звуковые волны что это

Звуковые волны

Звуковые волны или звук – это колебания частиц, распространяемые волнообразно в какой-либо среде – газообразной, жидкой или твёрдой, – которые воспринимаются органами слуха животных.

Когда мы изучаем свет, то убеждаемся не только в том, что он существует вне нас, но сверх того еще и в том, что нам необходимо иметь глаза для восприятия света, иначе мы и не подозревали бы о нем. Всё вокруг нас погружается в темноту, когда мы закрываем глаза. Точно так же для нас не существовало бы мира звуков, если бы у нас не было органа слуха, который воспринимает их.

Итак, мы называем звуком то, что мы чувствуем нашим слуховым аппаратом. Но явления внешнего мира для нас имеют характер звуковых только с того момента, когда они дошли до наших ушей. Закрыв уши пальцами, мы не услышим разговора, хотя он и продолжается около нас.

Из этого следует, что как бы ни были грандиозны звуковые явления, происходящие на Солнце и Луне, они не могут произвести такого шума, который мог бы быть услышан у нас на Земле, потому что за пределами нашей атмосферы, между Землей и небесными телами, нет обычной материи.

Источники звуковых волн

Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.

Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.

Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.

Распространение звуковых волн

Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.

Скорость звука

Скорость света одинакова при всех условиях, насколько это можно было изучить. А скорость звука изменяется в значительной степени с изменением условий, при которых он распространяется в воздухе. Большое счастье для музыкального искусства заключается в том, что скорость звука изменяется только в незначительной степени с изменением высоты его или силы.

Было бы очень затруднительно слушать издали музыку, если бы звуки различных инструментов оркестра доходили до нашего слуха в разное время, в то время как композитор имел в виду, что они будут слышаться одновременно. Или, если бы мотив, разыгрываемый одной частью оркестра, доходил до нашего слуха раньше того, что играет другая часть оркестра, или позже.

1. Скорость звука в воздухе

Обычная скорость звука в воздухе считается около 331 метра (То есть около трети километра) в секунду. Когда температура воздуха поднимается, он становится более упругим и тогда прохождение звука через него совершается быстрее.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Скорость звука увеличивается с повышением температуры воздуха, если плотность его остается той же самой.

Если мы примем во внимание зависимость скорости звука от упругости проводящей его среды, то нам будет понятно, почему звук проходит значительно быстрее в жидкостях, чем в газах, и еще быстрее в твердых телах.

2. Скорость звуковых волн в твёрдых телах

Звуковые волны распространяются в твёрдых телах быстрее, чем в воздухе. Железо, когда оно в твердом состоянии, обладает большею упругостью, чем воздух, и звук проходит в нем почти в семнадцать раз быстрее, чем в воздухе

Нельзя смешивать скорость распространения звука в воздухе или в какой-либо другой среде с высотой тона. Она у музыкального звука зависит от числа колебаний в секунду, и чем их больше, тем выше тон.

Звук, как мы сказали, проходя через железо, достигает нашего уха в семнадцать раз быстрее, чем когда он проходит через воздух; высота же его тона остается той же самой в обоих случаях, потому что число колебаний в секунду остается одно и то же, хотя звук через железо проходит значительно быстрее.

3. Скорость звука в разных средах

Сила звука

Когда мы начнем исследовать силу звука на разных расстояниях, то найдем, что первый закон, относительно его, тот же, что и для света. И насколько нам известно, этот закон верен не только относительно волнообразных движений, но и такого явления, как тяготение.

На точном научном языке закон о силе звука излагается так:

Сила звука изменяется обратно пропорционально квадрату расстояния от его источника

Таким образом можно коротко и ясно выразить, например, ту мысль, что если мы удаляемся от источника звука на расстояние, которое в три раза больше прежнего, то сила звука уменьшится при этом не в три, а в девять раз: девять есть квадрат трех. Квадратом числа называется число, полученное от перемножения его на самого себя.

