звезды которые мы видим на небе что это
Что такое звезды?
Одно из самых красивых зрелищ, которые только есть в нашем мире, — вид звездного неба в темную безлунную ночь. Тысячи звезд алмазными россыпями усеивают небо — яркие и тусклые, красные, белые, желтые… Но что такое звезды? Расскажу об этом совсем просто, так, чтобы понятно было всем.
Звезды — это огромные шары, разбросанные тут и там в космическом пространстве. Вещество в них удерживается силами взаимного притяжения. Эти шары разогреты до такой высокой температуры, что способны излучать свет, благодаря чему мы их и наблюдаем. На самом деле звезды настолько раскалены, что любое вещество, даже самый твердый металл, пребывает на них в виде электрически заряженного газа. Такой газ называется плазмой.
Почему звезды светятся?
Внутри звезд температура гораздо выше, чем на поверхности. В звездном ядре она может достигать 10 миллионов градусов и выше. При таких температурах идут термоядерные реакции превращения одних химических элементов в другие. Например, водород, из которого в основном состоят почти все звезды, в их недрах превращается в гелий.
Именно термоядерные реакции служат основным источником энергии звезд. Благодаря им звезды способны светить на протяжении многих миллионов лет.
Звезды и галактики
Во Вселенной насчитывается больше миллиарда миллиардов звезд. В соответствии с законами природы они собрались в огромные звездные острова, которые астрономы назвали галактиками. Мы живем в одной из таких галактик, имя которой — Млечный Путь.
Млечный Путь — галактика, частью которой являются Солнце и все видимые на небе звезды. Фото: Juan Carlos Casado (TWAN, Earth and Stars)
Все звезды, видимые на небе невооруженным глазом или в небольшой телескоп, принадлежат Млечному Пути. Другие галактики тоже можно наблюдать на небе с помощью телескопа, но все они выглядят как тусклые туманные пятнышки света.
Солнце — самая близкая к нам звезда. Она ничем не выделяется на фоне миллионов других звезд, которые можно увидеть в телескоп. Солнце — не самая яркая, но и не самая тусклая звезда, не самая горячая, но и не самая холодная, не самая массивная, но и не самая легкая. Можно сказать, что Солнце — звезда-середняк. И только нам роль Солнца кажется исключительно важной, потому что эта звезда дарит нам тепло и свет. Только благодаря Солнцу на Земле возможна жизнь.
Размеры, масса и светимость звезд
Размеры и масса даже небольших звезд огромны. Например, Солнце в 109 раз больше Земли по диаметру и в 330000 раз массивнее нашей планеты! Чтобы заполнить объем, который занимает в пространстве Солнце, нам потребовалось бы больше миллиона планет размером с Землю!
Сравнительные размеры Солнца и планет Солнечной системы. Земля на этой картинке — крайняя левая планета в первом, ближайшем ряду.
Но мы уже знаем, что Солнце обычная, средняя звезда. Есть звезды гораздо крупнее Солнца, как, например, звезда Сириус, самая яркая звезда ночного неба. Сириус в 2 раза массивнее Солнца и в 1,7 раза больше его по диаметру. Он также излучает в 25 раз больше света, чем наша дневная звезда!
Другой пример — звезда Спика, возглавляющая созвездие Девы. Ее масса в 11 раз больше Солнца, а светимость в 13000 раз выше! Вряд ли возможно даже представить себе испепеляюще мощное излучение этой звезды!
Но большинство звезд во Вселенной все-таки меньше Солнца. Они легче и светят гораздо слабее, чем наша звезда. Самые распространенные звезды называются красными карликами, так как излучают в основном красный свет. Типичный красный карлик примерно в 2-3 раза легче Солнца, в 4 или даже 5 раз меньше его по диаметру и в 100 раз тусклее, чем наша звезда.
В нашей галактике порядка 700 миллиардов звезд. Из них не меньше 500 миллиардов окажется красными карликами. Но, к несчастью, все красные карлики настолько тусклые, что ни один из них не виден на небе невооруженным глазом! Чтобы наблюдать их, нужен телескоп или хотя бы бинокль.
Необычные звезды
Помимо красных карликов, которые составляют большинство всех звезд во Вселенной, помимо звезд, похожих на Солнце, а также таких звезд, как Сириус и Спика, существует также небольшая доля необычных звезд, чьи характеристики — размеры, светимость или плотность — сильно отличаются от других звезд.
