распространения z. Из-за дифракции Гауссов пучок будет уменьшаться и увеличиваться в диаметре.
Пучок сходится и расходится одинаково по обе стороны от диаметра перетяжки пучка на угол расходимости θ (рис. 2). Диаметр перетяжки пучка и угол расходимости отсчитываются от основной оси z, их связь показана уравнениями (2) и (3):
(2)
(3)
Рисунок 2. Гауссов пучок и основные параметры, применяемые для его описания: диаметр перетяжки пучка w 0 , рэлеевская длина перетяжки z R , угол расходимости θ
Изменение минимального диаметра пучка определяется как:
(4)
(5)
Рэлеевская длина перетяжки определяется как разность между координатами распространения, где площадь поперечного сечения пучка удваивается. Другими словами, когда диаметр перетяжки w(z) увеличивается в √2 раз. Используя уравнение (5), длину перетяжки z R можно выразить как:
(6)
Тогда для диаметра перетяжки w(z) можно вывести следующее:
(7)
Волновой фронт излучения считается плоским в месте перетяжки пучка и квазиплоским в области бесконечно удаленной от перетяжки. Близ перетяжки радиус кривизны волнового фронта приближается к бесконечности, по мере удаления от перетяжки снова уменьшается до минимального значения.
Минимум радиуса кривизны приходится на длину Рэлея. Далее радиус кривизны снова увеличивается, а на бесконечности вновь считается плоским. Это верно для любого направления от перетяжки пучка.
Рисунок 3. Кривизна волнового фронта Гауссова пучка стремится к нулю как в положении, близком к области перетяжки, так и на дальнем расстоянии от нее
Манипуляции с Гауссовыми пучками
Зачастую в лазерной оптической системе требуется произвести некоторые манипуляции с излучением, отфильтровать, коллимировать или сфокусировать пучок. Конечно, для этого применяются различные оптические компоненты – линзы, пластины, призмы, зеркала, и т. д. Ниже приведены самые распространенные схемы включения оптики в оптический путь и основные формулы для расчета.
Уравнение тонкой линзы
Идеальная тонкая линза описывается известным уравнением геометрической оптики:
(8)
(9)
(10)
Рисунок 4. Тонкая линза: положение изображения легко определить при известном фокусном расстоянии и расстоянии от линзы до объекта
Как известно, Гауссовы пучки сохраняют профиль интенсивности после прохождения через идеальную линзу без аберраций. В 1983 году Сидни Селф записал уравнение тонкой линзы с учетом уравнения Гауссова пучка:
(11)
Общее расстояние от лазера до диаметра перетяжки рассчитывается путем прибавления абсолютного значения s к s‘. Уравнение (11) также можно записать в безразмерной форме, умножив обе стороны на f:
(12)
Это уравнение превращается в «привычное» уравнению тонкой линзы, когда соотношение z R /f приближается к 0. Так, стандартное уравнение для тонких линз применимо для объективов с большим фокусным расстоянием. Уравнения (11) и (12) можно использовать для определения местоположения перетяжки пучка после того, как получено изображение (рис. 5).
|
Рисунок 5. Вид «изображения» и «объекта» при прохождении Гауссова пучка через тонкую линзу
График нормированного расстояния до изображения s‘/f в зависимости от нормированного расстояния до объекта s/f показывает возможные местоположения перетяжки выходного пучка в данном нормированном диапазоне Рэлея z R /f) (рис. 6). График показывает, что Гауссовы пучки, сфокусированные тонкой линзой, имеют несколько ключевых отличий по сравнению с обычными изображениями в тонких линзах.
При рассмотрении графиков преломления Гауссова пучка в тонкой линзе можно заметить, что есть как минимальное, так и максимально возможное расстояние до изображения. При рассмотрении предметов и изображений в тонкой линзе такой параметр отсутствует. Максимальное расстояние до изображения Гауссова пучка (расстояние от линзы до диаметра перетяжки выходного пучка) достигается на расстоянии объекта, равном – (f + z R ), а не на – f.
Точка на графике, где s/f равно – 1, а s‘/f равно 1, указывает на то, что перетяжка выходного пучка будет находиться в заднем фокусе линзы, если входное излучение подается в передней фокальной плоскости положительной линзы.
Рисунок 6. На графиках нормированных функций показано минимальное и максимальное расстояние до изображения, обусловленное наличием рэлеевской длины перетяжки
Чтобы определить положение перетяжки пучка и длину Рэлея после прохождения пучка через линзу, необходимо знать увеличение системы α, определяемое как:
(13)
(14)
Вышеупомянутое уравнение нарушится, если линзу расположить на координате, совпадающей с положением перетяжки пучка (s = 0).
