звезды на небе что это на самом деле
Почему звезды светятся и почему их не видно днем
Почему звезды светятся: Pixabay
Почему звезды светятся? Почему некоторые из них такие яркие на ночном небе, а другие едва заметны? От чего зависит цвет звезды? Современной науке удалось ответить на все эти и многие другие вопросы, касающиеся далеких небесных тел. Сегодня об этом может узнать каждый.
Что такое звезды
Звезды — основные небесные тела наравне с планетами и спутниками. От последних они отличаются тем, что излучают свет, а не просто отражают его. Ежедневно мы наблюдаем за самой большой звездой в нашей системе — за Солнцем. Именно его свет и тепло сделали возможной жизнь на Земле.
Что такое звезды на небе? Огромные межзвездные облака из светящихся разреженных газов называют газовыми диффузными туманностями. В их состав входит главным образом водород, кислород, гелий и азот. Такие газовые (или диффузные) туманности — колыбель для молодых звезд, которые рождаются так же, как некогда родилась наша Солнечная система.
Таким образом, звезда в небе — шарообразное скопление газов, удерживающее форму с помощью сил гравитации, а также излучающее свет. Ее основные составляющие — газы (в большинстве случаев гелий и водород) с твердыми минеральными частицами.
Звезды на небе ученые классифицировали и выделили такие группы:
Основными параметрами, по которым предсказывают физические характеристики звезд, считаются их масса и химический состав.
Почему светят звезды
Почему звезды светятся: Freepick
Звезда рождается из скопления газов, которые сжимает собственная гравитация. Во время этого процесса:
Вместе с колоссальным объемом тепловой энергии происходит световое излучение. Частично этот свет достигает Земли, и именно это явление мы наблюдаем, когда видим звезды ночью.
Таким свойством наделены исключительно звезды. Когда мы видим спутник нашей планеты Луну или планету Венеру, то они всего лишь отражают свет других звезд. И только последние — это самостоятельные объекты светового излучения, связанного с выбросом энергии.
Жизнь звезд такова:
Процесс звездообразования непрерывен, и звезды продолжают возникать и сегодня.
Почему звезды не видно днем
Идеальным временем для наблюдения за звездным небом считается последний летний месяц. В темные вечера прозрачный августовский воздух дает возможность насладиться невероятным зрелищем. Кроме того, в это время часто происходят звездопады.
У каждой звезды есть свой жизненный цикл. На разных этапах ее свет меняется. Чем ближе конец существования, тем холоднее становится звезда. Ее можно узнать по пульсирующему мерцающему свечению.
Днем звезды тоже светят так же, как и по ночам. Но их далекий свет затмевается солнечным — светом самой близкой к нам звезды. Ночью этот «занавес» словно открывается, и тогда мы наблюдаем за удивительными космическими красотами: планетами, созвездиями, туманностями и другими элементами Вселенной.
Интересно, что у каждой звезды свой цвет. Известны голубые, белые, оранжевые звезды и даже такие, которые переливаются разными оттенками. Это объясняется разной температурой газов, которые входят в их состав. Так, самые горячие звезды голубые, за ними следуют белые. Немного менее теплые — желтые, а самые холодные — оранжевые и красные.
Откуда звезды берут энергию
Звездное небо: Freepick
Чтобы ответить на этот вопрос, надо вернуться к тому, из чего состоит звезда. Большая ее часть — водород, который прекрасно горит с выделением энергии. Но для этого ведь нужен кислород, которого в звезде нет. Как же происходит «звездное горение»?
Горение — химический процесс своеобразной перетасовки атомов между молекулами, в ходе которого выделяется тепловая энергия. Чудовищный жар в звездных недрах делает невозможным существование молекул, они распадаются, а их составные части (атомы, ядра) перетасовываются. Так происходит образование новых химических атомов с другими химическими свойствами. Это так называемые ядерные реакции.