Белые Карлики
Одной из таких звезд является спутник Сириуса.
Многие звезды живут не поодиночке, как наше Солнце, а парами. Такие звезды называются двойными. Точно так же, как Земля и другие планеты Солнечной системы движутся по орбитам вокруг Солнца под действием его притяжения, так и звезда-спутник может обращаться по орбите вокруг главной звезды.
Двойная звезда. Главная звезда и звезда-спутник меньшего размера вращаются вокруг общего центра масс, обозначенного на рисунке красным крестом. Источник: Википедия
На самом деле планеты вместе с Солнцем обращаются вокруг общего центра масс. То же самое происходит и с компонентами двойной звезды — они обе вращаются вокруг общего центра масс (см. gif-рисунок).
В XIX веке у Сириуса, самой яркой звезды ночного неба, был обнаружен очень тусклый спутник, видимый только в телескоп. Его назвали Сириус B (читается как Сириус Б). Вместе с тем оказалось, что его поверхность столь же горячая, как поверхность Сириуса. В то время астрономы уже знали, что тело испускает тем больше света, чем оно горячее. Следовательно, с каждого квадратного метра поверхности спутника Сириуса излучалось столько же света, сколько с квадратного метра самого Сириуса. Почему же спутник был такой тусклый?
Потому что площадь поверхности Сириуса В была гораздо меньше площади поверхности Сириуса А! Оказалось, что размер спутника равен размеру Земли. Вместе с тем его масса оказалась равна массе Солнца! Простые подсчеты показывают, что каждый кубический сантиметр Сириуса B содержит 1 тонну вещества!
Такие необычные звезды назвали белыми карликами.
Красные сверхгиганты
На небе также были найдены звезды огромных размеров и светимостей. Одна из таких звезд, Бетельгейзе, в 900 раз больше Солнца по диаметру и излучает в 60000 раз больше света, чем наше дневное светило! Другая звезда, VY Большого Пса (читается как «вэ-игрек») в 1420 раз больше Солнца по диаметру! Если VY Большого Пса поместить на место Солнца, то поверхность звезды будет находиться между орбитами Юпитера и Сатурна, а все планеты с Меркурия по Юпитер (включая Землю!) оказались бы внутри звезды!
Сравнительные размеры Солнца (слева вверху), Сириуса (белая звезда) и некоторых гигантских звезд. Красный сверхгигант UY Щита, который занимает большую часть картинки, в 1900 раз больше Солнца по диаметру.
Такие звезды называются сверхгигантами. Отличительная особенность гигантских и сверхгигантских звезд состоит в том, что они при всех своих колоссальных размерах содержат лишь в 5, 10 или 20 раз больше вещества, чем Солнце. Это значит, что плотность таких светил очень низка. Например, средняя плотность VY Большого Пса в 100000 раз меньше плотности комнатного воздуха!
И белые карлики, и звезды-гиганты не рождаются такими, а становятся в ходе эволюции, после того, как водород в их недрах переработан в гелий.
Звезды и скрытая масса Вселенной
Еще относительно недавно астрономы полагали, что в звездах содержится почти все вещество во Вселенной. Но в последние десятилетия выяснилось, что львиную долю массы Вселенной составляют таинственная темная материя и еще более таинственная темная энергия. На звезды, таким образом, приходится всего около 2% всей материи (а на планеты, кометы и астероиды и того меньше!). Но именно эти 2% мы и способны наблюдать, так как именно они излучают свет! Трудно представить, насколько унылым местом была бы Вселенная, если бы в ней не было звезд!
Топ заблуждений об астрономии. 9. На небе мы видим звёзды
Казалось бы, ну а здесь-то как можно ошибиться? Ну, ОК, кроме звёзд, мы ещё видим планеты, искусственные спутники, а с телескопом ещё галактики и туманности (впрочем, некоторые из них и без телескопа тоже). Где тут проблема? Или мы, на самом деле, не видим звёзды?
Да, на самом деле, мы их не видим: увы, мы способны видеть только лишь свет от звёзд. Ну, или иное от них излучение — через спецприборы.
