вывод уравнений максвелла в дифференциальной форме

Уравнения Максвелла

Уравнения Максвелла — это 4 уравнения, которые описывают, как электрические и магнитные поля распространяются и взаимодействуют; т.е. эти уравнения (правила или даже законы) описывают процессы/взаимодействия электромагнетизма.

Эти правила описывают, как проходит управление поведением электрических и магнитных полей. Уравнения Максвелла показывают, что электрический заряд (положительный и отрицательный):

Уравнения Максвелла в дифференциальной форме

Уравнение 1: Закон Гаусса или Теорема Гаусса

Дивергенция электрического поля равняется плотности заряда. Существует вязь между электрическим полем и электрическим зарядом.

Дивергенция в физике показывает, насколько данная точка пространства является источником или потребителем потока поля.

Очень кратко: Электрические поля расходятся от электрических зарядов: электрический заряд создаёт поле вокруг себя и, таким образом, действует как источник электрических полей. Это можно сравнить с краном, который является источником воды.

Ещё закон Гаусса говорит о том, что отрицательные заряды действуют как сток для электрических полей (способ, как вода стекает через отверстие стока). Это означает, что линии электрического поля имеют начало и поглощаются при электрическом заряде.

Заряды с одинаковым знаком отталкиваются друг от друга, а противоположные заряды притягиваются друг к другу (если есть два положительных заряда, они будут отталкиваться; а если есть один отрицательный и один положительный, они будут притягиваться друг к другу).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

Можно создать электрическое поле, изменив магнитное поле.

Очень кратко: Закон Фарадея гласит, что изменяющееся магнитное поле внутри контура вызывает индуцированный ток, который возникает из-за силы или напряжения внутри контура. Это значит:

Уравнение 3: Закон Гаусса для магнетизма

Дивергенция магнитного потока любой замкнутой поверхности равна нулю. Магнитного монополя не существует.

Закон Гаусса для магнетизма утверждает (очень кратко):

Уравнение 4: Закон Ампера

Магнитное поле создаётся с помощью тока или изменяющегося электрического поля.

Очень кратко: Электрический ток порождает магнитное поле вокруг тока. Изменяющийся во времени электрический поток порождает магнитное поле.

Уравнения Максвелла в интегральной и дифференциальной форме

Вспомним сначала в дифференциальной форме и следом будет в интегральной форме.

Уравнение 1: Закон Гаусса (Теорема Гаусса)

Это же уравнение в интегральной форме:

Поток вектора электрической индукции D через любую замкнутую поверхность равняется сумме свободных зарядов, охваченных этой поверхностью. Электрическое поле создаётся нескомпенсированными электрическими зарядами (это те, что создают вокруг себя своё собственное электрическое поле).

Уравнение 2: Закон электромагнитной индукции (Закон Фарадея)

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Е вихревого электрического поля (по любому замкнутому контуру) равняется скорости изменения магнитного потока через площадь контура (S) с противоположным знаком.

Уравнение 3: Закон Гаусса для магнетизма

И это же уравнение в интегральной форме:

Силовые линии магнитного поля замкнуты, т.к. поток вектора индукции В магнитного поля через любую замкнутую поверхность равняется нулю.

Уравнение 4: Закон Ампера

И это же уравнение в интегральной форме:

Циркуляция вектора напряжённости Н магнитного поля по замкнутому контуру равняется алгебраической сумме токов, которые пронизывают этот контур. Магнитное поле создаётся не только током проводимости, но и переменным электрическим полем.

Источник

Система уравнений Максвелла для электромагнитного поля: смысл, способы решения

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Уравнения Максвелла в электродинамике – это как законы Ньютона в классической механике или как постулаты Эйнштейна в теории относительности. Фундаментальные уравнения, в сущности которых мы сегодня будем разбираться, чтобы не впадать в ступор от одного их упоминания.

Полезная и интересная информация по другим темам – у нас в телеграм.

Уравнения Максвелла – это система уравнений в дифференциальной или интегральной форме, описывающая любые электромагнитные поля, связь между токами и электрическими зарядами в любых средах.

Уравнения Максвелла неохотно принимались и критически воспринимались учеными-современниками Максвелла. Все потому, что эти уравнения не были похожи ни на что из известного людям ранее.

Тем не менее, и по сей день нет никаких сомнений в правильности уравнений Максвелла, они «работают» не только в привычном нам макромире, но и в области квантовой механики.

Уравнения Максвелла совершили настоящий переворот в восприятии людьми научной картины мира. Так, они предвосхитили открытие радиоволн и показали, что свет имеет электромагнитную природу.

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.

По порядку запишем и поясним все 4 уравнения. Сразу уточним, что записывать их будем в системе СИ.

Первое уравнение Максвелла

Современный вид первого уравнения Максвелла таков:

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Тут нужно пояснить, что такое дивергенция. Дивергенция – это дифференциальный оператор, определяющий поток какого-то поля через определенную поверхность. Уместным будет сравнение с краном или с трубой. Например, чем больше диаметр носика крана и напор в трубе, тем большим будет поток воды через поверхность, которую представляет собой носик.

В первом уравнении Максвелла E – это векторное электрическое поле, а греческая буква «ро» – суммарный заряд, заключенный внутри замкнутой поверхности.

Так вот, поток электрического поля E через любую замкнутую поверхность зависит от суммарного заряда внутри этой поверхности. Данное уравнение представляет собой закон (теорему) Гаусса.

