закон мура гласит что количество транзисторов удваивается каждые
Что такое Закон Мура и как он работает теперь? Разбор
Закон Мура гласит: “Количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца”. Вы наверняка слышали про этот закон. А еще вы наверняка слышали, что он больше не работает.
Но, если посмотреть на реальные цифры реальных процессоров, мы увидим, что Закон Мура, удивительно точно работает по сей день, вот уже 50 лет.
Тем не менее, мы с вами на собственном опыте чувствуем, что прогресс замедлился. Несмотря на двукратный прирост транзисторов, мы не видим двукратного прироста производительности. Поэтому сегодня мы разберёмся. Что не так с Законом Мура?
Но самое интересное, что важный перелом произошел на рубеже нулевых и 2010-х. И нужны были новые решения.
С какими сложностями столкнулось человечество и как мы их обошли? И чего нам ждать, когда закон Мура действительно перестанет работать?
Закон не закон
Начнём, с того, что закон Мура на самом деле никакой не закон, а просто наблюдение Гордона Мура, основателя Fairchild Semiconductor, а также Intel.
С момента изобретения интегральной схемы в 1959 году количество транзисторов на микрочипах вырастало в среднем в два раза каждый год. Гордон Мур это заметил, и сказал: Всё! Так и будет.
А в 1975 году он внес поправку, и сказал:» Нет, всё таки, каждые два года».
На что ребята из Intel ответили: Ок, кажется, у нас появился план и мы его будем придерживаться. А вся индустрия подстроилась под такой темп.
И это, очень круто. Ведь чем меньше размер транзистора, тем меньше он потребляет тока. А чем больше количество транзисторов, тем выше вычислительная мощность. Причем зависимости прямо пропорциональные.
А значит, чем больше маленький транзисторов получится разместить на чипе, тем лучше.
Возьмем современный пример:
Например, в первом ASUS Zenbook который вышел в 2011 году стоял процессор Intel Core i7-2677M. В нём было 624 миллиона транзисторов. Звучит неплохо, с учетом того, что когда Мур придумывал свой закон в 65 году в актуальном процессоре было всего 64 транзистора, не миллионов, всего 64.
А вот в ZenBook Duo 14, который вышел через 10 лет используется процессор Intel 11-го поколения Core i7-1165G7, в котором уже 8,2 миллиарда транзисторов! Это в 13 раз больше, и это огромный скачок вперед. Но если прикинуть по закону Мура, то транзисторов в этот момент должно было быть как минимум в 2 раза больше — 19,9 миллиардов, на самом деле. Но почему закон замедлился? Смотрите.
Почему Закон Мура работал?
Долгое время Закон Мура работал как часы. Транзисторы уменьшались, их число росло, а мощность возрастала. А это, на секундочку рост по экспоненте, то есть очень быстро!
Обратите внимание, что все графики отражающие Закон Мура изображены в логарифмической шкале, но если перевести график в линейную шкалу, мы поймем какой прорыв совершается каждые два года. В 65 году в микрочипе было 64 транзистора, а сейчас в серверном процессоре AMD Epic их почти 40 миллиардов. Но откуда была такая стабильность?
Скорее всего вы знаете, что процессоры производят путем фотолитографии. Иными словами, лазер светит через трафарет, который называется маской, и процессор буквально выжигается на кремниевой подложке. Это очень похоже на проявку фотографии.
Тут для на нас важен лишь они факт: чем меньше длина волны, с которой светит лазер, тем выше разрешение и меньше техпроцесс!
Наглядная инфографика по лазерам
Так индустрия и развивалась: когда достигали предела разрешения лазера — меняли его на лазер с более короткой длиной волны.
Поначалу использовали дуговые ртутные лампы, а не лазеры, с длиной волны 436 нм — это синий свет. Потом освоили 405 нм — это фиолетовый. И наконец до 365 нм — ближний ультрафиолет. На этом эра ртутных ламп закончилась и началось использование ультрафиолетовых газовых лазеров. Сначала освоили 248 нм — средний ультрафиолет, а потом 193 нм — глубокий ультрафиолет или DUV. Такие лазеры давали максимальное разрешение в 50 нм и на какое-то время этого хватало. Но потом произошел переломный момент…
Переломный момент
К 2006 году надо было осваивать техпроцесс в 40-45 нм. Разрешения лазеров было недостаточно.