Казалось бы, зачем тут эта придирка к деталям? Когда мы говорим: «я вижу стол», — мы ведь тоже имеем в виду, что мы увидели свет, отражённый столом, сложившийся в некоторую картинку на сетчатке нашего глаза, которую мозг распознал, как стол. Однако для краткости мы называем это «я вижу стол». Может быть, со звёздами всё точно так же?
Дело в том, что у света конечная скорость распространения. Очень большая — порядка 300 000 км/с, но всё же конечная.
Пока мы находимся в пределах Земли, мы имеем дело с расстояниями от сантиметров до, максимум, километров (расстояние до горизонта — порядка четырёх километров), поэтому изображение предмета долетает до нас за миллионные или даже миллиардные доли секунды. Ввиду чего мы можем отождествлять увиденный нами свет с самим объектом? За миллионную долю секунды стол вряд ли успел сильно измениться, да и если даже он двигался с нашими земными скоростями, то ошибка в его наблюдаемом нами местоположении, по сравнению с реальным, слишком ничтожна, чтобы иметь для нас значение.
Но в космосе иные масштабы. Луна находится в среднем в 380 000 километрах от Земли, поэтому свет передаёт нам то, что было на ней чуть более секунды назад.
Марс в самом оптимистичном для нас случае находится уже в 55 миллионах километров от Земли, поэтому его мы видим с задержкой в три минуты. В среднем же он удалён от нас на 225 миллионов километров и тут уже речь о задержке в двенадцать минут.
Плутон от нас в среднем в 5,7 миллиардах километров. Поэтому мы видим его с запозданием более чем в пять часов.
Глядя на небо, мы всё время смотрим в прошлое.
Но в далёкое ли? ОК, Плутон мы видим в его состоянии пять часов назад, но это ж вроде бы не так много? Он, конечно, успел куда-то улететь, но наверно ведь недалеко?
Скорость Плутона порядка 16 800 км/ч, то есть за пять часов он улетает примерно на 85 000 километров, что примерно вчетверо больше максимально возможного расстояния на поверхности Земли.
И Плутон ещё относительно близко от нас.
Удобной единицей измерения для космических расстояний является «световой год». Про него часто ошибочно думают, будто бы в световых годах каким-то хитрым способом измеряется время — ведь «год» же. Но нет, «световой год» — это буквально то расстояние, которое свет проходит в вакууме за год.
Легко догадаться, что если измерять расстояние в световых годах, то ровно с той же задержкой в годах мы будем видеть этот объект.
Так вот, до ближайшей (кроме, конечно, Солнца) к нам звезды — Проксимы Центавра — 4,2 светового года.
Чуть подальше — примерно в 6 световых годах — находится звезда Барнарда. Эта звезда примечательна тем, что она довольно быстро движется относительно нашей системы. Её скорость порядка 142 км/с.
За год она проходит 4,5 миллиарда километров. Как было сказано выше, расстояние до Плутона — 5,7 миллиарда километров. И вот эта звезда за год преодолевает четыре пятых от него.
За то время, пока от неё доходит до нас свет, она успевает преодолеть шесть таких расстояний — 28 миллиардов километров.
Диаметр нашей галактики — порядка 100 000 световых лет.
Если бы звезда Барнарда была бы расположена на другом краю галактики, то за то время, пока к нам бы дошёл её свет, она успела бы пролететь 11 расстояний от нас до ближайшей к нам звезды.
Ну, или если мы, предположим, сумели бы каким-то образом разглядеть планету на этом самом противоположном к нам галактическом краю, то ситуация на ней соответствовала бы стотысячелетней давности. У нас на планете всего 5500 лет прошло от появления письменности до современной цивилизации, 40 000 лет назад вымерли последние неандертальцы, а 45 000 лет назад появилось то, что сейчас называется «нами» — Homo sapiens — как видом.
Там ведь тоже всё могло поменяться за 100 000 лет.
Одна из ближайших к нам галактик — галактика Андромеды — находится от нас в 2,5 миллионах световых лет и движется в нашу сторону со скоростью примерно 300 км/с. В результате она сейчас находится в 2500 световых годах от того положения, где мы её видим. Это почти как 600 расстояний от нас до Проксимы Центавра.
Сейчас в телескопы можно разглядеть и гораздо более далёкие объекты. И увидеть, таким образом, ещё более далёкое прошлое. Тем более далёкое, чем дальше от нас находится данный объект.
Расположение звёзд на небе не просто не соответствует их текущему расположению в пространстве, но вдобавок ещё и не соответствует расположению ни в какой момент времени вообще: поскольку более дальние от нас объекты успели сместиться на большее расстояние, чем ближние.
Вот как это можно проиллюстрировать. Предположим, что с зелёного кружка в центре данной иллюстрации мы наблюдаем некие, вращающиеся вокруг него объекты. Все эти объекты находятся довольно далеко, поэтому задержка по времени уже существенна.
Слева изображено, как объекты расположены в пространстве в данный момент, а справа — то расположение, которое мы бы видели с этого зелёного кружка.
Чтобы было понятнее, наложим картинки друг на друга.
В нашей гипотетической ситуации хотя бы сохраняется сам рисунок, хотя и смещаются расположения его фрагментов, однако в реальности небесные объекты движутся друг относительно друга не столь простым образом. И наблюдаем мы ситуацию вовсе не из неподвижного центра кругового вращения.
Иными словами, видимые нами созвездия — это именно что «видимые нами». Это не только уникальная пространственная их проекция на нашу личную «небесную сферу», но и наш уникальный временной срез ситуации — по сферическим слоям.
Переместившись на относительно далёкую звезду, мы бы увидели звёздные расклады совершенно иными. Не только «под другим углом из другой точки», но и «в другом расположении во времени».
Во вселенной всё сейчас уже не так, как мы сейчас видим. И ни в какой момент времени не было так.
Причём не так не только расположение объектов, но и сами объекты. У звёзд ведь есть свой жизненный цикл — они рождаются в туманностях, взрываются сверхновыми, сгорают и превращаются в звёзды другого типа. Всё это мы можем наблюдать с Земли, но наблюдаем мы по-прежнему прошлое.
В настоящем же, возможно, некоторые из тех звёзд, которые мы видим на небе, уже не существуют. И не только в далёких-далёких галактиках, а даже в нашем ближайшем окружении. И не только видимые в телескоп, а даже видимые невооружённым глазом.
Например, одно из наиболее узнаваемых созвездий — созвездие Ориона, несёт на своём плече одну из самых ярких на нашем небе звёзд — Бетельгейзе.
Увы, вполне возможно, что её уже нет.
Вероятность, правда, не означает гарантии — астрономические масштабы времени весьма протяжённы, и она вполне может просветить ещё миллион лет, а то и вообще не взорваться, а просто выгореть, однако вероятность всё-таки не нулевая, а потому не исключено, что она взорвалась прямо сейчас, но узнаем мы об этом только через полтысячелетия.
Как не исключено и то, что как раз полтысячелетия назад она и взорвалась, поэтому мы узнаем об этом прямо сейчас.
Впрочем, даже если Бетельгейзе продержится ещё долго, то всё равно ведь вспышки сверхновых постоянно наблюдаются. И большинство на самом деле произошли десятки тысяч, сотни тысяч, а то и десятки миллионов лет назад.
И в тот момент, когда с небосвода исчезает какая-то звезда, на самом деле всего лишь исчезает с нашего неба «фотография» её далёкого прошлого.
Мы видим свет далеких звезд. Которые давно погасли
Возможно, Вы когда-то слышали такое выражение: «Когда вы смотрите в небо, Вы смотрите в прошлое. Многие из тех звезд, которые мы видим на ночном небе, уже давно погасли». Эта глубокая философская мысль помогает людям справиться с осознанием того, что все в этом мире когда-нибудь заканчивается… Но оставим вопросы метафизики философам. И давайте разберемся. Есть ли в этом утверждении правда?
Свет — это очень быстрая штука. Но и звезды очень далеко
Одной из самых далеких звезд, которые можно увидеть невооруженным глазом, является Денеб. Она находится в созвездии Лебедь. И удалена от нас на расстояние почти в 3000 световых лет. Это означает, что когда Вы смотрите на эту звезду, свет, который Вы видите, начал свое путешествие к Земле в те времена, когда древний Рим только начинал обретать свое могущество. И его не было ни на одной карте. Человеку может показаться, что с тех пор прошло уже очень и очень много времени. Однако по отношению к среднему возрасту звезды, которой миллиарды лет, это мгновение. Так что если в районе Денеба не произошла какая-то колоссальная космическая катастрофа, она все еще находится на своем месте.
Некоторые из звезд, что Вы видите на небе, уже действительно погасли
Давайте вспомним про звезду, которая носит имя Бетельгейзе. Эта одна из тех звезд, которые могут взорваться в любой момент. Но поскольку до нее 650 световых лет, то если бы она взорвалась 200 лет назад, мы узнаем об этом только еще через 450. Еще в космосе можно увидеть невооруженным глазом несколько крупных галактик. Самой популярной из них является Андромеда. Она находится на расстоянии около двух с половиной миллионов световых лет от нас. И содержит от четырехсот миллиардов до 1 триллиона звезд. Конечно, некоторые из этих звезд уже погасли за последние два с половиной миллиона лет. Но большинство из них, вероятно, все еще на месте. И с ними вряд ли что-то произошло.
Таким образом становится ясно, что технически возможно, что когда Вы смотрите в небо и наблюдаете за конкретной звездой, Вы видите погасшую звезду. Однако почти все звезды, которые мы можем видеть с Земли, находятся в своей главной последовательности. И они будут оставаться активными в течение еще очень долгого времени.
А вот если посмотреть в телескоп…
Картина кардинально меняется, если для наблюдений использовать телескоп. С его помощью можно смотреть на гораздо большие расстояния. На миллиарды световых лет. Учитывая что у звезды, подобной Солнцу, продолжительность жизни составляет около 10 миллиардов лет, многие из звезд, которые мы наблюдаем в самых дальних галактиках, давно погасли. Но, как бы странно это не звучало, даже на таких расстояниях мы точно не можем сказать, что наблюдаем много уже закончивших свою жизнь звезд.
Интересно во еще что. В тех же самых далеких галактиках за время, пока их свет летит до нас, появилось много новых звезд. Которых мы пока просто не видим. А так же в этих галактиках много звезд, которые с вероятностью 100 процентов все еще живы. Причина? Самые маленькие звезды живут намного дольше, чем большие. Считается, что красные карлики живут от 200 миллиардов до десятков триллионов лет. То есть гораздо больше предполагаемой жизни Вселенной. И поэтому у них впереди еще очень много времени. И они никуда не денутся.
Видеть прошлое
Более того, Вы наверняка в курсе, что никогда не видите наше Солнце в реальном режиме времени. Если не в курсе, то знайте — Вы наблюдаете наше светило с восьмиминутной задержкой!
Представьте, что в космосе существует некая высокоразвитая внеземная цивилизация. Она настолько продвинута, что умеет наблюдать за планетами с тем же разрешением, что есть у наших спутников. Находящийся за 3000 световых лет гипотетический внеземной ученый сейчас увидел бы в свой телескоп первые шаги древнего Рима! Представьте, как бы он удивился, если бы узнал, что на самом деле вокруг этой планеты уже вовсю летают спутники. А былое величие римских правителей стерто в пыль прошедшими веками…
Звезды
История наблюдений за звездами
Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше Солнце, а значит подчиняются тем же физическим законам.
Фотография умирающей звезды. Изображение получено космическим телескопом Хаббл
Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).
Наименование звезд Вселенной
Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.
В современном мире насчитывается 88 созвездий (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона Бетельгейзе (Альфа Ориона) – «рука (подмышка) великана».
Красный сверхгигант Бетельгейзе
Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.
Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.
Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.
Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.
Типы звезд Вселенной
Это то, что мы видим до появления полноценной звезды. Протозвезда представляет собою скопление газа, рухнувшего от молекулярного облака. Эволюционная фаза занимает примерно 100000 лет. Дальше гравитация набирает силу, и заставляет образование разрушаться. Гравитация накаляет газ и вынуждает его выделять энергию.
Звезды типа Т Тельца |
Этот момент идет перед переходом в звезду главной последовательности. Наступает в завершении протозвезды, когда энергию дарит только разрушающая ее гравитационная сила. У таких звезд еще нет достаточного нагрева и давления, чтобы активировать процесс ядерного синтеза. На звездах типа Т Тельца можно заметить огромные пятна, вспышки рентгеновского излучения и мощные порывы ветров. Эта стадия охватывает 100000 миллионов лет.
Звезды Главной последовательности |
Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск.
Когда звезда полностью израсходует внутреннее топливо, то больше не может создавать внешнее давление, а значит не противодействует внутреннему. Звезда сжимается, а оболочка вокруг ядра воспламеняется, продлевая ей жизнь, но увеличивая в размере. Звезда трансформируется в красного гиганта и может быть в 100 раз крупнее, чем представитель в главной последовательности. Когда не остается водорода, начинает гореть гелий и даже более тяжелые элементы. На этот этап уходит несколько сотен миллионов лет.
Красный карлик |
Это наиболее распространенный вид. Перед нами звезда главной последовательности с низкой массой, из-за чего значительно уступает в температуре Солнцу. Но выигрывает за счет продолжительности жизни. Дело в том, что им удается расходовать топливо в медленных темпах, поэтому отличаются значительной экономией. Наблюдения говорят, что такие объекты способны просуществовать до 10 триллионов лет. Наименьшие экземпляры достигают всего 0.075 раз солнечной массы, но могут набирать и 50%.
Когда звезда в 1.35-2.1 раз больше солнечной массы, то не завершает существование в виде белого карлика, а освещает небо взрывом сверхновой. После этого остается ядро, которое и выступает нейтронной звездой. Это очень интересный объект, так как всецело представлен нейтронами. Дело в том, что мощная гравитационная сила сжимает протоны и электроны, формирующие нейтроны. Если масса звезды была еще больше, то перед нами развернется черная дыра.
Сверхгигант |
Наиболее крупные звезды называют сверхгигантами. Они в десятки раз больше солнечной массы, но им не так уж и повезло: чем больше размер, тем короче жизнь. Они стремительно расходуют внутреннее топливо (несколько миллионов лет). Поэтому проживают короткую жизнь и умирают как сверхновые.
Как вы поняли, существуют различные виды звезд. Понимание этого, поможет вам разобраться в эволюционной стадии объекта и даже понять, что его ждет.
Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве.
Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность.
Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.
Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом.
Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу.
Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические.
Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь).
Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.
Формирование звезды
Звездная эволюция
Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.
Этапы эволюции звезды
Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.
Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино. Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.
Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.
Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.
Двойные звезды
Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в Млечной Пути многократные.
Двойная звезда в Большой Медведице
Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.
Характеристика звезд
Список самых ярких звезд видимых с Земли
№ | Название | Расстояние, св. лет | Видимая величина | Абсолютная величина | Спектральный класс | Небесное полушарие |
---|---|---|---|---|---|---|
0 | Солнце | 0,0000158 | −26,72 | 4,8 | G2V | |
1 | Сириус (α Большого Пса) | 8,6 | −1,46 | 1,4 | A1Vm | Южное |
2 | Канопус (α Киля) | 310 | −0,72 | −5,53 | A9II | Южное |
3 | Толиман (α Центавра) | 4,3 | −0,27 | 4,06 | G2V+K1V | Южное |
4 | Арктур (α Волопаса) | 34 | −0,04 | −0,3 | K1.5IIIp | Северное |
5 | Вега (α Лиры) | 25 | 0,03 (перем) | 0,6 | A0Va | Северное |
6 | Капелла (α Возничего) | 41 | 0,08 | −0,5 | G6III + G2III | Северное |
7 | Ригель (β Ориона) | 0,12 (перем) | −7 [3] | B8Iae | Южное | |
8 | Процион (α Малого Пса) | 11,4 | 0,38 | 2,6 | F5IV-V | Северное |
9 | Ахернар (α Эридана) | 69 | 0,46 | −1,3 | B3Vnp | Южное |
10 | Бетельгейзе (α Ориона) | 0,50 (перем) | −5,14 | M2Iab | Северное | |
11 | Хадар (β Центавра) | 0,61 (перем) | −4,4 | B1III | Южное | |
12 | Альтаир (α Орла) | 16 | 0,77 | 2,3 | A7Vn | Северное |
13 | Акрукс (α Южного Креста) | 0,79 | −4,6 | B0.5Iv + B1Vn | Южное | |
14 | Альдебаран (α Тельца) | 60 | 0,85 (перем) | −0,3 | K5III | Северное |
15 | Антарес (α Скорпиона) | 0,96 (перем) | −5,2 | M1.5Iab | Южное | |
16 | Спика (α Девы) | 250 | 0,98 (перем) | −3,2 | B1V | Южное |
17 | Поллукс (β Близнецов) | 40 | 1,14 | 0,7 | K0IIIb | Северное |
18 | Фомальгаут (α Южной Рыбы) | 22 | 1,16 | 2,0 | A3Va | Южное |
19 | Бекрукс, Мимоза (β Южного Креста) | 1,25 (перем) | −4,7 | B0.5III | Южное | |
20 | Денеб (α Лебедя) | 1,25 | −7,2 | A2Ia | Северное | |
21 | Регул (α Льва) | 69 | 1,35 | −0,3 | B7Vn | Северное |
22 | Адара (ε Большого Пса) | 1,50 | −4,8 | B2II | Южное | |
23 | Кастор (α Близнецов) | 49 | 1,57 | 0,5 | A1V + A2V | Северное |
24 | Гакрукс (γ Южного Креста) | 120 | 1,63 (перем) | −1,2 | M3.5III | Южное |
25 | Шаула (λ Скорпиона) | 330 | 1,63 (перем) | −3,5 | B1.5IV | Южное |
Другие известные звезды:
Вы могли заметить, что звезды отличаются по цвету, который, на самом деле, зависит от поверхностной температуры.
Класс | Температура,K | Истинный цвет | Видимый цвет | Основные признаки |
---|---|---|---|---|
O | 30 000—60 000 | голубой | голубой | Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N. |
B | 10 000—30 000 | бело-голубой | бело-голубой и белый | Линии поглощения гелия и водорода. Слабые линии H и К Ca II. |
A | 7500—10 000 | белый | белый | Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов |
F | 6000—7500 | жёлто-белый | белый | Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti. |
G | 5000—6000 | жёлтый | жёлтый | Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN. |
K | 3500—5000 | оранжевый | желтовато-оранжевый | Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO. |
M | 2000—3500 | красный | оранжево-красный | Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов. |
Каждая звезда обладает одним цветом, но производит широкий спектр, включая все виды излучения. Разнообразные элементы и соединения поглощают и выбрасывают цвета или длины волн цвета. Изучая звездный спектр, можно разобраться в составе.
Размер звездных космических объектов определяется в сравнении с солнечным радиусом. У Альфа Центавра А – 1.05 солнечных радиусов. Размеры могут быть разными. Например, нейтронные звезды в ширину простираются на 20 км, а вот сверхгиганты – в 1000 раз больше солнечного диаметра. Размер влияет на звездную яркость (светимость пропорциональна квадрату радиуса). На нижних рисунках можно рассмотреть сравнение размеров звезд Вселенной, включая сопоставление с параметрами планет Солнечной системы.
Сравнительные размеры звезд

Здесь также все вычисляется в сравнении с солнечными параметрами. Масса Альфа Центавра А – 1.08 солнечных. Звезды с одинаковыми массами могут не сходиться по размерам. Масса звезды влияет на температуру.
Звезды генерируют магнитные поля. В случае с Солнцем, исследователи выяснили, что его магнитное поле способно достичь очень сконцентрированного состояния в небольших участках, создавая солнечные пятна или же извержения – выбросы корональной массы. Магнитное поле зависит от скорости вращения (увеличивается с нарастанием и уменьшается с замедлением).
Классификация звезд
В типах звезд главную роль играет спектр в системе Моргана-Кинана, выделяющей 8 спектральных классов. Каждый из них соответствует диапазону поверхностных температур: O, B, A, F, G, K, M и L (от наиболее горячего к холодному). Каждый из них делится еще на 10 типов (от 0 до 9).
Эта система учитывает и светимость. Наиболее крупные и ярчайшие обладают наименьшими римскими цифрами: Ia – яркий сверхгигант, Ib – сверхгигант, II – яркий гигант, III – гигант; IV – субгигант и V – главная последовательность или карлик.
Структура звезд Вселенной
Далее в звездном строении идет фотосфера, которую часто называют поверхностью. За ней – красноватая хромосфера, из-за наличия водорода. Внешний шар звезды – корона. Она невероятно горячая и может быть связана с конвекцией во внешних слоях. Нижнее видео детально описывает движение звезд на небе.