Когда этот закон применяется к силе света или тяготения, то нам не приходится считаться с какими-либо условиями, которые могут повлиять на них. Но если речь идёт о звуке, то дело обстоит несколько иначе. На звук влияет плотность той среды, в которой он проходит; в морозную ночь воздух очень плотен, почему нам и дышится тогда легче, звук же будет в это время слышен сильнее. С другой стороны, звук ружейного выстрела высоко в горах ослабляется, потому что воздух там редок. Это явление напоминает нам опыт со звонком под колпаком воздушного насоса.

Отражение звука

Когда мы наблюдаем, как волны моря или озера ударяют в крутой берег, мы видим, что они отражаются от него и отскакивают назад. Если поверхность берега ровная и вертикальная, то мы видим, что волны отражаются от нее точно так же, как мяч от стены. Если звук есть действительно волнообразное движение, то мы всегда можем ожидать, что и он будет так же отражаться, как водяные волны, и нам часто приходится убеждаться в этом.

Всякие движущиеся волны могут отражаться от преград на их пути; это совершается как при свете, так и при морских волнах. Есть законы отражения, которые одинаково приложимы к этим различным явлениям.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Природа грома

Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.

Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.

Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Волны Рэлея

Если мы наполним резиновый шар или выпуклый диск углекислым газом, то заметим, что он действует на звук точно так, как зажигательное стекло на световые лучи. Звуковые волны отклоняются газом, находящимся в шаре, так что они все собираются в одном пункте, находящемся по другую сторону шара точно так, как лучи солнца могут быть собраны на кусок бумаги в одну точку зажигательным стеклом.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Это видно из хорошо известного опыта, произведенного замечательным английским ученым, лордом Рэлеем. Опыт этот заключается в том, что нас ставят против часов на таком расстоянии, чтобы не слышать их тиканья. Если после этого гуттаперчевый шар, наполненный углекислым газом, будет помещен между нами и часами, то, находясь на том же самом расстоянии, мы услышим часы. Это происходит вследствие того, что углекислый газ преломляет звуковые волны и фокусирует их в одной точке.

Источник

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Звуковые волны

Процесс распространения связан с колебательным механическим движением частиц. Достаточно каким-либо образом создать скачок давления, и частицы «толкнут» соседние.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Уравнение звуковой волны в газе (гармоничные колебания) будет выглядеть так:

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

p0 – начальное давление (Па);

ω – круговая частота (Гц);

Формулы связи длины звуковой волны, скорости, иные характеристики:

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

v – скорость волны (м/с);

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи голосовых связок.

Скорость звуковой волны

Скорость распространения акустической волны является важной физической характеристикой среды или материала, поскольку со скоростью звука передаются любые возмущения.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Величина зависит от упругих свойств среды. Например, от давления, температуры. Для атмосферного воздуха важна влажность.

В общем случае определяется отношением модуля всестороннего сжатия и номинальной плотностью.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Для практических целей замеряется опытным путем. В жидкостях звук распространяется быстрее, чем в газах.

Громкость

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Зависит от перемещаемой волной энергии. Замеряют в Вт/м 2 . Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

При проведении крупных концертных мероприятий учитывается возможные «деформации» звука в некоторых участках помещения. Эффект связан с обильным отражением (рефракцией) волн от стен, потолка, пола. Особенно коварно поведение линейных массивов.

Рота бойцов разрушит мост, идя по нему «в ногу». Конструкции не выдерживает наступающего резонанса.

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

3. Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Источник

Звуковые волны что это

Перед тем, как приступить к рассмотрению темы, дадим определение такому явлению, как звук.

Звук или звуковые волны – это волны, которые способно воспринять человеческое ухо.

Волнам звукового диапазона свойственно распространяться как в газе, так и в жидкости (продольные волны), и в твердом теле (продольные и поперечные волны). Особенно интересно для науки заниматься изучением распространения звуковых волн в газообразной среде, что по сути есть среда нашего обитания.

Акустика – это направление физики, занимающееся изучением звуковых явлений.

Звуковые волны в газе зачастую называют волнами плотности или волнами давления.

Одной из ключевых характеристик звука является скорость распространения.

Скорость распространения – величина, описывающая звуковую волну, задаваемая инертными и упругими свойствами среды и определяемая для продольных волн в любой однородной среде при помощи формулы:

В указанной формуле B является модулем всестороннего сжатия, ρ – средней плотностью среды.