Это был тупик! Гиганты Кремниевой Долины потратили сотни миллионов долларов для перехода на 157 нм (лазеры на основе фторид-кальциевой оптики), однако всё было впустую.
Даже сам Гордон Мур в 2007 году сказал: «Мои полномочия как бы всё, из-за фундаментальных причин». Если что, это точная цитата…
Но мы то с вами знаем, что на 45 нм человечество не остановилось. Уже 10 лет назад в первом ZenBook использовалась литография 32 нм. Как же люди смогли обойти оптические ограничения?
Они начали использовать различные хаки:
Из-за этого пришлось поставить крест на росте тактовых частот. Если раньше частоты удваивались так же быстро, как транзисторы, прирост практически остановился.
Десять интересных лет
В итоге, вопреки своим планам, Intel застрял на 14 нм техпроцессе, а тактовые частоты остановили свой рост. И примерно с 2010 года начались 10 интересных лет оптимизаций.
Если раньше прогресс обеспечивался брутальным уменьшением техпроцесса и прирост производительности давался легко, то теперь началась настоящая работа по допиливанию всего того, что человечество придумало за 40 предыдущих лет.
Люди стали искать инновации за пределами Закона Мура:
И вот прошло 10 лет, пока мы с горем пополам производили 14-ти, 10-ти, и даже 7-нанометровые процессоры. Произошло событие, которого все очень долго ждали. Мир перешел на экстремальную УФ-литографию. Длина волны лазера скакнула с 193 нм до 13,5 нм, что является крупнейшим скачком за всю историю создания процессоров. Технологию разрабатывали 81 год и только в 2020 она заработала в полную мощь.
Ключевой момент технологии в том, что она позволит уменьшать техпроцесс вплоть до 1 нм, а это 10 атомов в толщину. И если вы считаете, что это невозможно, это не так. Компания IBM уже в этом году освоила 2 нм. Так, что 1 нм — это лишь дело техники.
Будущее
Но, а что нас ждет за порогом в 1 нм? Как дальше повышать производительность?
Это сложный вопрос. Безусловно люди придумают новую форму транзистора, мы перейдем на нанолистовые транзисторы. Вполне возможно, что люди откажутся от кремния и перейдут на новые материалы. Вариантов на замену есть масса:
Ну и наконец, скорее всего мы полностью откажемся от текущей концепции центрального процессора, основанной на архитектуре Фон Неймана и перейдем на асинхронные нейроморфные процессоры, построенные по подобию человеческого мозга. Кстати, их разработкой занимается тоже Intel.
В любом случае у нас есть еще 5-10 лет, пока транзисторы будут удваиваться по Закону Мура, а потом посмотрим.
С юбилеем, закон Мура
Привет, Geektimes. Недавно мы праздновали юбилей, причём какой! Не юбилей компании, что очень приятно, но не так важно. Не юбилей какого-либо изобретения, а юбилей закона, который вот уже 50 лет как движет развитие микроэлектроники вперёд, побуждая инженеров творить чудеса и увеличивать производительность компьютеров год за годом. Юбилей закона, которая каждая IT-компания, независимо от того, софтовая она или хардовая, старается поддержать и подтвердить ещё день, месяц, год. Юбилей закона Мура.
Кто такой Мур и какое влияние он оказал на микроэлектронику?
Гордон Эрл Мур родился в 1929 году в Сан-Франциско, вырос в небольшом городке Пескадеро, в 1950 стал бакалавром химии в Беркли, спустя четыре года успешно защитил докторскую степень в области химии и физики в Калифорнийском технологическом институте. И ничто не выделяло бы его из сотен таких же выпускников, если бы не его сосредоточенность на деле. Перед тем как основать Intel, Мур работал в данной области почти двенадцать лет: сначала Shockley Semiconductor Laboratory в Пало-Альто; Гордон Мур ушёл из “Шокли” из-за несогласия с её основателем, Уильямом Шокли, который хотел прекратить исследования кремниевых полупроводников. Не найдя компромиссов с руководством, он и ещё семь талантливых инженеров основали одну из крупнейших на тот момент компаний по работе с кремниевыми транзисторами Fairchild Semiconductors. Спустя 12 лет Fairchild Semiconductor стала одним из ведущих производителей операционных усилителей и других аналоговых интегральных микросхем, но материнская компания начала ограничивать возможности своей «дочки», после чего опытные сотрудники начали увольняться, сама Fairchild Semiconductor быстро пришла в упадок и потеряла долю на рынке, а Гордон Мур вместе с Робертом Нойсом (автором патента на интегральную схему) основал компанию Intel.
Закон Мура: предпосылки и наблюдения
Закон Мура не сразу сформировался таким, каким мы его знаем, но, как и всякий закон, он основывался на наблюдении. Первая формулировка (1965 год) была найдена случайно. Готовясь к очередному выступлению, Гордон Мур пытался вычислить, сколько будет стоить произвести один элемент на микросхеме в зависимости от того, сколько элементов суммарно будет на ней находиться. Зависимость нашлась, причём (как и во многих других отраслях) оказалось, что существует некое оптимальное среднее значение, при котором стоимость одного элемента вычислительной схемы минимальна.
Кроме этого, он заметил, что из года в год, во-первых, уменьшается стоимость одного элемента, а во-вторых, количество элементов на одном кристалле растёт. Также Мур отметил, что более продвинутые модели микросхем появлялись приблизительно спустя год после предшественников, при этом количество транзисторов на них удваивалось.
Связано это было как с бурным развитием микроэлектроники, так и с растущими потребностями индустрии. Спустя десять лет микропроцессоры стали доступнее, производились в куда больших количествах, чем ранее, и Гордон Мур внёс в свой закон небольшие изменения: число транзисторов удваивается каждые два года. Связано это было в первую очередь с экономической составляющей высокотехнологичных производств: разработка новинок стоит денег и новинки необходимо успевать окупить.
Слишком частый выпуск новых продуктов приводил бы к тому, что доля исследований и разработок в затратах на выпуск единицы продукции сильно росла, и компания не могла извлечь достаточно прибыли для дальнейшего развития. Слишком редкий выпуск новых продуктов открывал дорогу конкурентам и тем, кто решил рискнуть и выпустить свой продукт раньше других. Таким образом вся индустрия пришла к рациональному циклу развития, который работает вот уже 50 лет.
Экспоненциальная зависимость и рост вычислительных мощностей нашли своё отражение во многих смежных областях. Некоторые другие предсказания Гордона Мура тоже оправдались, но они не столь известны и популярны.
Чего достигла микроэлектроника
С начала семидесятых годов микроэлектроника сильно шагнула вперёд. Сложно представить, но производительность и энергоэффективность кое-где опередили даже смелые прогнозы, основанные на законе Гордона Мура:
Если сравнивать прогресс в микроэлектронике с прогрессом в механике и других областях прикладной науки, то сложно даже описать, насколько быстро растёт та сфера, которой занимается Intel.
в 40 000 км полёт на высоте уровня моря за 20 минут потребовал бы развивать скорость порядка 2 000 километров в минуту (120 000 Км/ч или 33 333.(3) м/с) — а это примерно 1.1% скорости света в вакууме (300 млн м/с).
Отражение Закона Мура в смежных областях
Закон Мура как таковой отражает только рост вычислительной мощности чипов, но что стоит за ростом этой вычислительной мощности? Как повлияло такое развитие на другие сферы человеческой деятельности? Возьмём, к примеру, суперкомпьютеры. Учёным требуются суперсложные вычисления — мы их обеспечиваем.
Рост производительности 500 самых мощных систем получается несколько быстрее, чем экспонента закона:
Стоимость одного из самых сложных “потребительских” вычислений — расшифровки генома человека — снижалась ещё быстрее:
Даже в таком близком и простом для нас с вами понятии, как размер дистрибутива OS, Закон Мура продолжает действовать:
Отражение фундаментального (на сегодняшний день) наблюдения за развитием мира микроэлектроники можно найти практически везде, где она хоть как-нибудь задействована.
Облачные вычисления, мобильная техника, количество подключений к интернет, — эти и многие другие области IT растут по экспоненте вместе с нашими процессорами, и пока не думают останавливаться.
Прогнозы
К сожалению, законы физики сильнее условностей, которые придумали люди, и для Закона Мура есть ограничения. Его пытались похоронить много раз. Да что уж говорить: сам Гордон Мур в 1995 году думал, что к 2005 экономические аспекты производства поставят производителей в такие условия, что закон перестанет выполняться. Когда этого не случилось, он оценил рубеж экспоненциального роста производительности вычислительных систем 2015-2025 годами, но уже из-за технологических ограничений.
Инженеры не раз сталкивались с невозможностью продолжать совершенствование процессоров классическим путём. Упёрлись в тактовую частоту одного ядра — появились многоядерные системы. Ядра простаивают в ожидании новых задач? Появилась виртуальная гиперпоточность. Из имеющейся архитектуры выжали все соки? Можно уменьшить техпроцесс, а с ним тепловыделение, увеличить таковые частоты, и параллельно работать над новым поколением железа.
Если быть точным, то впервые существенно законы физики вмешались уже на техпроцессе в
200 нм: так как получить изображение меньшее, чем 1/2 длины волны вообще не представляется возможным с точки зрения законов физики. В тот раз нашлось простое и элегантное решение: нельзя сделать маски “мельче” — пусть изображение формируется в несколько этапов с использованием разных масок для каждого из них:
Мало будет двух раз? Сделаем и четыре прохода, и восемь. К сожалению, уменьшать технологический размер элементов и работать со всё более и более тонкими структурами рано или поздно начнут мешать ограничения, которые мы пока не в силах преодолеть. Но наша задача — отсрочить этот момент как можно дальше.
Intel Xeon E7 v3
В день юбилея закона Мура мы решили в очередной раз подтвердить его на практике и представили новое поколение серверных процессоров Intel Xeon E7 третьего поколения.
Если сравнивать новые процессоры Intel с популярными RISC-чипами других производителей, то цифры просто удивительные:
Новое семейство процессоров во многом превосходит модели предыдущего поколения:
Xeon’ы у наших друзей
Один из наших крупнейших партнёров, компания HP, отметила, что системы на основе архитектуры x86_64 всё плотнее проникают в сегмент бизнес-критичных платформ:
Причина такого изменения, разумеется, в деньгах. Суммарное снижение TCO (совокупной стоимости владения) ниже аналогичных RISC-платформ с *NIX на борту примерно на треть.
Применение процессоров Intel Xeon и Xeon PHI позволило другому нашему партнёру, компании РСК, создать уникальные вычислительные системы: RSC PetaStream и «РСК Торнадо»:
Энергетическая плотность RSC PetaSteram — 400+ кВт на шкаф. И ведь это тепло выделится в процессе работы – его необходимо собрать, отвести и сделать это максимально эффективно. Для сравнения, мощность известного на постсоветском пространстве грузового электровоза ВЛ85 — порядка 10 000 кВт.
Комплекс RSC PetaSteram по-настоящему уникальный и эффективный продукт, которым компания РСК может гордиться по праву. Системы RCS PetaStream и «РСК Торнадо» уже работают в российских научных и образовательных учреждениях.
Немного о «законе Мура»
Согласно «закону Мура», количество транзисторов, размещаемых на кристалле интегральной схемы, должно удваиваться каждые 24 месяца, а их стоимость – оставаться на одном уровне. Но практически сразу после выдвижения этой гипотезы начались разговоры о «смерти» этого закона – ведь в реальном мире ничто не может расти бесконечно (даже если рост – экспоненциальный).
Во времена появления закона Мура проектирование микропроцессоров действительно происходило в соответствии с этим законом. Но с уменьшением размеров транзисторов технологии для их изготовления становятся всё сложнее и изощрённее. Так, в начале 2000-х тоже казалось, что этой прогрессии приходит конец, но различные технические средства, разрабатываемые в то время, поддерживали «жизнь» закона Мура. Был представлен «растянутый» кремний, обеспечивающий производство 90-нм транзисторов.
Для 45-нм транзисторов были изобретены новые материалы, увеличивающие ёмкость (затвора) каждого транзистора. А трёхмерные транзисторы (tri-gate transistors), изготовленные по технологии 22 нм, только поддержали закон Мура.
