вычисление вычетов в особых точках
Вычисление вычетов в особых точках
Обозначается вычет
Вычет функции в конечной изолированной особой точке равен коэффициенту С-1 при первой отрицательной степени в разложении функции в ряд Лорана в окрестности этой точки, т.е. при 1/(z—z0) для z0, принадлежащей области комплексных чисел:
ПРИМЕР 1. Вычисление вычета функции в ее конечных особых точках.
Если конечная особая точка z0 является устранимой особой точкой функции f(z), то
ПРИМЕР 2. Вычисление вычета в устранимой особой точке.
ПРИМЕР 3. Вычисление вычета в полюсе порядка n.
ПРИМЕР 4. Вычисление вычета в простом полюсе.
ПРИМЕР 5. Вычисление вычета в существенной особой точке.
Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Вычеты. Основная теорема о вычетах
Содержание:
По этой ссылке вы найдёте полный курс лекций по математике:
] в лорановском разложении этой функции в точке z0. Отсюда, в частности, вытекает, что вычет в устранимой особой точке равен нулю. Укажем некоторые формулы для вычисления вычета в полюсе функции /(г).
Поэтому по теореме Коши для многосвязной области имеем Из этой формулы, пользуясь определением вычета получаем требуемое равенство (5). 6.1. Вычет функции относительно бесконечно удаленной точки Говорят, чтофункция f(z) является аналитической в бесконечно удаленной точке z = оо, если функция аналитична вточке С =0. Это следует понимать так: функцию g(0= f (f) можно доопределить до аналитической, положив Например, функция аналитична в точке z = оо, поскольку функция аналитична в точке С = 0.
Возможно вам будут полезны данные страницы:
Пусть функция /(г) аналитична в некоторой окрестности бесконечно удаленной точки (кроме самой точки z = оо). Точка z = оо называется изолированной особой точкой функции /(г), если в некоторой окрестности этой точки нет других особых точек функции f(z). Функция имеет в бесконечности неизолированную особенность: полюсы zk = к-к этой функции накапливаются в бесконечности, если к оо. Говорят, что z — оо является устранимой особой тонкой, полюсом или существенно особой точкой функции f(z) в зависимости от того, конечен, бесконечен или вовсе не существует lim f(z).
Критерии типа бесконечно удаленной точки, связанные с разложением Лорана, изменяюгся по сравнению с критериями для конечных особых точек. Теорема 22. Если z — оо является устранимой особой точкой функции /(z), то лоранов-ское разложение f(z) в окрестности этой точки не содержит полож и тельных степеней z;eaiu z — оо — полюс, то это разложение содержит конечное число положительных степеней z, в случае существенной особенности — бесконечное число положительных степеней z.
При этом лорановским разложением функции /(z) в окрестности бесконечно удаленной точки будем называть разложение в ряд Лорана, сходящийся всюду вне круга достаточно большого радиуса R с центром в точке z — 0 (кроме, быть может, самой точки z — оо). Пусть функция f(z) — аналитична в некоторой окрестности точки z = оо (кроме, быть может, самой этой точки). Вычетом функции /(z) в бесконечности называют величину пае 7 — достаточно большая окружность \z\ = р, проходимая по часовой стрелке (так, что окрестность точки z — оо остается слева, как и в случае конечной точки г = го).
И з этого определения следует, что вычет функции в бесконечности равен коэффициенту при z
Известные тейлоровские разложения функций е1, cosz, sinz, chz, shz можно рассматривать также и как лорановские разложения в окрестности точки z — оо.
Так как все эти разложения содержат бесконечное множество положительных степеней z, то перечисленные функции имеюгвточке z = оо существенную особенность. Теорема 23. Если функция f(z) имеет в расширенной комплексной плоскости конечное число особых точек, то сумма всех ее вычетов, включая и вычет в бесконечности, равна нулю. Так что, если — конечные особые точки функции f Вычислить интеграл Полюсами (конечными) подынтегральной функции являются корни zt уравнения гя = —1, которые все лежат внутри окружности В окрестности точки г = оо функция /(z) имеет следующее разложение: ИЗ КОТОРОГО ВИДНО, ЧТО В силу теоремы 6.2. Приложение вычетов к вычислению определенных интегралов. Интегралы от рациональных функций Теорема 24. Пусть f(x) — рациональная функция, т. е. где — многочлены степеней пит соответственно. Пример 6. Вычислить интеграл Применяя подстановку z = е,г. после простых преобразований (см. формулы (II)) получим, что Внутри единичного круга при условии находится только один полюс (второго порядка) Вычет функции Интегралы вида гдеД(х) — правильная рациональная дробь, а > 0 — вещественное число. При вычислении таких интегралов часто бывает полезной следующая лемма. Лемма Жордана. Пусть функция f(z) аналитична в верхней полуплоскости исключением конечного числа изолированных особых точек, и при \ стремится к нулю равномерно относительно arg z. где 7л — верхняя полуокружность Условие равномерного стремления /(г) к нулю означает, что на полуокружности 7R Оценим исследуемый интефал. Замечая, что на 7Л В силу известного неравенства (см. рис. 31) справедливого при (для доказательства достаточно заметить, что и, значит, функция ^ убывает на полуинтервале Сопоставляя формулы (13) и (14), заключаем, что 4 Введем вспомогательную функцию Пример 7. Вычислить интеграл Нетрудно