Формула Лапласа

Формула Лапласа для определения скорости звука имеет запись:

Где p является значением среднего давления в газе, ρ – средней плотности, а γ есть некоторая константа, находящаяся в зависимости от свойств газа.

Формула Лапласа может быть записана несколько иначе, если использовать уравнение состояния идеального газа. Таким образом, окончательный вид формулы для определения скорости звука будет такой:

Для наглядности приведем некоторые примеры.

Когда звук распространяется в гелии ( M = 4 · 10 – 3 к г / м о л ь ) : υ = 970 м / с ;

Характеристики звуковых волн

Помимо скорости распространения звук имеет и другие характеристики, связанные с восприятием его человеческими органами слуха.

Громкость звука

Рассуждая о том, как человеческое ухо воспринимает звук, в первую очередь мы говорим об уровне громкости, который зависит от потока энергии или интенсивности звуковой волны. А то, как воздействует звуковая волна на барабанную перепонку, зависит от звукового давления.

Звуковое давление – это амплитуда p 0 колебаний давления в волне

Природа отлично потрудилась, создавая такое совершенное устройство, как человеческое ухо: оно способно воспринимать звуки в обширнейшем диапазоне интенсивностей. Мы имеем возможность слышать как слабый писк комара, так и грохот вулкана.

Порог слышимости – минимальное значение величины звукового давления, при котором звук этой частоты еще воспринимается человеческим ухом.

Болевой порог – это верхняя граница диапазона слышимости человека; та величина звукового давления, при котором звук вызывает в человеческом ухе ощущение боли.

Человеческое ухо, восприимчивое к звукам такого огромного диапазона интенсивности, допустимо сравнить с прибором, которым возможно измерить как диаметр атома, так и размеры футбольного поля.

Для общей информированности заметим, что обычным разговорам людей в комнате соответствует интенсивность звука, примерно в 10 6 раз превышающая порог слышимости, а интенсивность звука на рок-концерте находится очень близко к болевому порогу.

Высота звука

Высота звуковой волны – еще одна характеристика звука, влияющая на слуховое восприятие. Человеческие ухо воспринимает колебания в гармонической звуковой волне как музыкальный тон.

Высокий тон – это звуки с колебаниями высокой частоты.

Низкий тон – это звуки с колебаниями низкой частоты.

Звуки, которые издают музыкальные инструменты, а также звуки голоса человека значимо отличаются друг от друга по высоте тона и по диапазону частот.

Октава – это диапазон колебаний звука, который соответствует изменению частоты колебаний в 2 раза.

Говоря о частоте звука, который извлекается при помощи струн любого струнного музыкального инструмента, будем иметь в виду частоту f 1 основного тона. Однако колебания струн содержат также гармоники, частоты f n которых отвечают соотношению:

Таким образом, звучащая струна способна излучать целый спектр волн с кратными частотами. Амплитуды A n этих волн имеют зависимость от способа возбуждения струны, будь то смычок или молоточек. Эти амплитуды необходимы для придания музыкальной окраски звуку (тембру).

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Музыкальные инструменты необходимо периодически настраивать.

Камертон – устройство для настройки музыкальных инструментов, состоящее из настроенных в резонанс деревянного акустического резонатора и соединенной с ним металлической вилки.

Удар молоточка по вилке вызывает возбуждение всей системы камертона с последующим звучанием чистого музыкального тона.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Биения

Разберем также такое явление, как биения.

Биение – это явление, возникающее, когда две гармонические волны с близкими, но все же имеющими отличия частотами, накладываются друг на друга.

Для удобства примем, что амплитуды колебаний звуковых давлений являются одинаковыми и равны p 0 = A 0 0.

Согласно принципу суперпозиции полное давление, которое вызывается обеими волнами в каждый момент времени, есть совокупность звуковых давлений, задаваемых каждой волной в тот же момент времени. Запишем выражение, показывающее суммарное воздействие волн, используя тригонометрические преобразования:

Период биений Т б – это минимальное значение интервала между двумя моментами времени, которым соответствуют максимальная и минимальная амплитуда колебаний.