Но и эти технологии не могут развиваться вечно. Фотолитография, используемая для производства чипов, работает на пределе своих возможностей: свет с длиной волны в 193 нм используют для создания чипов с элементами размером всего 14 нм. Слишком большую длину волны света можно уменьшить, но это ведёт к ещё более сложному и дорогостоящему производству. Так, возлагались надежды на «экстремальный» ультрафиолет с длиной волны всего в 13,5 нм, но оказалось, что его довольно сложно использовать в производстве.
Даже при использовании ультрафиолета неизвестно, насколько можно уменьшать транзисторы. Ведь при размере в 2 нм их ширина составит всего 10 атомов, и тогда они вряд ли будут надёжно работать. Кроме того, в этом случае перед инженерами встанут проблемы энергопотребления и охлаждения: чем плотнее расставлены транзисторы, тем сложнее доставить к ним энергию и отвести её от них.
Не стоит забывать и про фактор стоимости – конец закону Мура может положить не физика, а экономика.
Большие компании вроде Intel и AMD будут инвестировать миллиарды долларов до тех пор, пока они уверены, что прибыль покроет изначальные вложения. Однако каждый раз, когда транзисторы становятся меньше, их производство становится всё дороже.
Таким образом, в ближайшем будущем может наступить момент, когда «гиганты» не будут финансировать разработку более маленьких транзисторов, так как она попросту не будет рентабельной. И если кто-то вроде Intel перестанет гнаться за уменьшением транзисторов, его примеру последуют и остальные производители, что приведёт к «смерти» закона Мура.
Экономический фактор уже влияет на производство микропроцессоров. Так, Intel планировала переключиться на 10-нм транзисторы в 2016 году с процессорами Cannonlake – уменьшенной версией продаваемого сейчас 14-нм Skylake. Но в июле 2015 она поменяла свои планы. Новое поколение процессоров – Kaby Lake – будет выпущено в третьем квартале 2016 года с использованием 14-нм технологии. Планы на Cannonlake и 10-нм остаются, но выпуск этих процессоров ожидается не раньше второй половины 2017 года.
Все это осложняется тем, что новые транзисторы все сложнее использовать. В 1980-х и 1990-х преимущества от дополнительных транзисторов были очевидны – каждое последующее поколение процессоров было быстрее, и компьютеры того времени получали значительный прирост мощности только за счёт улучшения процессоров. Но такое простое увеличение производительности пошло на убыль в начале 2000-х. Частота процессоров сильно ограничивалась из-за нагрева, а мощность одного процессорного ядра росла относительно медленно. Вместо этого, производители стали делать процессоры с несколькими ядрами: теоретически, это увеличивает мощность процессора.
Все эти сложности говорят о том, что производственные планы компаний скоро перестанут опираться на закон Мура. Издательство Nature пишет, что новый план ITRS также будет использовать другой подход. Сейчас производители чипов нацелены на быстро растущий рынок мобильных устройств. Для них нужны чипы не только с логическим модулем (транзисторами) и кэш-памятью, а также с модулями оперативной памяти, регуляции энергопотребления, аналоговыми компонентами для GPS, сотовой связи, Wi-Fi и так далее. Все эти модули сейчас создаются в разных технологических процессах, и для производителей чипов более актуальна интеграция старых и разработка новых технологий построения таких составных микропроцессоров, чем очередное удвоение количества логических транзисторов.
И всё-таки новые технологии ещё могут дать шанс закону Мура. Текущая технология производства микросхем (КМОП), использующая кремний, может быть заменена чем-то другим, в том числе и в 7-нм транзисторах Intel. Более перспективные (по сравнению с кремнием) материалы: антимонид индия (InSb) и арсенид галлия-индия (InGaAs), а также (возможно) углерод, как в форме нанотрубок, так и в форме графена.
Если делать какие-то прогнозы, то в будущем закон Мура не исчезнет полностью. Использование нестандартных материалов может вернуть эту шкалу в строй. Достаточно большой прорыв может пробудить спрос на процессоры, которые попросту быстрее, а не меньше или дешевле.
Но сейчас, когда мы не можем точно сказать о грядущих прорывных инновациях, срок действия закона Мура (в его «последней редакции») подходит к концу. И в этом нет ничего катастрофического: производителям микросхем открываются новые рынки вроде мобильных устройств и машин для дата-центров. Поэтому, даже если закон Мура и «умрёт», это не сильно скажется как на жизни обывателя, так и на жизни производителя.
