закрытый вход осциллографа это что
Как пользоваться осциллографом
Чаще всего в распоряжении начинающего радиолюбителя оказывается однолучевой осциллограф, но освоив приемы пользования таким прибором, не составит труда перейти на двухлучевой или цифровой осциллограф.
На рисунке 1 показан достаточно простой и надежный осциллограф С1-101, имеющий настолько малое количество ручек, что запутаться в них абсолютно невозможно. Обратите внимание, что это не какой-нибудь осциллограф для школьных уроков физики, именно таким пользовались на производстве всего лишь лет двадцать назад.
Питание осциллографа не только 220В. Возможно питание от источника постоянного тока 12В, например автомобильного аккумулятора, что позволяет пользоваться прибором в полевых условиях.
Рисунок 1. Осциллограф С1-101
Вспомогательные регулировки
На верхней панели осциллографа расположены ручки регулирования яркости и фокусировки луча. Их назначение понятно без объяснений. На передней панели находятся все остальные органы управления.
Два регулятора, обозначенные стрелками, позволяют регулировать положение луча по вертикали и горизонтали. Это позволяет более точно совмещать изображение сигнала на экране с координатной сеткой для улучшения отсчета делений.
Нулевой уровень напряжения находится на центральной линии вертикальной шкалы, что позволяет наблюдать двухполярный сигнал без постоянной составляющей.
Для исследования однополярного сигнала, например цифровых схем, луч лучше переместить на нижнее деление шкалы: получится одна вертикальная шкала из шести делений.
На передней панели находятся также тумблер включения питания и индикатор включения.
Усиление сигнала
Переключателем «V/дел» устанавливается чувствительность канала вертикального отклонения. Усиление канала Y калиброванное, изменяется с шагом 1, 2, 5, плавной регулировки чувствительности нет.
Вращением этого переключателя следует добиться, чтобы размах исследуемого импульса был не менее 1 деления вертикальной шкалы. Только тогда можно добиться устойчивой синхронизации сигнала. Вообще следует стремиться, получить размах сигнала по возможности больше, до тех пор, пока он не вышел за пределы координатной сетки. В таком случае точность измерений возрастает.
В общем случае рекомендация по выбору усиления может быть такой: выкрутить переключатель против часовой стрелки до положения 5V/дел, после чего вращать ручку по часовой стрелке до тех пор, пока размах сигнала на экране не станет таким, как было рекомендовано в предыдущем абзаце. Это как в случае с мультиметром: если величина измеряемого напряжения неизвестна начинать измерения с самого высоковольтного диапазона.
Самое последнее по часовой стрелке положение переключателя чувствительности по вертикали обозначено черным треугольником с надписью «5ДЕЛ». В этом положении на экране возникают прямоугольные импульсы размахом 5 делений, частота импульсов 1 КГц. Назначение этих импульсов – проверка и калибровка осциллографа. В связи с этими импульсами вспоминается несколько комичный случай, который можно рассказать в качестве анекдота.
Пришел как-то к нам в мастерскую один товарищ и попросил воспользоваться осциллографом для налаживания какой-то самопальной конструкции. После нескольких дней творческих мучений слышим от него такой возглас: «Эх ты, и питание выключил, а импульсы-то какие хорошие!». Оказалось, что по незнанию он просто включил калибровочные импульсы, которые никакими ручками на передней панели не управляются.
Открытый и закрытый вход
Непосредственно под переключателем чувствительности находится трехпозиционный переключатель режимов работы, которые часто называют «открытый вход» и «закрытый». В крайнем левом положении этого переключателя возможно измерение постоянного и переменного напряжений с постоянной составляющей.
В правом положении вход усилителя вертикального отклонения включается через конденсатор, который не пропускает постоянную составляющую, зато можно увидеть переменную, даже если постоянная составляющая находится далеко от 0В.
В качестве примера использования закрытого входа можно привести такую распространенную практическую задачу, как измерение пульсаций источника питания: выходное напряжение источника 24В, а пульсации не должны превышать 0,25В.
Если предположить, что напряжение 24В при чувствительности канала вертикального отклонения 5В/дел. займет почти пять делений шкалы (ноль придется устанавливать на самую нижнюю линию вертикальной шкалы), то луч взлетит под самый верх, и пульсации в десятые доли вольта будут практически незаметны.