Третье уравнение Максвелла

Сейчас мы пропустим второе уравнение, так как третье уравнение Максвелла – это тоже закон Гаусса, только уже не для электрического поля, но для магнитного.

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Что это значит? Поток магнитного поля через замкнутую поверхность равен нулю. Если электрические заряды (положительные и отрицательные) вполне могут существовать по отдельности, порождая вокруг себя электрическое поле, то магнитных зарядов в природе просто не существует.

Второе уравнение Максвелла

Второе уравнение Максвелла представляет собой ни что иное, как закон Фарадея. Его вид:

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Ротор электрического поля (интеграл через замкнутую поверхность) равен скорости изменения магнитного потока, пронизывающего эту поверхность. Чтобы лучше понять, возьмем воду в ванной, которая сливается через отверстие. Вокруг отверстия образуется воронка. Ротор – это сумма (интеграл) векторов скоростей частиц воды, которые вращаются вокруг отверстия.

Как Вы помните, на основе закона Фарадея работают электродвигатели: вращающийся магнит порождает ток в катушке.

Четвертое уравнение Максвелла

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Это уравнение еще называется теоремой о циркуляции вектора магнитной индукции. Оно говорит нам о том, что электрический ток и изменение электрического поля порождают вихревое магнитное поле.

Приведем теперь всю систему уравнений и кратко обозначим суть каждого из них:

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Первое уравнение: электрический заряд порождает электрическое поле

Второе уравнение: изменяющееся магнитное поле порождает вихревое электрическое поле

Третье уравнение: магнитных зарядов не существует

Четвертое уравнение: электрический ток и изменение электрической индукции порождают вихревое магнитное поле

Решая уравнения Максвелла для свободной электромагнитной волны, мы получим следующую картину ее распространения в пространстве:

вывод уравнений максвелла в дифференциальной форме. вывод уравнений максвелла в дифференциальной форме фото. картинка вывод уравнений максвелла в дифференциальной форме. смотреть фото вывод уравнений максвелла в дифференциальной форме. смотреть картинку вывод уравнений максвелла в дифференциальной форме.

Надеемся, эта статья поможет систематизировать знания об уравнениях Максвелла. А если понадобиться решить задачу по электродинамике с применением этих уравнений, можете смело обратиться за помощью в студенческий сервис. Подробное объяснение любого задания и отличная оценка гарантированы.

Источник

Уравнения Максвелла

Уравнения Максвелла — основная идея и физическая суть

Закономерности, выведенные Максвеллом, в электродинамике имеют такое значение, как, к примеру, законы Ньютона для классической механики и постулаты Эйнштейна в теории относительности. Это фундаментальные уравнения, которые подтверждены экспериментальным путем.

Уравнения Максвелла являются системой уравнений в дифференциальном или интегральном виде, которые описывают любые электромагнитные поля, взаимосвязи токов и электрических зарядов в разных средах, включая вакуум.

Уравнения Максвелла подвергались критике со стороны современников ученого, так как не вписывались в установленные стандарты и представления того времени. Однако закономерности послужили началом активного развития науки и причиной переворота в восприятии картины мира. Постулаты предшествовали открытию радиоволн и продемонстрировали электромагнитную природу света. Формулы Максвелла справедливы для макромира и области квантовой механики.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Что описывают четыре уравнения

Смысл уравнений Максвелла:

Как записать в интегральной форме

Первое уравнение

Первое уравнение Максвелла представляет собой дифференциальную формулировку закона полного тока. Формула выглядит следующим образом:

S опирается на контур L.

Согласно теореме Стокса:

Уравнение справедливо для любых поверхностей, которые опираются на материальный контур L. Исходя из этого, подынтегральные функции равны.

Данная формула является дифференциальной формой закона Ома.

Первое уравнение Максвелла имеет вид:

Физический смысл данной расшифровки заключается в том, что в качестве источников вихревых магнитных полей выступают токи проводимости и токи смещения.

Второе уравнение

Второе уравнение Максвелла представляет собой дифференциальную формулировку закона электромагнитной индукции и ее свойств:

Второе уравнение Максвелла имеет следующий вид:

Физический смысл заключается в том, что переменное электрическое поле создается вихревым электрическим полем.

Третье уравнение

Третье уравнение Максвелла представляет собой дифференциальную формулировку теоремы Гаусса для электрических полей:

С помощью теоремы Островского-Гаусса можно выполнить переход от поверхностного интеграла \( \left(\vec \right)\) к объемному интегралу ( \(div D\) ):

Можно записать правую часть формулы для объемного заряда. После объединения двух уравнений получим:

Третье уравнение Максвелла:

Физический смысл закономерности заключается в том, что электрическое поле образовано источниками в виде зарядов с определенной плотностью.

Четвертое уравнение

Четвертым уравнением Максвелла является дифференциальная формулировка теоремы Гаусса, справедливая в условиях магнитного поля:

Четвертое уравнение Максвелла имеет вид:

Физический смысл четвертого уравнения Максвелла выражается в нулевом значении дивергенции вектора \(\vec\) для какой-либо точки в пространстве. Таким образом, сделан вывод об отсутствии источников или магнитных зарядов в природе.

Закон сохранения заряда в дифференциальной форме

Данная формула имеет следующий вид:

С помощью теоремы Островского-Гаусс можно вывести уравнение, которое будет являться результатов предыдущих закономерностей:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *