вращение винта лодочного мотора правое или левое
О выборе направления вращения винтов
Прошу вас ответить на вопрос: как должны вращаться гребные винты — правый и левый — при установке на лодку двух подвесных моторов?
Как правило, на мотолодках ставят два однотипных подвесных мотора с одинаковым направлением вращения гребных винтов. Это не требует никаких переделок моторов, но судно, особенно с повышенной килеватостью днища, получает крен в сторону, противоположную направлению движения верхней лопасти винтов. Лодку уводит с курса, что требует постоянного отклонения руля и сопровождается потерей скорости движения.
Поэтому в случаях, когда важно развить максимальную скорость, например в соревнованиях, один из моторов эксплуатируют на заднем ходу, заменив гребной винт на винт противоположного вращения.
В последние годы за рубежом освоен выпуск некоторых мощных (150—250 л. с.) моторов одинаковых моделей, но с разным вращением винтов.
На глиссирующих двухвинтовых катерах и мотолодках оптимальным является вращение винтов «изнутри, через верх — наружу», когда потоки воды, захваченные лопастями, проходят снизу между винтами и выбрасываются под днищем катера к бортам. Соответственно винт правого мотора должен вращаться по часовой стрелке, т. е. быть правым, в винт левого мотора — против часовой стрелки, т. е. быть левым. В этом случае исключается засасывание винтами плавающего мусора с поверхности воды, что может привести к резанию предохранительного штифта гребного винта, а также прорыв воздуха к лопастям при крене лодки, который возникает при поворотах.
Если нужно определить, какого направления вращения имеющийся винт, положите его на стол и посмотрите на конец обращенной к вам лопасти. Если правая кромка лопасти выше, то это винт правого вращения, если выше левая — то левого. При этом не имеет значения каким торцом ступицы — передним или задним — винт лежит на стопе.
Попутно о выборе расстояния между осями подвесных моторов. Минимальное расстояние, при котором гребные винты не оказывают взаимного влияния на эффективность, для отечественных моторов равно 420 мм.
Разносить моторы шире, чем на 500 мм, также не рекомендуется: при резких поворотах лодка, особенно с обводами «глубокое V» получает крен, и к винту, расположенному близко к скуле, может прорываться воздух. Это вызовет работу двигателя «в разнос» и даже потерю управляемости, так как кавитирующий винт тяги практически не создает.
Что надо знать о гребном винте?
Рисунок 1. Схема сил и скоростей на лопасти винта (правого вращения)
Упор в большой степени зависит от угла атаки α профиля лопасти. Оптимальное значение α, для быстроходных катерных винтов 4-8°. Если α больше оптимальной величины, то мощность двигателя непроизводительно затрачивается на преодоление большого крутящего момента; если же угол атаки мал, подъемная сила и, следовательно, упор Р будут невелики, мощность двигателя окажется недоиспользованной.
На схеме, иллюстрирующей характер взаимодействия лопасти и воды, α можно представить как угол между направлением вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован геометрическим сложением векторов скорости поступательного перемещения va винта вместе с судном и скорости вращения vr, т. е. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.
Так как сторона va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы α сохранял оптимальную неличину, т. е. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один полный оборот винта.
Рисунок 2. Винтовая поверхность лопасти (а) и шаговые угольники (б)
Гребной винт на «Вихре» имеет шаг Н=0.3 м и частоту вращения n=2800/60=46.7 об/с. Теоретическая скорость винта:
Таким образом, мы получаем разность
Эта величина, называемая скольжением, и обуславливает работу лопасти винта под углом атаки α к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах называется относительным скольжением. В нашем примере оно равно
s= | H*n-va | = | 2.9 | =0.207=20.7%. |
H*n | 14 |
Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8-15%) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных мотолодок и катеров скольжение достигает 15-25%, у тяжелых водоизмещающих катеров 20-40%, а у парусных яхт, имеющих вспомогательный двигатель, 50-70%.