Чтобы точно измерить эти пульсации достаточно перевести осциллограф в режим закрытого входа, поместить луч в центр вертикальной шкалы и выбрать чувствительность 0,05 или 0,1В/дел. В таком режиме замер пульсаций будет достаточно точным. Следует заметить, что постоянная составляющая может быть достаточно большой: закрытый вход рассчитан на работу с постоянным напряжением до 300В.
В среднем положении переключателя измерительный щуп просто ОТКЛЮЧАЕТСЯ от входа усилителя Y, что дает возможность выставить положение луча, не отключая щуп от источника сигнала.
В некоторых ситуациях это свойство достаточно полезно. Самое интересное, что это положение отмечено на панели осциллографа значком общего провода, земли. Создается впечатление, что измерительный щуп соединяется с общим проводом. И что будет тогда?
В некоторых моделях осциллографов переключатель режима входа не имеет третьего положения, это просто кнопка или тумблер, переключающий режимы открытый/закрытый вход. Важно, что в любом случае такой переключатель есть.
Чтобы предварительно оценить работоспособность осциллографа достаточно коснуться пальцем сигнального (иногда говорят горячего) конца измерительного щупа: на экране должна появиться сетевая наводка в виде размытого луча. Если частота развертки близка к частоте сети, появится размытая, рваная и лохматая синусоида. При касании пальцем «земляного» конца наводок на экране, естественно, не будет.
Вот тут можно вспомнить один из способов проверки конденсаторов на обрыв: если взять в руку исправный конденсатор и коснуться им горячего конца, то на экране появится та же лохматая синусоида. Если конденсатор в обрыве, то никаких изменений на экране не произойдет.
Управление разверткой
Переключателем «Время/дел.» устанавливается длительность развертки. При наблюдении периодического сигнала вращением этого переключателя следует добиться, чтобы на экране показывался один или два периода сигнала.
Ручка синхронизации развертки осциллографа С1-101 обозначена всего одним словом «Уровень». У осциллографа С1-73 дополнительно к этой ручке имеется ручка «стабильность» (некоторая особенность схемы развертки), у некоторых осциллографов эта же ручка называется просто «СИНХР». О пользовании этой ручкой следует рассказать несколько подробней.
Как добиться устойчивого изображения сигнала
При подключении к исследуемой цепи на экране чаще всего может появиться картинка, показанная на рисунке 3.
Для того, чтобы получить устойчивое изображение следует покрутить ручку «Синхронизация», которая на лицевой панели осциллографа С1-101 обозначена как «Уровень». На разных осциллографах почему-то встречаются разные обозначения органов управления, но по сути дела это одна и та же ручка.
Рисунок 4. Синхронизация изображения
Чтобы из размытого изображения, показанного на рисунке 19 получить устойчивый сигнал достаточно покрутить ручку «СИНХР.» или в нашем случае «уровень». При вращении против часовой стрелки до знака «минус» на экране появится изображение сигнала, в данном случае синусоиды, показанное на рисунке 20а. Синхронизация начинается по падающему фронту сигнала.
При вращении той же ручки до знака «плюс» та же самая синусоида будет иметь вид, как на рисунке 4б: развертка запускается по восходящему фронту. Первый период синусоиды начинается чуть выше нулевой линии, это сказывается время запуска развертки.
Если осциллограф имеет линию задержки, то подобного пропадания не будет. Для синусоиды это, может быть, не особо заметно, а вот при исследовании прямоугольного импульса можно лишиться на изображении всего фронта импульса, что в ряде случаев достаточно важно. Особенно при работе с внешней разверткой.
Работа с внешней разверткой
Рядом с регулятором «УРОВЕНЬ» находится тумблер, обозначенный как «ВНЕШ/ВНУТР». В положении «ВНУТР» развертка запускается от исследуемого сигнала. Достаточно на вход Y подать исследуемый сигнал и покрутить ручку «УРОВЕНЬ» как на экране появится устойчивое изображение, как было показано на рисунке 4.
Если упомянутый тумблер установить в положение «ВНЕШ», то получить устойчивое изображение не удастся никаким вращением ручки «УРОВЕНЬ». Для этого надо подать сигнал, по которому будет синхронизироваться изображение на вход внешней синхронизации. Этот вход расположен на белой пластмассовой панели, расположенной справа от входа Y.
Там же расположены гнезда выхода пилообразного напряжения развертки (используется для управления различными ГКЧ), выход калибровочного напряжения (может использоваться в качестве генератора импульсов) и гнездо общего провода.
В качестве примера, где может потребоваться работа с внешней разверткой может послужить схема задержки импульса, показанная на рисунке 5.