Обратное значение квадрата постоянной увеличения можно использовать для определения соотношения размеров и координат перетяжки пучка:
(15)
Фокусировка Гауссова пучка в пятно
Во многих приложениях, например, в лазерной обработке материалов, медицине, очень важно фокусировать лазерный пучок в пятно минимально возможного радиуса, чтобы максимизировать интенсивность и минимизировать площадь нагрева. В таких приложениях цель состоит в том, чтобы минимизировать радиус перетяжки пучка на выходе w 0 ‘ (рис. 7). Тогда несколько видоизмененное уравнение (15) можно применить для вычисления необходимого диаметра перетяжки:
(16)
Рисунок 7. Фокусировка пучка лазерного излучения в пятно минимально возможных размеров, например, в приложениях лазерной сварки и маркировки
(17)
(18)
Решение относительно диаметра перетяжки:
(19)
(20)
(21)
(22)
(23)
Рисунок 8. В случае двукратного увеличения перетяжка выходного пучка будет в два раза превышать перетяжку входного, это же верно и для угла расходимости пучка
Существуют два предельных случая, которые еще более упрощают расчеты размера и местоположения перетяжки выходного пучка:
В первом предельном случае уравнение (20) упрощается до:
(24)
Это также облегчает вычисления диаметра перетяжки выходного пучка, угла расходимости, длины Рэлея и положения перетяжки:
(25)
(26)
(27)
(28)
(29)
Диаметр перетяжки выходного пучка рассчитывается по формуле:
(30)
Аналогичные упрощения формул расчета, когда s R :
(31)
(32)
(33)
(34)
Оба эти результата интуитивно понятны, поскольку волновой фронт принят почти плоским как на ближнем расстоянии от перетяжки, так и на бесконечном удалении от него. В этих местах пучок почти полностью коллимирован (рис. 9). В соответствии с известным уравнением для тонких линз параллельный входной пучок будет создавать изображение на расстоянии, равном фокусному расстоянию линзы.
Рисунок 9. Фокусировка лазерного пучка в пятно при прохождении через тонкую линзу: пятно находится в фокальной плоскости линзы, если линзу расположить: а) близ перетяжки пучка, б) на бесконечности от минимального диаметра
Смещение фокуса
Если перетяжка совпадает с плоскостью цели, то наблюдается совершенно обратная ситуация. В таком случае интенсивность сфокусированного пучка на цели, расположенной на фиксированном расстоянии L от линзы не растет.
Интенсивность фокального пятна на цели максимальна, когда от перетяжки до плоскости объекта есть некоторое расстояние (рис. 10). Это явление называется смещением фокуса.
Рисунок 10. Наибольшая интенсивность пятна излучения на цели достигается, когда перетяжка сфокусированного пучка находится в определенном месте перед мишенью, но не совпадает с плоскостью цели
Опуская вывод формул, радиус пятна излучения на цели можно описать следующим выражением:
(35)
Дифференцируя уравнение (35) относительно фокусного расстояния линзы f и решая дифференциальное уравнение относительно f, найдем частное решение при условии равенства производной функции w L (f) по f нулю. Это показывает фокусное расстояние линзы, которое необходимо для достижения минимального радиуса пучка и, следовательно, максимальной интенсивности при падении на цель.
(36)
(37)
При |s|, стремящемся к нулю или бесконечности, производная по f функции w L (f) равна 0, когда f = L. В обоих этих случаях входной пучок практически параллельный, из чего следует, что наименьший радиус пучка будет располагаться в фокусе линзы.
Коллимация Гауссова пучка
В реальности получить полностью параллельный пучок невозможно, так как невозможно добиться нулевой расходимости, поэтому на практике используют «практически параллельные» пучки лучей. Либо сводится к минимуму расхождение, либо увеличивается расстояние между точкой наблюдения и ближайшей перетяжкой пучка. Поскольку расходимость выходного пучка обратно пропорциональна константе увеличения α, выходная расходимость минимальна, когда |s| = f (рис. 11).
Рисунок 11. Чтобы преобразовать Гауссов пучок в параллельный, расстояние от перетяжки до коллимирующей линзы должно равняться фокусному расстоянию
Компания INSCIENCE помогает своим заказчикам решать любые вопросы и потребности по продукции Edmund Optics на территории РФ