Рисунок 3. Соотношение скорости лодки и осевой скорости винта.
Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД, т. е. отношения полезно используемой мощности к затрачиваемой мощности двигателя. Полезная мощность или ежесекундное количество работы, используемой непосредственно для движения судна вперед, равно произведению сопротивления воды R движению судна на его скорость V (Nп=RV кгсм/с).
Мощность, затрачиваемую на вращение гребного винта, можно выразить в виде зависимости Nз от крутящего момента М и частоты вращения n
Следовательно, КПД можно вычислить следующим образом:
В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w:
Значения w нетрудно определить по данным, приведенным выше.
Таким образом, полезная мощность с учетом взаимовлияния корпуса и винта равна
Nп=Pe*(1-t)* | va | кгсм/с, |
1-w |
а общий пропульсивный КПД комплекса судно-двигатель-гребной винт вычисляется по формуле:
η= | Nп | = | Pe*va | * | 1-t | *ηM=ηp*ηk*ηM |
Na | 2π*n*M | 1-w |
Максимальная величина КПД гребного винта может достигать 70-80%, однако на практике довольно трудно выбрать оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых судах КПД реальных винтов может оказаться много ниже, составлять всего 45%.
Максимальной эффективности гребной винт достигает при относительном скольжении 10-30%. При увеличении скольжения КПД быстро падает; при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.
Коэффициент влияния корпуса нередко оказывается больше единицы (1.1-1.15), а потери в валопроводе оцениваются величиной ηM=0.9÷0.95.
Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать, лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму лопастей. Для предварительного определения диаметра винта можно воспользоваться формулой
D= | 4 | 4 √ | N | =M, |
√n | 102va |
Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов, обычно увеличивают примерно на 5% с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности с двигателем при последующих испытаниях судна. Для «облегчения» винта его постепенно подрезают по диаметру до получения номинальных оборотов двигателя при расчетной скорости.
Шаг винта можно ориентировочно определить, зная величину относительного скольжения s для данного типа судна и ожидаемую скорость лодки:
Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода судна.
Рисунок 4. Внешняя и винтовая характеристики мотора «Вихрь».
Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому двнгатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть, что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт называется гидродинамически легким.
Для каждого конкретного сочетания судна и двигателя существует оптимальный гребной винт. Для рассматриваемого примера такой оптимальный винт имеет характеристику 3, которая пересекается с внешней характеристикой двигателя в точке В, соответствующей его максимальной мощности.
Рисунок 5. Зависимость скорости мотолодки «Крым» от нагрузки и шага гребного винта мотора «Вихрь» мощностью 14.8 кВт (20 л.с.)
Рисунок 6. Построение шаговых угольников (а) и кривые изменения кромчатого шага лопасти (б).
r/R | r, мм | h, мм | Hср=0.264м | Hср=0.240м | ||
l | L | l | L | |||
0.3 | 36 | 62.5 | 59 | 75.2 | 65.5 | 82.5 |
0.5 | 60 | 57.4 | 83.5 | 119 | 92 | 129.5 |
0.7 | 84 | 52.3 | 105 | 144.5 | 115 | 154.5 |
0.9 | 108 | 47.2 | 119.5 | 142 | 131.5 | 165 |
1.0 | 120 | 44.5 | 124 | — | 139.5 | — |
Численные рекомендации для наиболее популярных моторов мощностью 14-18 кВт (20-25 л.с.) могут быть следующие. Штатные винты, имеющие H=280÷300 мм, дают оптимальные результаты на сравнительно плоскодонных лодках с массой корпуса до 150 кг и нагрузкой 1-2 чел. На еще более легкой лодке массой до 100 кг можно получить прирост скорости за счет увеличения H на 8-12%.
На более тяжелых глиссирующих корпусах, на лодках, имеющих большую килеватость днища и при большой нагрузке (4-5 чел.), шаг винта может быть уменьшен на 10-15 % (до 240-220 мм), но использовать такой винт при поездке без пассажиров с малой нагрузкой не рекомендуется: двигатель будет «перекручивать обороты» и быстро выйдет из строя.