Материалы по теме из нашего блога на Хабре:
Что такое закон Мура простыми словами
Наиболее известное правило в мире высоких технологий – наблюдение, или закон Мура, гласит: каждые два года количество транзисторов на чипе увеличивается вдвое. Владельцы компьютеров могут вспомнить свои первые ПК, сравнить их с существующими современными моделями. Новое устройство всегда компактнее и мощнее предыдущего: согласно закону Мура, каждые 24 месяца количество чипов на интегральной схеме также увеличивается в два раза.
Этой формуле более 50 лет, она стала основной концепцией для создания современной техники, но, согласно подсчетам, закон Мура не вечен.
Идейный вдохновитель: кто он, Гордон Мур
Гордон Мур родился в Сан-Франциско, получил степень бакалавра химии и вместе с друзьями покинул престижную практику в лаборатории Уильяма Шокли ради возможности работы с кремниевыми транзисторами. Так началась карьера Гордона Мура, одного из основателей Intel. В 1968 году трое друзей работали над интегральной схемой, которая станет основой для современных ПК.
Так была создана Intel – корпорация, ставшая лидером в технологической индустрии. Гордон Мур более 15 лет занимал место генерального управляющего компании и более 30 (и по настоящее время) – должность председателя совета директоров.
История
Спустя 6 лет после разработки интегральной схемы, в 1965 году, Мур обнаружил закономерность: через год после выпуска микросхемы появлялся новый тип чипа с увеличивающимся вдвое количеством транзисторов на нем. Проанализировав тенденцию, инженер пришел к выводу, что мощность вычислительной техники растет по экспоненте (т.е. с высокой скоростью). Описанное наблюдение называется законом Гордона Мура.
Через 10 лет, в 1975 году, ученый внес поправку в свое наблюдение: увеличение количества транзисторов происходит каждые два года, а не через 12 месяцев.
В 2007 году Мур признал, что вскоре закон утратит свою силу так как есть предел темпа развития технологий.
Что такое закон Мура
Формулу на всех этапах работы используют инженеры или специалисты, имеющие отношение к разработке электроники. Для обывателя суть закона Гордона Мура такова: производительность и вычислительная мощность ПК увеличивается в два раза каждые пару лет.
Каждый замечал, насколько быстро устаревает техника, а стоимость новой увеличивается, но незначительно. Такая тенденция объясняется законом Мура и его влиянием на технологический прогресс.
Вариации на тему: Интерпретации наблюдений
Обратная интерпретация: наиболее целесообразное количество транзисторов на чипе возрастает вдвое каждый год.
Стоит отметить, что закон Гордона Мура не исполняется в точности, поэтому его нельзя называть эмпирическим опытом в строгом смысле этих понятий.
Антизакон
Очень немногие инженеры слышали об обратной закону гипотезе. Темп прогресса постоянен, по сравнению с увеличивающимся по экспоненте количеством исследователей.
Анализ с помощью построения графиков учеными Стэнфорда помог сформулировать Антизакон. Формулируется он так: производительность работы исследователей и разработчиков электроники за последние полвека снизилась почти в 20 раз. В задачи, требовавшие в 1971 году привлечения 1 тыс. ученых, в 2019 г. задействованы более 20 тыс. человек.
В масштабе глобальной экономики можно заметить работу антизакона Мура. При сравнении общей производительности населения развитой страны и производительности исследователей возникнет вывод, что ученые, жившие век назад, были в 25 раз продуктивнее разработчиков 21 века. Причиной этого безумия стала возрастающая сложность поставленных задач. С каждым годом делать научные открытия и прорывы все сложнее, и для этого вовлекают все больше специалистов. Возникает тотальная проблема дефицита IQ, решать которую, возможно придется с помощью замены человека искусственного интеллекта (ИИ).
Элизер Юдковски – исследователь ИИ, вывел следствие Закона Мура для «безумия» науки: раз в 18 месяцев необходимый для уничтожения человечества минимальный IQ уменьшается на 1 балл.
Статистическая проверка
Подтвердить или опровергнуть закон Мура можно с помощью анализа официальных данных Intel. Производительность работы процессоров увеличивается вдвое каждые 20 месяцев с 2010 года. В 2000-2010 гг. параметр эффективности удваивался медленнее – примерно каждые 23 месяца.