Рисунок 5. Схема задержки импульса на таймере 555
При подаче на вход устройства положительного импульса выходной импульс появляется с задержкой, определяемой параметрами RC цепочки, время задержки определяется по формуле, показанной на рисунке. Но по формуле значение определяется весьма приблизительно.
При наличии двухлучевого осциллографа определить время очень просто: достаточно оба сигнала подать на разные входы и измерить время задержки импульса. А если двухлучевого осциллографа в наличии нет? Вот тут-то и придет на помощь режим внешней развертки.
Первое, что надо сделать это подать входной сигнал схемы (рис. 5) на вход внешней синхронизации и сюда же подключить вход Y. Затем вращением ручки «УРОВЕНЬ» добиться устойчивого изображения входного импульса, как показано на рисунке 5б. При этом должны соблюдаться два условия: тумблер «ВНЕШ/ВНУТР» установлен в положение «ВНЕШ», а исследуемый сигнал д.б. периодическим, а не однократным, как показано на рис.5.
После этого надо запомнить положение на экране входного сигнала и подать на вход Y выходной сигнал. Остается только подсчитать требуемую задержку по делениям шкалы. Естественно, что это не единственная схема, где может потребоваться определение времени задержки между двумя импульсами, таких схем великое множество.
В следующей статье будет рассказано про виды исследуемых сигналов и их параметры, а также про то, как проводить различные измерения с помощью осциллографа.
Осциллограф
Назначение, устройство и описание осциллографа
Если спросить профессионального регулировщика электронной аппаратуры или радиоинженера: «Какой самый главный прибор на вашем рабочем месте?» Ответ будет однозначным: «Конечно, осциллограф!». И это действительно так.
Конечно, невозможно обойтись без мультиметра. Измерить напряжение в контрольных точках схемы, замерить сопротивление и ток, «прозвонить» диод или проверить транзистор все это важно и нужно.
Но когда речь заходит о регулировке и настройке любого электронного устройства от простого телевизора до многоканального передатчика орбитальной станции, то без осциллографа обойтись невозможно.
Осциллограф предназначен для визуального наблюдения и контроля периодических сигналов любой формы: синусоидальной, прямоугольной и треугольной. Благодаря широкому диапазону развёртки он позволяет так развернуть импульс, что можно контролировать даже наносекундные интервалы. Например, измерить время нарастания импульса, а в цифровой аппаратуре это очень важный параметр.
Осциллограф – это своего рода телевизор, который показывает электрические сигналы.
Как работает осциллограф?
Чтобы понять, как работает осциллограф, рассмотрим блок-схему усреднённого прибора. Практически все осциллографы устроены именно так.
На схеме не показаны только два блока питания: высоковольтный источник, который используется для вырабатывания высокого напряжения поступающего на ЭЛТ (электронно-лучевая трубка) и низковольтный, обеспечивающий работу всех узлов прибора. И отсутствует встроенный калибратор, который служит для настройки осциллографа и подготовки его к работе.
Исследуемый сигнал подаётся на вход «Y» канала вертикального отклонения и попадает на аттенюатор, который представляет собой многопозиционный переключатель, регулирующий чувствительность. Его шкала отградуирована в V/см или V/дел. Имеется в виду одно деление координатной сетки нанесённой на экран ЭЛТ. Там же нанесены сами величины: 0,1 В,10 В, 100 В. Если амплитуда исследуемого сигнала неизвестна, мы устанавливаем минимальную чувствительность, например 100 вольт на деление. Тогда даже сигнал амплитудой 300 вольт не выведет прибор из строя.
В комплект любого осциллографа входят делители 1 : 10 и 1 : 100 они представляют собой цилиндрические или прямоугольные насадки с разъёмами с двух сторон. Выполняют те же функции, что и аттенюатор. Кроме того при работе с короткими импульсами они компенсируют ёмкость коаксиального кабеля. Вот так выглядит внешний делитель от осциллографа С1-94. Как видим, коэффициент деления его составляет 1 : 10.
Благодаря внешнему делителю удаётся расширить возможности прибора, так как при его использовании становится возможным исследование электрических сигналов с амплитудой в сотни вольт.
С выхода входного делителя сигнал поступает на предварительный усилитель. Здесь он разветвляется и поступает на линию задержки и на переключатель синхронизации. Линия задержки предназначена для компенсации времени срабатывания генератора развёртки с поступлением исследуемого сигнала на усилитель вертикального отклонения. Оконечный усилитель формирует напряжение, подаваемое на пластины «Y» и обеспечивает отклонение луча по вертикали.
Генератор развёртки формирует пилообразное напряжение, которое подаётся на усилитель горизонтального отклонения и на пластины «X» ЭЛТ и обеспечивает горизонтальное отклонение луча. Он имеет переключатель, градуированный как время на деление («Время/дел»), и шкалу времени развёртки в секундах (s), миллисекундах (ms) и микросекундах (μs).
Устройство синхронизации обеспечивает начало запуска генератора развёртки одновременно с возникновением сигнала в начальной точке экрана. В результате на экране осциллографа мы видим изображение импульса развёрнутое во времени. Переключатель синхронизации имеет следующие положения:
Синхронизация от исследуемого сигнала.
Синхронизация от сети.
Синхронизация от внешнего источника.
Первый вариант наиболее удобный и он используется чаще всего.
Осциллограф С1-94.
Кроме сложных и дорогих моделей осциллографов, которые используются при разработке электронной аппаратуры, нашей промышленностью был налажен выпуск малогабаритного осциллографа C1-94 специально для радиолюбителей. Несмотря на невысокую стоимость, он хорошо зарекомендовал себя в работе и обладает всеми функциями дорогого и серьёзного прибора.
В отличие от своих более «навороченных» собратьев, осциллограф С1-94 обладает достаточно небольшими размерами, а также прост в использовании. Рассмотрим его органы управления. Вот лицевая панель осциллографа С1-94.
Справа от экрана сверху вниз.
Этими регуляторами можно настроить фокусировку луча на экране, а также его яркость. В целях продления срока службы ЭЛТ желательно выставлять яркость на минимум, но так, чтобы показания были видны достаточно чётко.
Кнопка «Сеть». Кнопка включения прибора.
Кнопка установки времени развёртки. Грубое переключение коэффициентов развёртки. Можно установить миллисекунды (ms) и микросекунды (μs). Напомним, что 1 ms = 1000 μs. Подробнее о сокращённой записи численных величин.
Кнопка режима «Ждущ-Авт».
Это кнопка выбора ждущего и автоматического режима развёртки. При работе в ждущем режиме запуск и синхронизация развёртки производится исследуемым сигналом. При автоматическом режиме запуск развёртки происходит без сигнала. Для исследования сигнала чаще используется ждущий режим запуска развёртки.
Вот этой кнопкой производится выбор полярности запускающего импульса. Можно выбрать запуск от импульса положительной или отрицательной полярности.
Кнопка установки синхронизации «Внутр-Внешн».
Обычно используется внутренняя синхронизация, так как для использования внешнего синхросигнала нужен отдельный источник этого внешнего сигнала. Понятно, что в условиях домашней мастерской это в подавляющем случае не нужно. Вход внешнего синхросигнала на лицевой панели осциллографа выглядит вот так.
Кнопка выбора «Открытого» и «Закрытого» входа.
Тут всё понятно. Если предполагается исследование сигнала с постоянной составляющей, то выбираем «Переменный и постоянный». Этот режим называется «Открытым», так как на канал вертикального отклонения подаётся сигнал, содержащий в своём спектре постоянную составляющую или низкие частоты.
При этом, стоит учитывать, что при отображении сигнала на экране он уйдёт вверх, так как к амплитуде переменной составляющей добавиться и уровень постоянной составляющей. В большинстве случаев лучше выбирать «закрытый» вход (
). При этом постоянная составляющая электрического сигнала будет отсечена и не отображается на экране.
Также на панели осциллографа имеются:
Ручка «Перемещение луча по горизонтали».
Она служит для корректировки положения луча в горизонтальном направлении. Если покрутить данную ручку, то изображение развёртки будет смешатся либо вправо, либо влево.
Также есть и ручка «Перемещение луча по вертикали».
С помощью её можно отрегулировать положение развёртки на экране по вертикали.
Ручки «Перемещение луча по горизонтали» и «Перемещение луча по вертикали» служат исключительно для настройки комфортного отображения осциллограммы сигнала на экране. Они никак не влияют на настройку работы самого осциллографа.
А вот ручка «Уровень синхронизации» необходима для того, чтобы «остановить» осциллограмму сигнала на экране.
Поворотом этой ручки добиваются того, чтобы изображение сигнала «застыло», а не «убегало». Иногда, чтобы поймать изображение с помощью ручки «Уровень» приходится изменить время развёртки переключателем Время/дел.
Внизу указываются параметры входа, а именно входное сопротивление (1 MΩ) и входная ёмкость (40pF). Чем выше входное сопротивление измерительного прибора, тем лучше. Таким образом при измерении прибор не шунтирует элементы тестируемой схемы и не вносит искажений в измеряемый сигнал. Входная ёмкость прежде всего влияет на возможность исследования высокочастотных сигналов.
В настоящее время, с развитием цифровой техники, стали широко внедряться цифровые осциллографы. По сути это гибрид аналоговой и цифровой техники. Отношение к ним неоднозначное, как к мясорубке с процессором или к кофемолке с дисплеем.
Аналоговая аппаратура всегда была надежной и удобной в работе. Кроме того она легко ремонтировалась. Цифровой осциллограф стоит на порядок дороже и очень сложен в ремонте. Плюсов конечно много. Если аналоговый сигнал с помощью АЦП (аналогово-цифрового преобразователя) перевести в цифровую форму, то с ним можно делать всё что угодно. Его можно записать в память и в любой момент вывести на экран для сравнения с другим сигналом, складывать в фазе и противофазе с другими сигналами. Конечно, аналоговая техника это хорошо, но за цифровой электроникой будущее.
Основы использования осциллографов, анализаторов спектра и генераторов
Работа с осциллографом.
Всё начинается с измерительного щупа!
Провод щупа коаксиальный. Центральная жила щупа сигнальная, оплётка земля (минус или общий провод).
На некоторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения (1:10 или 1:100), который позволяет измерять широкий диапазон напряжений. Перед проведением измерений обращайте внимание на положение тумблера на щупе, во избежании ошибок измерения.
В осциллографах имеется внутренний генератор меандра, сигнал которого выведен на переднюю панель, на клемму «калибровка». Калибровочный сигнал предусмотрен специально для подстройки компенсационной емкости. Частота этого сигнала обычно равна 1кГц, при размахе в 1В. Щуп подключается к клемме «калибровка» и подстраивается для получения наиболее правильной формы сигнала.
Подключаем щуп к осциллографу.
Вход осциллографа может быть закрытым или открытым. Это позволяет подключать сигнал к усилителю Y либо напрямую, либо через разделительный конденсатор. Если вход открытый, то на усилитель Y будет подана и постоянная составляющая и переменная. Если закрытый только переменная.
Пример 1. Нам нужно посмотреть уровень пульсаций блока питания. Допустим, что напряжение блока питания 12 вольта. Величина пульсаций может быть не более 100 милливольт. На фоне 12 вольт пульсации будут совсем незаметны. В таком случае мы используем закрытый вход. Конденсатор отфильтровывает постоянное напряжение. На усилитель Y поступает только переменный сигнал. Теперь пульсации можно усилить и проанализировать!
Ручка Усиление масштабирует сигнал по оси Y. Она определяет цену деления одной клетки по вертикали в вольтах.
Ручка Длительность масштабирует сигнал по оси X. Она определяет цену деления одной клетки по горизонтали в секундах.
Пример 2. Основываясь на значениях которые указывают эти ручки и количество клеток занимаемых сигналом можно определить временные параметры сигнала в секундах и его амплитуду в вольтах. Основываясь на этих данных можно вычислить длительность импульса, паузы, периода и частоту сигнала.
Режим развёртки определяет поведение осциллографа. Предполагается три режима: автоматический (AUTO), ждущий (Normal), и однократный (Single).
Автоматический режим позволяет получать изображения входного сигнала даже когда не происходит выполнения условий запуска. Осциллограф ожидает выполнения условий запуска в течении определённого периода времени и при отсутствии требуемого пускового сигнала производит автоматический запуск регистрации.
Ждущий режим позволяет осциллографу регистрировать форму сигналов только при выполнении условий запуска. При отсутствии выполнения этих условий осциллограф ждёт их появления, на экране сохраняется предыдущая осциллограмма, если она была зарегистрирована.
В режиме однократной регистрации после нажатия кнопки RUN/STOP осциллограф будет ожидать выполнения условий запуска. При их выполнении осциллограф произведёт однократную регистрацию и остановится.
Осциллограф поддерживает ряд видов запуска развёртки : запуск по фронту, запуск по срезу, запуск произвольным фронтом.
Уровень запуска – это значение напряжения, по достижении которого осциллограф начинает прорисовывать осциллограмму.