При установке подвесного мотора на тихоходной водоизмещающей шлюпке рекомендуется применять трех- и четырех лопастные винты с соотношением H/D не менее 0.7; при этом ширину лопасти и профиль ее поперечного сечения сохраняют такими же, как и на штатном винте мотора.
При замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение должно быть не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.
Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, иа корпус передается вибрация, лодка движется скачками.
Упор, развиваемый гребным винтом, практически не зависит от площади лопастей. Наоборот, с увеличением этой площади возрастает трение о воду, и на преодоление этого трения дополнительно расходуется мощность двигателя. С другой стороны, надо учесть, что при том же упоре на широких лопастях разрежение па засасывающей стороне меньше, чем на узких. Следовательно, широколопастной винт нужен там, где возможна кавитация <т. е. на быстроходных катерах и при большой частоте вращения гребного вала).
В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе, проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А, а ее отношение к площади Ad сплошного диска такого же, как винт, диаметра, т. е. A/Ad. На винтах заводского изготовления величина дискового отношения выбита на ступице.
Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0.3-0.6. У сильно нагруженных винтов на быстроходных катерах с мощными высокосборотнымн двигателями A/Ad увеличивается до 0.6-1.1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью, например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире, чем увеличить их толщину.
Наибольшее распространение среди винтов малых судов получил сегментный плоско-выпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен выпукло-вогнутый профиль («луночка»). Стрелка вогнутости профиля принимается равной около 2% хорды сечения, а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта, равном 0.6R) принимается обычно в пределах t/b=0.04÷0.10. Ординаты профилей лопастей некавитирующих винтов приведены в таблице 2.
Ордината | x/b, % | ||||||
0; 100 | 5; 95 | 10; 90 | 20; 80 | 30; 70 | 40; 60 | 50 | |
t/b, % Для суперкавитнрующих винтов гоночных судов применяют клиновидный профиль с тупой выходящей кромкой. Двухлопастной гребной винт обладает более высоким КПД, чем трехлопастной, однако при большом дисковом отношении весьма трудно обеспечить необходимую прочность лопасти такого винта. Поэтому наибольшее распространение на малых судах получили трехлопастные винты. Винты с двумя лопастями применяют на гоночных судах, где винт оказывается слабо нагруженным, и на парусно-моторных яхтах, где двигатель играет вспомогательную роль. В последнем случае имеет значение возможность устанавливать винт в вертикальном положении в гидродинамическом следе ахтерштевня для уменьшения его сопротивления при плавании под парусами. Четырех- и пятилопастные винты применяют очень редко, в основном на крупных моторных яхтах для уменьшения шума и вибрации корпуса. Гребной винт лучше всего работает, когда его ось расположена горизонтально. У винта, установленного с наклоном и в связи с этим обтекаемого «косым» потоком, коэффициент полезного действия всегда будет ниже; это падение КПД сказывается при угле наклона гребного вала к горизонту больше 10°. Гребной винт-мультипитчЗадачу согласования элементов гребного винта с сопротивлением мотолодки при изменении ее нагрузки помогает решить винт изменяемого шага типа «мультипитч». Закрепление лопастей в выбранном положении осуществляется гайкой 3. Втулка 5 имеет внутренний диаметр, равный диаметру гребного вала мотора «Вихрь». От осевого перемещения по втулке винт фиксируется гайкой 3 и стопорным винтом 8. Тем не менее, возможность плавного изменения шага в зависимости от нагрузки лодки позволяет получить наиболее оптимальный и экономичный режим работы подвесного мотора. При установке шага важно иметь возможность проконтролировать частоту вращения коленчатого вала двигателя во избежание его перегрузки при чрезмерном уменьшении шага. Кольцевая профилированная насадкаНа тяжелом водеизмещающем катере трудно получить высокий КПД гребного винта, если он приводится от высокооборотного автомобильного двигателя или подвесного мотора. Винт в этих случаях работает с большим