Согласно исследованиям ученых-физиков, источник звездной энергии заключается в непрерывном образовании атомов гелия из атомов водорода:
Что же происходит при старении и выгорании звезды? Водород становится гелием, а гелий может превратиться в более тяжелый элемент. Так и происходит непрерывное изменение химического состава Вселенной. Отсюда можно сделать вывод и о том, что в момент рождения нашей Вселенной в ней преобладал водород.
Со временем количество тяжелых элементов становится больше, чем количество водорода. Часть вещества звезды с этими элементами уходит в межзвездную газовую среду. Чем меньше остается топлива, тем сложнее звезде поддерживать свою жизнедеятельность и все так же ярко светить. После израсходования запасов водорода жизненный цикл светила завершается.
Вот мы и ответили на вопрос, почему звезды светятся. Физики занимались этой загадкой в течение нескольких веков, выдвигали гипотезы, которые потом опровергали, но все же нашли ответ. Нет сомнений, что в будущем нас ждет еще много интересных астрономических открытий.
Узнавайте обо всем первыми
Подпишитесь и узнавайте о свежих новостях Казахстана, фото, видео и других эксклюзивах.
Что такое звезды на небе
Звезда — это небесное тело, излучающее свет. Этим она отличается от планет, комет, спутников и туманностей, которые освещаются на небе Солнцем или близлежащими звездами.
Вещество, из которого состоят звезды на небе, это раскаленный газ — плазма.
Самая высокая температура на поверхности этого массивного газового шара достигает ста пятидесяти тысяч градусов. (Речь идет о поверхности образовавшегося белого карлика).
Каким образом астрономы знакомятся с этими небесными объектами?
При помощи наблюдений астрономы прежде всего определяют массу, радиус и температуру на поверхности. Хотя недра звезд мы и не видим, но нам известно, что они состоят из плазмы.
Температура измеряется с помощью анализа излучения, исходящего с поверхности этого небесного тела. Из недр звезд не может вырваться ни один фотон, поэтому с «внутренностями» мы никогда непосредственно не знакомимся.
И все же человек способен точно рассчитать температуру в любой точке в глубинах этого космического тела. Так, например, в центре Солнца температура достигает тринадцати миллионов. Более трех миллиардов достигает температура в недрах звезд с самой большой массой.
Состав
Звезды на небе — это огромные и в то же время простые системы элементарных частиц.
Состав звезд: 73% — состоят из водорода, 25% — из гелия, 2% — другие элементарные частицы.
Космический газовый шар средней величины построен из невероятно большого количества нуклонов (протоны и нейтроны), которое можно выразить цифрой с пятьюдесятью семью нулями.
Количество нуклонов нашего Солнца в триста тысяч раз превышает количество нуклонов, из которого состоит Земля. Количество вещества в этом теле и массу выражает количество нуклонов из которых оно складывается.
Несмотря на то, что Солнце как система по размерам во много раз превышает Землю, все же оно намного проще нашей планеты по составу. Именно такой химический состав Солнца обеспечивает эволюцию человечества.
Земля, как и остальные планетные тела, состоит из пород, порода — из кристаллов, кристаллы — из молекул, молекулы — из атомов, атомы — из ядра и электронов.
Звезды на небе построены лишь из ядер и электронов. Именно из-за простого состава простым является определение температуры, массы, давления и химических элементов в любой точке внутри. Но рассчитать те же самые характеристики Земли мы пока не умеем.
Стоит отметить тот факт, что астрономы знакомы с недрами далеких звезд лучше, чем с недрами планеты, на которой мы живем.
Свойства и поведение плазмы в настоящее время достаточно хорошо изучены: известно, например, что давление в плазме тем выше, чем она горячее и плотнее. В то же время давление в определенной точке внутри равно весу всех слоев, находящихся над этой точкой.
Если давление плазмы повышается, то звезда расширяется, в противном случае она сжимается.
Даже самые маленькие обладают массой, примерно в десять тысяч раз превышающей массу Земли.
Самые крупные звезды на небе обладают массой в миллионы раз большей, чем масса Земли.
Размеры
Размеры звезд на небе могут быть самые разные.
Белые карлики по своим размерам равны Земле, в то же время их плотность примерно в миллион раз превышает плотность земли.