Формула, которая определяет медленно изменяющуюся амплитуду A результирующего колебания, имеет запись:

f б есть частота биений, определяемая как разность частот Δ f двух звуковых волн, которые воспринимаются ухом одновременно.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Источник

Звуковые волны что это

Звук — это форма энергии. Звуковые волны представляют собой колебания частиц воздуха или иной среды. Звук может передаваться только в среде — воздухе, воде, стекле. В вакууме, где среды нет, нет и звуков. Преобразованный в другие формы энергии, например в электричество или радиоволны (см. статью «Радио«), звук может быть записан и передан на дальние расстояния.

В этой статье мы познакомим читателей со понятием звука; расскажем что такое звуковые волны и опишем основные характеристики звука — скорость, высоту тона и громкость, объясним как звуки воспринимает человек.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

На Земли нет, наверное, человека, который бы не любил музыку. Музыка сопровождает нас в течение всей жизни: веселая и грустная, ритмическая и медленная. Но из чего состоит любимое музыкальное произведение? Все звуки, такие как речь, музыка, шум, это все звуковые волны различной частоты и амплитуды. Изучением звуковых явлений занимается особый раздел физики, который называют акустикой.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Нас окружает много предметов, способных издавать звуки, например, музыкальные инструменты: скрипка, гитара, баян, домра, флейта, свирель и другие. Что объединяет все эти предметы? Да, это источники звука.

Источниками звуков является тела, которые колеблются. В скрипке и гитаре колеблется струна, в наушнике телефона — мембрана; когда мы говорим, колеблются голосовые связки. Проведем эксперимент. Для этого возьмем прибор, который называют камертоном. Медленно придвиньте камертон, который звучит, к теннисному шарику, висящему на нитке. Как только они столкнутся, шарик сразу же, как будто от сильного толчка, отскочит в сторону. Так происходит именно из-за частых колебания ножек камертона, при соприкосновении с шариком они отталкивают его.

Звуковые волны

Когда тела колеблются и вызывают колебания окружающего воздуха или иной среды, они издают звуки. При этом частицы среды тоже начинают колебаться, образуя волну, проходящую в среде. Частицы среды могут совершать колебания как вдоль направления распространения волны, так и поперек. Соответственно различают продольные и поперечные механические волны.

Звуковая волна определяется так: волна, которая представляет собой колебание давления, передаваемого через твердое тело, жидкость или газ, c частотой в диапазоне слышимости.

Звуковые волны кажутся схожими с волнами на воде. Если на поверхность озера бросить маленький камень, то от места падения в разные стороны побегут волны. Возникают они потому, что частички воды на поверхности совершают колебания и эти колебания передаются следующим частичкам, то есть волной называется процесс распространения колебаний со временем. Волны на поверхности воды мы можем видеть непосредственно, они поперечные, ведь частицы воды движутся вертикально, вверх-вниз, а волна распространяется горизонтально. Но многие механические волны невидимые, например, звуковые волны, распространяющиеся в воздухе, мы можем только слышать. Ученые установили, что звуковые волны отличаются от волн на поверхности воды тем, что они продольные. Частицы среды колеблются взад-вперед вдоль направления движения волны, а не перпендикулярно ему, как в поперечных волнах. Еще одно отличие в том, что звук распространяется во всех направлениях, а не только горизонтально, как волны по воде.

Волны изображают с помощью диаграмм, на которых указывают частоту волн (количество колебаний за секунду) и их амплитуду (силу волн). Высокие звуки – это высокочастотные волны, низкие звуки – это низкочастотные волны. Звук с частотой более 20 000 Гц называют ультразвуком. Чем больше амплитуда волны, тем громче звук. По мере удаление от источника звука амплитуда падает и звук стихает. Высокие звуки, такие, как пение птиц, — это высокочастотные волны. Низкие звуки, например рев двигателя, — это низкочастотные волны.

Прибор, который позволяет увидеть форму звуковой волны, называется осциллографом.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Шум – это неприятный звук. Измеряется уровень шума в децибелах (дБ). Шум свыше 120 дБ может вызвать боль. При падении листа звук в 10 дБ, а при взлете самолета – 110 дБ. Из всех животных самые громкие звуки может издавать синий кит – 188 дБ. Его можно услышать за 850 километров.

Распространение звука

Проведем эксперимент. Под стеклянным колпаком поместим на поролоновой подушке электрический звонок. Затем откачиваем воздух из колпака. В процессе откачивания воздуха слышно, что звук, который издает звонок, становится все тише, хотя сквозь стекло хорошо видно, что звонок продолжает работать. В конце концов, звук вообще исчезнет.

Какой вывод из этого эксперимента? Для распространения звука необходима определенная среда. Среда может быть разной: воздух, вода, стекло, земля. Главное, чтобы среда, в которой распространяется звук, была упругой при изменении ее формы или объема. Заметим, что воздух не имеет никаких преимуществ по сравнению с другими веществами в части возможности распространения в нем звуков. Разве что в разных средах звуковые волны движутся с разной скоростью.

Звук может распространяться и в газе, и в жидкости, и в твердом теле. Источниками звука является колеблющиеся тела. Если такое тело находится в какой-либо среде, колебания передаются «прилегающим» частицам вещества. А поскольку частицы вещества взаимодействуют друг с другом, колеблющиеся частицы передают колебания своим «соседям». В результате колебания начинают распространяться в пространстве. Так возникают звуковые волны.

При распространении звука в среде происходит его поглощения. Знание законов поглощения помогает определять, например, дальность распространения звукового сигнала. Поглощение звука обусловлено причинами, связанными со свойствами самого звука (прежде всего с его частотой) и со свойствами среды. Например, в морях на некоторых глубинах образуются определенные условия для сверхдальнего распространения звука, так называемый водяной звуковой канал. Звук подводного взрыва распространяется в таком канале на расстояние более 5000 км.

При распространении звука в атмосфере происходит его рассеивание. На рассеивание звука влияют температура и давление, сила и скорость ветра.

Изучение того, как рассеивается звук в различных средах, дает информацию о внутреннем строении и физическом состоянии газов, жидкостей и твердых тел. Называется это звуковой локацией.

Приемники звука

Приемником звука является ухо. Наше ухо воспринимает в виде звука колебания, частота которых лежит в пределах от 16 до 20000 Гц. Итак, механические волны с частотой от 20 до 20000 Гц, вызывающие у человека ощущение звука, называются звуковыми.

Многие животные способны различать звуки, частоты которых меньше 20 Гц (рыбы, медузы, даже слон могут слышать звук с частотой 1 Гц и использовать низкочастотные звуки для общения с соплеменниками) и выше 20 кГц (например, дельфины, летучие мыши). Морские свинки воспринимают звуки частотой до 33 кГц.

Как вы уже знаете, звуковые волны распространяются в воздухе как перемежающиеся области с изменяющимся давлением, то есть эти волны являются продольными. Эти волны воздействуют на мембрану в нашем ухе, называемую барабанной перепонкой, заставляя ее колебаться, а слуховой нерв улавливает эти колебания и посылает сигналы в мозг. Так мы слышим звук.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.

Указанные границы звукового диапазона условные, так как зависят от возраста людей и индивидуальных особенностей их слухового аппарата. Обычно верхняя частотная граница звуков, воспринимаемых ухом, с возрастом значительно снижается — некоторые пожилые люди могут слышать звуки с частотами, не превышающими 6000 Гц.

Ухо является естественным приемником звука, однако созданы и искусственные приемники звука. Наиболее широко используются различные микрофоны. Они превращают звуковые колебания на колебания электрического тока, благодаря чему появилась возможность записывать звук и передавать его на большие расстояния.

Свойства звука

Звук, создаваемый одним источником, отличается от звука, создаваемого другим. Например, каждая из струн гитары издает звук, отличающийся от звука, который выдается другими струнами.

Две, казалось бы, совершенно одинаковые скрипки могут звучать по-разному. При этом звук скрипки нельзя спутать со звуком гобоя, звук барабана — со звуком тромбона. Те же звуки, созданные разными людьми, отличаются друг от друга.