скольжением н не развивает необходимый упор. Особенно велики потери мощности на винте, если он имеет недостаточный диаметр и шаговое отношение менее H/d=0.5. Кроме снижения частоты вращения гребного винта, заметный эффект в таких случаях дает применение кольцевой направляющей насадки (рисунок 7), представляющей собой замкнутое кольцо с плоско-выпуклым профилем. Площадь входного отверстия насадки больше, чем выходного; винт устанавливается в наиболее узком сечении и с минимальным зазором между краем лопасти и внутренней поверхностью насадки; обычно зазор не превышает 0.01 D винта. При работе винта засасываемый им поток вследствие уменьшения проходного сечения насадки увеличивает скорость, которая в диске винта получает максимальное значение. Благодаря этому уменьшается скольжение винта, повышается его поступь. Вследствие малого зазора между краем лопасти и насадкой уменьшается перетекание воды через край, что также повышает КПД винта. Небольшой дополнительный упор создается и на самой насадке, которая обтекается потоком воды подобно крылу. На каждом элементе насадки возникает подъемная сила, которая дает горизонтальную составляющую, направленную вперед. Сумма этих составляющих и образует дополнительный упор. Применение насадки становится выгодным при К’n Рисунок 8. Увеличение КПД и изменение элементов гребного винта при установке насадки в зависимости от величины коэффициента K’n Подсчитав значение К’n, можно по графику, представленному на рисунке 8, найти относительную поступь λ. и шаговое отношение винта H/D, а затем определить диаметр винта
и шаг для винта без насадки и с насадкой. Если речь идет об уже эксплуатируемом катере, то с помощью этого графика можно сравнить существующий винт с элементами винта, имеющего оптимальный диаметр. Благодаря применению насадки удается повысить скорость катера на 5-8% (и даже до 25% на тихоходной лодке с двигателем, имеющим большую частоту вращения). При скоростях около 20 км/ч установка насадки нецелесообразна. На быстроходных лодках с увеличением скорости винт становится менее нагруженным, а сопротивление насадки возрастает. Насадка является хорошей защитой гребного винта от повреждений, благодаря постоянному заполнению водой не позволяет ему обнажаться при килевой качке. Иногда направляющие насадки выполняют поворачивающимися относительно вертикальной оси, в результате отпадает необходимость устанавливать руль. Применение насадок целесообразно и на подвесных моторах, устанавливаемых на тихоходных судах водоизмещающего типа. На 25-30-сильном подвесном моторе целесообразно использовать насадку на судне водоизмещением более 700 кг (например, на катерах, переделанных из военно-морских ялов, и парусно-моторных яхтах). На моторах мощностью 8-12 л.с. насадка полезна уже при водоизмещении более 400 кг. Рекомендуемые размеры насадки и ее профили показаны на рисунке 7. Длина насадки принимается обычно в пределах Lн (0.50÷0.70) D диаметра винта. Минимальный диаметр насадки (место, где устанавливается гребной винт) располагается на расстоянии А=(0.35÷0.40) D от входящей кромки насадки. Наибольшая толщина профиля δ=(0.10÷0.15) Lн. Насадку можно выточить из предварительно согнутой в обечайку толстой алюминиевой полосы или выклеить ее из стеклопластика на болване. Все поверхности насадки следует тщательно отполировать для снижения потерь на трение. На подвесном моторе насадку прикрепляют к антикавитационной плите, для чего снаружи насадки делают «лыску», образующую плоскость. Внизу кольцо крепят к шпоре мотора. Справочник по катерам, лодкам и моторам. Вращение винта лодочного мотора правое или левое§ 46. Факторы, влияющие на управляемость. 1. Влияние гребного винта. Управление судном во многом зависит не только от руля, но и от конструкции винта, скорости его вращения и обводов кормовой части судна. Гребные винты изготовляются из чугуна, стали и бронзы. Наилучшими винтами для катеров следует считать винты из бронзы, так как они легки, хорошо шлифуются и стойки против коррозии в воде. Винты характеризуются диаметром, шагом и коэффициентом полезного действия. Диаметром винта называют диаметр окружности, описываемой крайними точками лопастей. Шагом винта называют расстояние вдоль оси винта, на которое перемещается за один полный оборот любая точка винта.