видеть, что если г = х, то Jmh(z) совпадает с подынтегральной функцией. Отсюда откуда Упражнения Найдите действительную и мнимую части функдаи: Найдите образы действительной и мнимой осей при отображении: Докажи те, что функция непрерывна на всей комплексной плоскости: Пользуясь условиями Коши—Римана, выясните, является ли функция аналитической хотя бы в одной точке или нет: Восстановите аналитическую в окрестности точки 20 функцию /(г) по известной действительной части и (или по известной мнимой части v(x, у)) и значению f(z0): Покажите, что следующие функци и являются гармоническими: Может ли данная функция быть действительной или мнимой частью аналитической функции Найдите действительную и мнимую части функции: Найдите модуль и главное значение аргумента функции в указанной точке zq: Найдите логарифмы следующих чисел: Решите уравнение: 38. Вычислите интеграл /— линия, соединяющая точки z\ = 0 отрето к прямой, б) дуга параболы ломаная 39. Вычислите интеграл — полуокружность Вычислите интегралы: 43. Вычислите интеграл / где 7 — верхняя половина окру*« ости |z| = 1 (выбирается Вычеты Основная теорема о вычетах Применение вычетов к вычислению интегралов Вычет функции относительно бесконечно удаленной точки Приложение вычетов к вычислению определенных интегралов Интегралы от рациональных функций Лемма Жордана Вычисление интегралов Френеля ветвь функци и л/z, для которой 44. Вычислите интеграл / ^ dz, где 7 — отрезок прямой, идущий из точки zj = 1 в точку. Вычислите интегралы: Найдите радиус сходимости ряда: Рашожите функцию в ряд Тейлора и найдите радиус сходимости полученного ряда: постепеням z + I. 55. cosz постепеням 56.—-— постепеням z + 2. 57.—^— постепеням z. 58. sh2 z постепеням z. Найдите нули функции и определите их порядки: z Определите область сходимости ряда: Разложите в ряд Лорана в окрестности точки г = 0: Разяожитс в ряд Лорана в уюзан ном кольце: Найдите особые точки и определит е их характер: Присылайте задания в любое время дня и ночи в ➔ Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института. Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды. 1.Определение вычета и основная теорема о вычетах. 4.Вычет функции относительно бесконечно удаленной точки 1. Определение вычета и основная теорема о вычетах. Пусть f ( z ) – функция, аналитическая в каждой точке облас- R в ряд Лорана имеет вид Определение 1. Вычетом аналитической функции f ( z ) в изолированной особой точке называется комплексное чис- ло, равное значению интеграла содержащему внутри себя единственную особую точку z 0 Если в выражении c n = ∫ + ( ζ − f ( z ζ ) ) n + 1 d ζ относительно особой точки эффициенту при первой отрицательной степени в разложении функции f ( z ) в ряд Лорана. Теорема 1 (Коши). Пусть f ( z ) есть функция, аналитиче- ружности попарно не пересекались и целиком лежали в области, ограниченной Γ (рис.1). Коши для многосвязной области имеем 2. Вычисление вычетов функции. Пусть точка z 0 является в точке z 0 можно найти либо по В первом случае нахождение вычета функции f ( z ) сводится к вычислению интеграла, во втором случае – к f ( z ) в ряд Лорана. Рассмотрим вычисле- ние вычетов в различных особых точках. Вычисление вычетов функции относительно устранимой особой точки. Пусть z 0 есть устранимая Вычисление вычетов функции относительно полюса. Случай 1. Простой полюс. Так как в правой части равенства находится обыкновенный степенной ряд, то его сумма является непрерывной функцией в f ( z ) есть частное двух аналити- ческих в точке z 0 функций является простым полюсом функции f ( z ) = z → z 0 h ( z ) − h ( z 0 ) В правой части равенства находится степенной ряд, который равномерно сходится в любом круге, целиком лежащим в его круге сходимости. Поэтому возможно почленное дифференцирование этого ряда любое число раз в круге его сходимости. Дифференцируя последнее равенство ( m − 1 ) раз, имеем d m − 1 [( z − z 0 − ) m f ( z )] = dz m 1 z 1 = 0 – полюс второго порядка и z 2 = 1 – простой полюс. Тогда имеем Вычисление вычетов функции относительно существенно особой точки. Пусть точка z 0 является щественно особой точкой. Разложим данную функцию в ряд Лорана в окрестности точки z = 0 Отсюда находим Res e 3. Логарифмический вычет. функции f ( z ) называется функция логарифмической производной функции f ( z ) : Res ( ln f ( z )) ′ = Res Теорема 3. Пусть f ( z ) – мероморфная функция в области ► Пусть функция f ( z ) мероморфна в области E и Γ – f ( z ) являются точки f ( z ) являются точки Применяя к функции ( ln f ( z )) ′ основную теорему о вычетах и учитывая теорему 2, получим 2 π 1 i Γ ∫ + f f ′ ( ( z z ) ) dz = т. е. функция f ( z ) является аналитической в некоторой окрест- ности бесконечно удаленной точки. где Γ — замкнутый кусочно-гладкий контур, целиком лежащий в той окрестности бесконечно удаленной точки, в которой функция f ( z ) является аналитической. Здесь интегрирование по контуру Γ совершается в отрицательном направлении, т. е. так, чтобы при обходе контура бесконечно удаленная точка оставалась слева. удаленной точки, разложение функции f ( z ) в ряд Лорана имеет Так как ряд Лорана функции f ( z ) сходится равномерно на Учитывая, что для k = 0,1, ± 2, L ∫ z k dz = 0 иПример 4:
Пример 5:
Тогда для любого положитыьного а Вычеты