Все это свидетельствует о необходимости ввести физические характеристики, с помощью которых можно было бы оценивать излучения и восприятия звука.

Громкость

Громкость звука определяется амплитудой колебаний тела, которое издает звук. Чем больше амплитуда звуковых колебаний, тем звук кажется более громким, но громкость для звуков различных частот будет разной. Человеческое ухо плохо воспринимает звуки низких частот (около 20 Гц) и высоких (около 20 кГц) частот и значительно лучше — звуки средних частот (от 300 Гц до 3000 Гц). Поэтому даже достаточно сильные колебания с низкой или, напротив, с очень высокой частотой, будут казаться нам тихими, а более слабые колебания со средней частотой — громкими. Это объясняется строением органов слуха человека.

Громкость звука измеряется в децибелах (дБ). Громкость, равной 120 дБ, называется болевым порогом, когда достигается этот уровень, возникают болевые ощущения. А если влияние такого звука является длительным, то происходит непоправимая потеря слуха слуха. А уровень громкости в 180 дБ является смертельным для человека!

Поэтому мы предостерегаем вас от прослушивания звуков с большой громкостью. Если это обусловлено условиями труда (работа на станках, в цехах и др.), обязательно нужно пользоваться специальными защитными наушниками. Не ставьте на максимум громкость в своих наушниках при прослушивании музыки. Берегите свое здоровье и здоровье окружающих.

Таблица различных источников звука и уровень громкости в дБ:

Громкость,
дБ
ХарактеристикаИсточники звука
0Ничего не слышноКосмос, за пределами атмосферы земли
5Почти не слышноЛегкое дуновение ветерка
10Почти не слышноТихий шелест листьев
20Едва слышноШепот человека (на расстоянии 1 метр)
30ТихоШепот, тиканье настенных часов
35Довольно слышноПриглушенный разговор
40Довольно слышноОбычная речь
50Отчётливо слышноРазговор, пишущая машинка
60ШумноНорма для общественных помещений
70ШумноГромкие разговоры (1м)
80Очень шумноКрик, мотоцикл с глушителем.
90Очень шумноГромкие крики, грузовой железнодорожный вагон (в семи метрах)
100Крайне шумноОркестр, вагон метро, раскаты грома
105Крайне шумноВ самолёте
110Крайне шумноВертолёт, пескоструйный аппарат (1м)
120Почти невыносимоОтбойный молоток (1м)
130Болевой порогСамолёт на старте
140КонтузияЗвук взлетающего реактивного самолета
150Контузия, травмыСтарт ракеты
160Шок, разрыв барабанных перепонок и лёгкихУдарная волна от сверхзвукового самолёта
больше 180 дБСмертельный уровень!Звуковое оружие

Скорость звука

Звук распространяется не мгновенно и скорость распространения его значительно меньше скорости распространения света (которая составляет 300000 км/с).

Пример из истории и литературы: Дмитрий Донской перед Куликовской битвой прикладывал ухо к земле. Зачем? Так как скорость распространения звука в земле больше, чем в воздухе, он услышал топот копыт противника раньше, чем увидел конницу.

Распространение звуковых волн в различных средах происходит с неодинаковой скоростью. С помощью опытов было обнаружено, что в воздух при температуре 0 градусов по Цельсию скорость звука составляет 332 м/с. В воде из температуре 0 o C этот показатель составляет примерно 1485 м/с. В твердых телах скорость звука еще больше, чем в жидкостях. В некоторых металлах скорость звука достигает нескольких тысяч метров в секунду: в частности, в свинце — 1300 м/с, в меди — 4560 м/с, в стали — 5100 м/с. Интересно, что через резину звук проходит со скорость всего 54 м/с, сквозь пробку — 500 м/с, кирпичную стену — 3480 м/с, гранит — 3950 м/с, стекло 5000 м/с. Это связано с тем, что агрегатное состояние, плотность, температура, молекулярное строение различных веществ различны. С ростом температуры скорость звука возрастает. Можно заметить закономерность, чем тверже материал, тем выше скорость звука в нем.