Самые маленькие звезды, которые приходилось наблюдать — нейтронные. По объему они в сто миллионов раз меньше Земли. Чтобы в такой маленький объем могла вместиться громадная масса, не уступающая массе обычных нейтронные должны обладать фантастической плотностью. Вещество этих объектов состоит только из нейтронов. Их наблюдают как пульсирующие источники радиоизлучения и называют пульсарами.
Нейтронные звезды на небе — пульсары имеют массу несколько раз больше массы Солнца.
Эволюция или развитие
Эволюция звезды представляет собой постепенное повышение температуры в ее недрах.
Эволюция начинается с темно газо-пылевой туманности глобулы, температура которой повышается и со временем может дойти до ядра, состоящего из железа, с температурой три с половиной миллиарда. Далее гравитация начинает сжимать глобулу в протозвезду как завершающий этап формирования.
Масса
Если масса звезды меньше 0,08 MQ (MQ — масса Солнца), температура в ее недрах не достигает уровня, необходимого для сгорания водорода. Так, например, небесный объект с массой 0,06 MQ нагревается при помощи сил гравитации до температуры всего лишь до 2,5 миллионов градусов, что недостаточно для превращения водорода в гелий. Такой газовый шар способен жить лишь за счет сил гравитации. Спектр его излучения — преимущественно инфракрасный. Когда сила гравитации перестанет сжимать звезду (становится полностью вырожденным веществом), она теряет источник энергии. Вследствие этого шар остывает и превращается в черного карлика.
Если масса находится в пределах от 0,08 MQ до 4,0 MQ, то туманность превращается в легкую звезду. К группе легких звезд желтых карликов принадлежит и наше Солнце. Температура в недрах может достигать нескольких сотен миллионов градусов. Это означает, что в них не происходят все термоядерные реакции.
Более тяжелые звезды группы (от 1,4 MQ ДО 4,0 MQ) называются красным гигантом. В продолжении своей жизни и прежде всего в преклонном возрасте они избавляются от большей части своей плазмы, выбрасывая ее в межзвездное пространство. Результатом последнего выброса плазмы является планетарная туманность.
Красный гигант состоит из массивного вырожденного ядра земного диаметра и огромной редкой плазменной оболочки конвективной зоны.
Глобула или газо-пылевая туманность имеющая очерченные границы и высокую плотность, масса которой составляет 4,0 MQ-8,0 MQ, эволюционирует в массивную звезду, ядро которой нагревается до температуры свыше трех миллиардов градусов.
Остаток эволюции — нейтронное космическое тело
Ученые уже посчитали когда и как потухнет Солнце и закончит свою эволюцию.
По состоянию на сейчас термоядерная реакция на Солнце израсходована на 50% в течении 5 млрд лет, следовательно Солнце не потухнет еще 5 млрд лет.
После того как полностью будут исчерпаны ядерные реакции Солнце под влиянием гравитации коллапсирует в шар диаметром примерно 20-30 километров.
При гравитационном коллапсе ядро газового шара сосредотачивает в себе магнитные силовые линии. Поскольку их количество не изменилось, а они были всего лишь сжаты на маленькой поверхности нейтронной звезды, интенсивность магнитного поля на поверхности резко возрастает при коллапсе ядра. Нейтронная звезда при коллапсе начинает быстро вращаться. Магнитное поле нейтронной уносит с собой множество электронов, которые светятся всякий раз, когда двигаются по направлению к нам. Излучение нейтронной звезды (прежде всего в диапазоне радиоволн) напоминает мигающий свет на машине скорой помощи. Излучение нейтронных тел пульсирует, и по этой причине их называют также пульсарами.
Согласно исследованиям, которые провели астрономы, в нашей Галактике должно находиться свыше миллиона пульсаров.
До сих пор мы говорили только о ядре, которое вследствие коллапса превращается в нейтронный пульсар. Слои оболочки, потерявшие опору, находятся на высоте сто тысяч километров над нейтронной звездой, но это продолжается всего лишь несколько секунд. В мощном гравитационном поле нейтронной звезды слои оболочки красного гиганта падают, подобно гигантскому стремительному водопаду на поверхность. При падении на нейтронный шар богатая водородом плазма оболочки гиганта сильно нагревается, в результате чего в ней в ничтожно короткое время происходят различные термоядерные реакции.
Примером может послужить сверхновая в созвездии Тельца. Световое излучение этого процесса достигло Земли и было записано китайскими и арабскими астрономами в 1054 году. Сейчас определено, что нейтронная звезда пульсирует не только в диапазоне радиоволн, но также в видимом инфракрасном спектре, в диапазоне рентгеновском и дает космическое гамма излучение. Расширяющаяся плазма этой сверхновой — туманность, которая названа Крабовидной. Сейчас «Крабовидная туманность» в виде продолговатого пятна хорошо видна в бинокль.
Таким образом, звезды на небе представляют небесные светила имеющие различные «внеземные» характеристики и свойства.
Что такое звезда: как образуются и угасают звезды?
Что такое звезда в космосе? В результате чего образуются Новые и Сверхновые звезды? Как происходит эволюция звезд?
В ясную безоблачную ночь мы смотрим на небо и видим сотни тысяч мерцающих бликов, которые кажутся украшениями на темном теле небесного мрака – всепроникающей тьмы, которая, кажется, стремится поглотить все!
Эти крошечные блики – звезды. Но что такое звезда? Как она образуется? Что происходит, когда она исчезает? Это наиболее распространенные вопросы, которые большинство из нас задавали нашим родителям и учителям. В этой статье мы подробно разберем эти и многие другие темы. Готовы? Давайте начнем…
Вспомните, каково это – смотреть на звездное небо
Что такое звезда?
Звезда – это гигантский газовый шар. Газ в ней настолько горячий, что он светится. Звезда состоит в основном из двух элементов – водорода и гелия. Вопрос может возникнуть: “Если звезда сделана из газа, почему газ не рассеивается?”
Это действительно хороший вопрос. Вот ответ на него: газовый шар настолько велик, что атомы газа удерживаются вместе под действием собственной гравитации.
Теперь возникает еще один вопрос: “Если гравитация удерживает форму звезды, почему из-за нее звезда не “сжимается” к центру?”
Да, это именно так и происходит. Внутри шара гравитация настолько интенсивна, что атомы газа фактически падают в центр и вызывают огромное повышение температуры. Именно эта высокая температура вызывает ядерную реакцию, называемую “реакцией синтеза”. При ней элементарные атомы соединяются, образуя тяжелые элементы.
Когда происходит это слияние, высвобождается огромное количество энергии. Эта энергия оказывает внешнее давление, идущее из центра, и действует как уравновешивающая сила против внутреннего гравитационного притяжения. Это сохраняет звезду такой, какая она есть, и не дает ей разрушиться из-за гравитации.
Цикл жизни звезды
Все звезды следуют одному и тому же циклу рождения и смерти. Вот его этапы:
Давайте посмотрим на каждую стадию отдельно и поймем, как образуется звезда, и что происходит с ней в течение жизни.
Этап 1: Газ и пылевое облако: туманность
Есть газ и пыль, которые разбросаны по всей вселенной и присутствуют почти в каждой галактике. Эти газ и пыль просто находятся там, ничего не делая.
Внезапное гравитационное возбуждение заставляет газы и пыль сталкиваться друг с другом и слипаться, образуя огромные облака – туманности.
Одна туманность может растягиваться на сотни и тысячи световых лет. Эти туманности иногда называют “звездными питомниками”. То есть звезды образуются внутри этих огромных облаков.
Этап 2: Протостар (Рождение Звезды)
Внутри туманности то и дело возникают турбулентности, из-за которых создаются скопления большого количества газов и пыли. Эти узлы или комки, начинают “тереться” друг от друга из-за собственного гравитационного притяжения. Когда этот коллапс продолжается, материал в центре начинает постепенно нагреваться.