Работа с анализатором спектра.
Существует общая методика исследования сигналов, которая основана на разложении сигналов в ряд Фурье при помощи алгоритма быстрого вычисления дискретного преобразования Фурье, Fast Fourier Transform ( FFT ).
Данная методика основывается на том, что всегда можно подобрать ряд сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма которых в любой момент времени равняется величине исследуемого сигнала.
Благодаря этому стало возможным анализировать спектр сигналов в реальном времени.
На его вход поступает исследуемый сигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), в которых будет вычисляться спектр, и производит FFT в каждом окне для получения амплитудного спектра.
Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты.
Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала.
Когда нужно проанализировать быстрые изменения в сигнале, длину окна выбирают маленькой. В этом случае разрешение анализа по времени увеличивается, а по частоте – уменьшается. Таким образом, разрешение анализа по частоте обратно пропорционально разрешению по времени.
Один из простейших сигналов – синусоидальный. Как будет выглядеть его спектр на FFT-анализаторе? Оказывается, это зависит от его частоты. FFT раскладывает сигнал не по тем частотам, которые на самом деле присутствуют в сигнале, а по фиксированной равномерной сетке частот.
Если частота тона совпадает с одной из частот сетки FFT, то спектр будет выглядеть «идеально»: единственный острый пик укажет на частоту и амплитуду тона.
Если же частота тона не совпадает ни с одной из частот сетки FFT, то FFT «соберёт» тон из имеющихся в сетке частот, скомбинированных с различными весами. График спектра при этом размывается по частоте. Такое размытие обычно нежелательно, так как оно может закрыть собой более слабые сигналы на соседних частотах.
Чтобы уменьшить эффект размытия спектра, сигнал перед вычислением FFT умножается на весовые окна – гладкие функции спадающие к краям интервала.
Они уменьшают размытие спектра за счёт некоторого ухудшения частотного разрешения.
Простейшее окно – прямоугольное: это константа 1, не меняющая сигнала. Оно эквивалентно отсутствию весового окна.
Весовые окна различаются по двум основным параметрам: степени расширения главного пика и степени подавления размытия спектра («боковых лепестков»). Чем сильнее мы хотим подавить боковые лепестки, тем шире будет основной пик. Прямоугольное окно меньше всего размывает верхушку пика, но имеет самые высокие боковые лепестки.
Окно Кайзера обладает параметром, который позволяет выбирать нужную степень подавления боковых лепестков.
Чтобы компенсировать расширение пиков при применении весовых окон, можно использовать более длинные окна FFT: например, не 4096, а 8192 отсчета. Это улучшит разрешение анализа по частоте, но ухудшит по времени.
Работа с генератором сигналов.
Когда речь идёт об измерительной технике, то первое, что приходит в голову, это, как правило, осциллограф или логический анализатор ( регистрирующие приборы ).
Однако эти приборы способны выполнять измерения лишь в том случае, если на них поступает сигнал.
Можно привести множество примеров, когда такой сигнал отсутствует, пока на исследуемое устройство не будет подан внешний сигнал.
Пример. Нужно измерить характеристики разрабатываемой схемы и убедиться, что она соответствует требованиям.
Поэтому набор приборов для измерения характеристик электронных схем должен включать в себя источники воздействующего сигнала и регистрирующие приборы.
Генератор сигналов представляет собой источник воздействующего сигнала.
В зависимости от конфигурации генератор может формировать аналоговые сигналы, цифровые последовательности, модулированные сигналы, преднамеренные искажения, шум и многое другое.
Генератор может создавать «идеальные» сигналы или добавлять к сигналу заданные искажения или ошибки нужной величины и типа.
Сигналы могут иметь всевозможные формы:
К сигналам сложной формы относятся:
Одной из разновидностей генераторов является генератор качающейся частоты. Это особый вид генератора сигналов, в котором частота выходного сигнала плавно изменяется в определенном интервале, а затем быстро возвращается к начальному значению. В это время амплитуда выходного сигнала остается постоянной.
Если в распоряжении радиолюбителя есть осциллограф, то пользуясь им совместно с генератором качающейся частоты можно легко проверить и настроить кварцевые, электромеханические и LC-фильтры, радиочастотный и ПЧ тракты приемника или передатчика, исследовать АЧХ радио- и телеаппаратуры в широком интервале частот.
Результаты сравнения технических характеристик и внутреннее устройство измерительного комплекса будут подробно описаны в следующем видео.