До 1995 года тактовая частота увеличивалась раз в 36 месяцев, с 2010 года показатель возрастает через каждые 25 месяцев.
Оба случая показывают разброс от заявленного темпа примерно в 1,5 раза. Поэтому ученые утверждают, что закон Мура перестал работать. Примечательно, что, вопреки опасениям автора о спаде темпа развития технологии, увеличение производительности, а также компактности микропроцессоров увеличивается. В такой трактовке можно утверждать, что скорость технологического прогресса опережает гипотезу Мура и осуществляется быстрее экспонентного темпа.
Влияние закона Мура
Последние 50 лет направление и темп развития электроники определялись законом Мура. С помощью этой гипотезы ученые стремятся вычислить темп развития ОП компьютеров, мощность и вычислительную скорость устройств.
Большинство разработчиков ориентируется на эту гипотезу, работа планируется с учетом данного наблюдения. Производители и продавцы точно прогнозируют срок выпуска обновленных процессоров и программного обеспечения.
Следствия закона Мура
Один из инвесторов Intel, Артур Рок, сформировал экономическое следствие закона Мура.
Каждые 4 года стоимость основных фондов, которые используются для производства полупроводников, увеличивается вдвое.
Параллелизм и закон Мура
Чтобы применить наблюдение основателя Intel, инженеры используют в работе принцип параллельных вычислений. Это означает, что разработка программного обеспечения и элементов проводится синхронно. Тогда каждый созданный элемент становится частью единой системы компьютера.
Такой способ организации программирования повышает темп развития многоядерных архитектур (принципов работы и построения ПК на 2 и более ядрах), число системных ошибок при этом уменьшается. Программное обеспечение и элементы устройств должны развиваться параллельно.
Для увеличения производительности и прибыли программы должны развиваться и обновляться одновременно с физическими носителями (чипами, транзисторами).
Распространение закона Мура
Инженеры Intel применяют наблюдение своего основателя практически во всех секторах собственного производства. Число транзисторов увеличивается вдвое, а вместе с этой цифрой растет уровень интеграции устройств и сложность структуры ПК в целом.
Закон Мура позволяет предсказать, когда потребуется создание принципиально новых технологических систем, как это произошло с использованием оптоволокна.
У разработчиков появляется возможность и время для формирования новых устройств и технологий в соответствии с запросом потребителей.
Изменение природы закона Мура
Наблюдение основателя Intel в течение 20 лет задавало темп разработки транзисторов и скорость тактовой частоты.
Сейчас закон Мура позволяет улучшить характеристики аккумуляторов ПК, смартфонов, снизить энергопотребление и улучшить производительность в целом. В электронике эта гипотеза является основной идеей в разработке каждого элемента. Спустя полвека закон Мура стал символом инноваций в культуре. В этом контексте наблюдение Гордона Мура олицетворяет использование накопленных знаний.
Когда закон Мура перестанет работать
Пользователям и разработчикам не стоит забывать, что основатель Intel, выводя собственный закон, не принимал в расчет фундаментальные положения физики и математики.
Чтобы наблюдение Мура продолжало действовать, производителям каждые два года нужно создавать способы уменьшения транзисторов без потери эффективности.
Такой процесс не длится бесконечно, так как существует физический предел для элементов. В расчетах ученые могут применять понятие бесконечно малого, но в реальном мире это невозможно.
При размере транзистора в несколько атомов в элементе начнутся квантовые изменения, то есть бесконтрольное движение электронов, что сделает транзисторы неэффективными.
Начиная с 2010 года, следование закону Мура перестало быть выгодным для разработчиков. На его соблюдение нужно тратить множество ресурсов: материалы, оборудование, увеличение штата и проч. На 2019 год закон Мура не работает эффективно, эра кремниевых транзисторов завершится предположительно до 2030 года.
Вместо заключения
Закон Мура стал импульсом для развития программного обеспечения и устройств. Но физические ограничения не позволят использовать эту гипотезу бесконечно. Спустя десятилетие человечество увидит новые вычислительные системы, оптоволокно станет основным материалом для процессоров.
В стремлении обойти закон Мура производители создают чипы, алгоритмы работы которых, по сравнению с ныне существующими, покажутся магией.