Это горячее ядро называется Protostar. Он располагается в самом центре коллапсирующего облака, и однажды станет звездой. Протозвезда будет расти в течение некоторого времени, так как все больше и больше облаков будет притягиваться к ней. В результате температура ядра также будет продолжать расти.
Этап 3: Звезда Главной последовательности
В какой-то момент протозвезда достигает критической температуры, когда атомы водорода начинают плавиться, образуя атомы гелия. Это называется “реакцией синтеза”.
Когда начинается реакция синтеза, высвобождается огромное количество энергии. Коллапс газа и пыли продолжается до тех пор, пока энергия, выделяемая реакцией синтеза, не станет равной гравитационному притяжению в ядре. Такое состояние называется “гидростатическим равновесным состоянием”, и протозвезда становится тем, что известно как Звезда Главной последовательности.
“Мы покорили открытый космос, но не свой внутренний мир”.
Что на самом деле происходит на стадии гидростатического равновесия?
Ядро звезды оказывает гравитационное притяжение, но в то же время энергия, выделяемая реакцией синтеза, выталкивается наружу из центра. Таким образом гравитационное притяжение ядра внутрь и выброс энергии наружу уравновешивают друг друга, и звезда приобретает сферическую форму. Это фаза зрелости звезды.
Вы знали?
Здесь история жизни звезды становится действительно интересной.
Есть одно правило: чем больше звезда, тем короче ее продолжительность жизни.
Угасание звезды отмечена фазой, в которой весь водород, присутствующий в ядре, сгорает с образованием гелия. Когда в ядре больше не остается водорода, реакция ядерного синтеза останавливается. Звезде больше нечем поддерживать свою жизнь. Гидростатическое равновесие нарушается, и ядро звезды начинает разрушаться, а его температура увеличиваться.
В то же время, вне ядра, звезда все еще может содержать водород. Это означает, что реакция синтеза будет продолжаться в оболочке. Энергия, выделяемая ей, заставит оболочку расширяться.
Одновременно внешние слои будут выталкиваться наружу все более горячим ядром. По мере того как оболочка продолжит расширяться, она будет охлаждаться. В итоге звезда станет так называемым красным гигантом
Если умирающая звезда очень массивна, то ее коллапсирующее ядро достаточно большое, чтобы вызвать другие реакции ядерного синтеза. Это означает, что гелий в коллапсирующем ядре будет сливаться вместе и образовывать более тяжелые элементы, например, железо.
К сожалению, такие экзотические реакции ядерного синтеза не очень стабильны. Иногда ядро сгорает или просто гаснет. Эта нестабильность в конечном итоге заставляет всю звезду пульсировать. Пульсирующая звезда затем сбрасывает свой расширенный внешний слой, образовывая вокруг ядра кокон из пыли и газа.
С этого момента размер ядра будет определять окончательную судьбу звезды. Дальше только интереснее!
Классификация звезд
Итак, что может произойти со звездой дальше?
Белые карлики
Белые карлики образуются из средних звезд по массе примерно равных нашему Солнцу. Да, наше Солнце – средняя звезда, и любая звезда массой, в 1,4 раза превышающей массу нашего Солнца, также будет считается средней.
Как только такие звезды Главной последовательности освобождаются от внешних слоев из-за пульсаций, внутреннее ядро становится “открытым”. Это ядро очень горячее и известно как Белый карлик.
Белые карлики примерно того же размера, что и наша родная планета Земля. Однако они имеют гораздо большую массу. Астрономы долго были озадачены этим. Они вопрошали: “Если у Белого карлика такая большая масса, почему он не сворачивается сам в себя?”. Ответ на этот вопрос довольно интересный.
Оказывается, что внутри Белого карлика есть быстро движущиеся электроны, которые оказывают внешнее давление и предотвращают коллапс Белого карлика.
Вот несколько интересных фактов о этих звездах:
Новые
Может случиться так, что Белый карлик становится частью двойной звездной системы или системы из нескольких звезд. В таком случае вполне возможно, что он будет находиться достаточно близко к своим спутникам (звездам). Близость может позволить Белому карлику притягивать материю (в основном водород) из внешнего слоя звезды-компаньона. Это приведет к формированию внешнего слоя для самого Белого карлика.