Коэффициент полезного действия (к. п. д) винта определяется отношением мощности, развиваемой гребным винтом, к мощности, затрачиваемой на его вращение. В основе работы гребного винта лежит гидродинамическая сила, создаваемая разрежением на одной и давлением на другой поверхности лопасти. Современные судовые движители еще очень несовершенны. Так, гребные винты в среднем около половины мощности, отдаваемой им двигателем, тратят бесполезно, например, на винто-образное закручивание частиц воды в струе. На катерах применяются двух-, трех- и реже четырехлопастные винты. На промысловых катерах иногда ставятся винты с поворотными лопастями или так называемые винты с регулируемым шагом, которые позволяют плавно изменять скорость или направление хода судна при постоянном одностороннем вращении гребного вала. При этом отпадает необходимость в реверсировании двигателя. Винты различаются по направлению их вращения. Винт, вращающийся по часовой стрелке (если смотреть на него с кормы в нос), называется винтом правого вращения, против часовой стрелки — левого вращения. При движении вперед под кормовым подзором корпуса суд-па впереди и позади руля образуется попутный (рис. 103) поток воды и возникают силы, которые действуют па руль и влияют на поворотливость судна. Скорость попутного потока тем больше, чем полнее и тупее обводы кормы. Разрежение на выпуклой стороне лопасти, называемой стороной засасывания, подсасывает воду к винту, а давление на плоской стороне, называемой нагнетающей, отбрасывает воду от винта. Скорость отбрасываемой струи примерно вдвое больше подсасываемой. Реакция отбрасываемой воды воспринимается лопастями, которые через ступицу и гребной вал передают ее судну. Эта сила, приводящая судно в движение, называется упором. В потоке воды, отбрасываемой винтом, частицы движутся не прямолинейно, а винтообразно. Попутный поток как бы тянется за судном и величина его зависит от формы кормовой части судка. Поток несколько изменяет давление на руль, отведенный из диаметральной плоскости судна. Совокупное действие всех потоков оказывает заметное влияние на управляемость судна; оно зависит от положения руля, величины и изменения скорости хода, формы корпуса, конструкции и режима работы винта. Поэтому каждое судно имеет свои индивидуальные особенности действия винта на руль, которые судоводитель должен внимательно изучать на практике (таблица 4). Влияние взаимодействия винта правого вращения руля на поведение судна. Положение судна относительно воды | |||||||
Винт левого вращения при равных прочих условиях даст противоположные приведенным в таблице результаты.
Если на судне установлен винт правого вращения, то судно будет лучше поворачиваться вправо, диаметр циркуляции вправо будет меньше, чем влево.
На заднем ходу поворотливость судна обычно хуже. Судно с винтом правого вращения на заднем ходу лучше поворачивается кормой влево, чем вправо.
Поэтому на переднем ходу на судне с винтом правого шага к причалу стремятся подойти левым бортом, так как при этом с переменой хода на задний корма будет поджиматься к стенке.
На некоторых моторных яхтах и катерах устанавливаются по два мотора, имеющих каждый свои вал и винт. В этом случае винты обычно вращаются в разные стороны.
Они могут быть установлены или с вращением наружу, т. е. в верхней ч. ста лопасти идут от середины к борту, или с вращением внутрь, когда лопасти в верхней части идут от борта к середине.
То или другое направление вращения винтов, а также наклон осей винтов и валов к горизонтальной и диаметральной плоскостям имеют большое значение в отношении поворотливости.