Если Белому карлику удастся “втянуть” достаточное количество вещества, реакция синтеза в нем может возобновиться. Тогда он внезапно станет намного ярче.
В этом случае Белый карлик станет Новой, но реакция слияния на поверхностном слое заставит его расширяться, и в конечном итоге под действием взрыва внешняя оболочка все равно будет разрушена. Как только поверхностного слоя не станет, вновь обретенный свет Белого карлика исчезнет в течение нескольких дней. Затем он перезапустит цикл и снова сформирует Новую.
Если Белый карлик очень большой и сформирован из звезды намного больше нашего Солнца, то он может затянуть достаточное количество водорода, чтобы разрушиться из-за собственного гравитационного притяжения – взорваться и стать Сверхновой.
Сверхновые
Это настоящий космический фейерверк. Сверхновые звезды “рождаются” из звезд Главной последовательности, которые тяжелее нашего Солнца в 8 раз и более.
Если кратко, то сверхновая сильно отличается от Новой. В Новой взрывается только внешний слой, а в Сверхновой еще и ядро.
В очень больших Звездах Главной последовательности происходит множество экзотических ядерных реакций в ядре, и в конечном итоге образуется железо. Образование железа означает, что звезда больше не может производить энергию.
Конечно, можно утверждать, что следующий раунд реакции синтеза может превратить железо в более тяжелые элементы и высвободить энергию. Но этого не произойдет, потому что для ядерной реакции по превращению железа в более тяжелые металлы энергия не выделяется, а потребляется. Таким образом, дальнейшая реакция ядерного синтеза невозможна.
На этой стадии (поскольку нет энергии для противодействия гравитации) железное ядро разрушается само по себе. Ядро с поперечным сечением около 5000 миль разрушается за несколько секунд.
Таким образом, срок жизни Сверхновой относительно короткий.
Что происходит после взрыва Новой и Сверхновой?
Материал, который выделяется из Новых или Сверхновых, смешивается с газом и пылью, присутствующими между звездами. Тяжелые элементы и другие химические соединения перерабатываются и снова используются для создания звезд, планет и других небесных объектов!
Нейтронная звезда
Если ядро сверхновой очень велико, оно будет продолжать коллапсировать до того момента, когда протоны и электроны станут сливаться вместе, образуя нейтроны. Это приведет к появлению нейтронной звезды.
Нейтронные звезды очень плотные. Они обладают чрезвычайной гравитационной силой даже на поверхности.
Если такие нейтронные звезды образуются в двойных или множественных звездных системах, они будут накапливать массу, втягивая газ от соседних звезд. Мощные магнитные поля нейтронной звезды будут ускорять все атомы вблизи ее полюсов. Это ускорение приведет к мощным излучениям.
Черная дыра
В Сверхновой, если ядро имеет массу, превышающую массу Солнца в 3 раза, оно полностью разрушится и приведет к созданию Черной Дыры. Чёрная дыра будет очень плотной, и всё вещество в ней будет упаковано в бесконечно малую точку, называемую “Сингулярностью“.
Гравитация в Черной дыре настолько интенсивна, что ничто не сможет вырваться с ее орбит. Когда мы говорим “ничто не может вырваться”, мы также имеем в виду свет. Поскольку свет не может преодолеть гравитацию Черной дыры, мы не можем ее видеть.
Как же обнаружить Черные дыры? Есть косвенный метод. Когда Черная дыра затягивает материю, вокруг нее создается спиральный диск, который нагревается до огромных температур и испускает гамма-лучи и рентгеновские лучи. Мы можем обнаруживать эти лучи, и это позволяет находить черные дыры.
Заключение
Теперь, когда мы знаем, что такое звезда, как она рождается и умирает, может показаться, что мы узнали все. Увы, мы далеки от этого. Нам нужно гораздо больше, чтобы ответить на вопрос: “Что такое звезда?”
Что в Черной дыре?