Зависимость скорости звука от свойств среды стала основой метода определения наличия примесей, дефектов во внутреннем строении тел.

Высота (частота)

Если специальным резиновым молоточком ударить по «ножках» камертона, то он будет издавать звук, который называется музыкальным тоном.

Мы хорошо знаем, что звук бывает высокий и низкий. Как известно, бас поет низким голосом, а тенор — высоким. От какой же характеристики звуковой волны зависит высота звука? Опыты показывают, что высота звука определяется частотой звуковой волны: чем больше частота волны, тем звук выше.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.График (осциллограмма) звуковых волн разных частот. Верхняя волна имеет частоту вдвое ниже чем нижняя.

Частота звуковых колебаний, создаваемых струнными и духовыми музыкальными инструментами, может изменяться от 20 до 4000 Гц.

Еще древнегреческий ученый Пифагор, изучая зависимость высоты тона от длины струны, выяснил, что чем короче струна, тем выше тон.

Писк комара соответствует 500-600 взмахам его крыльев в секунду, жужжание шмеля — 220 взмахам. Колебания голосовых связок певцов могут создавать звуки в диапазоне от 80 до 1400 Гц, хотя в эксперименте фиксировались рекордно низкая (44 Гц) и высокая (2350 Гц) частоты.

Диапазон частот, который соответствует различным певческим голосам певцов:

ГолосЧастота, Гц
Бас80 — 400
Баритон110 — 400
Тенор150 — 500
Контральто200 — 700
Колоратурное сопрано250 — 1400

В телефоне для воспроизведения человеческой речи используется область частот от 300 до 2000 Гц. Этого обычно достаточно для передачи всех нюансов человеческой речи, но некоторые гармоники находятся выше этого диапазона и не передаются, поэтому звук в телефоне всегда глуше, чем при живом общении.

Диапазон частот звуковых колебаний, соответствующий изменению частоты в два раза, называется октавой. Звучание скрипки, например, перекрывает приблизительно три с половиной октавы (196–2340 Гц), а звуки пианино – семь с лишним октав (27,5–4186 Гц).

Тембр

Звуки одинаковой высоты и громкости, создаваемые различными музыкальными инструментами, звучат по-разному, даже та же нота, взятая различными певцами, звучит по-разному. Особое качество звука — его окрас, характерный для каждого голоса или музыкального инструмента, — называют тембром. Тембр связан со специфическими свойствами источника звука.

От чего же зависит тембр звука? Оказывается, что любой источник звука (есть редкие исключения, например, камертон) осуществляет сложные несинусоидальные колебания. Их можно наблюдать с помощью осциллографа. Если подключить микрофон и спеть какую-нибудь мелодию, то на экране осциллографа появится не синусоида, а сложная кривая.

Несинусоидальное колебание может быть представлено в виде суммы гармонических колебаний с различными частотами. Колебания с наименьшей частотой называется основным тоном, а колебания с более высокой частотой называется обертоном, или гармоникой.

Тембр звука определяет его окраску. Он определяется наличием и интенсивностью обертонов — частот, кратных основной. Именно благодаря тембру, звуки различных музыкальных инструментов имеют разное звучание. Чем больше обертонов, тем «насыщеннее», красивее звук. Волшебный, бархатистый оттенок голосов хороших певцов обусловлен именно обертонами.

Отражение звука, эхо и эхолокация

Звук, распространяясь в какой-либо среде, доходит до препятствия и почти полностью отражается. В этом можно убедиться на многих опытах.

В лесу, горах, иногда в помещениях нам приходилось слышать эхо. Звуковые волны отражаются от различных препятствий, даже от облаков. Иногда можно услышать даже многократное эхо — результат нескольких отражений.

Эти и другие опыты с звуковыми волнами позволяют сформулировать обобщения: механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Отражение звука происходит по такому же закону, что и отражения света: угол отражения равен углу падения.

Эхо — это вторичный звук, который мы слышим сразу после первоначального. Он вызван отражением звуковой волны от поверхности. Если время распространения звука до препятствия и обратно больше, чем продолжительность звука, — мы слышим четкий повтор звука. Если это время меньше, то эхо смешивается с первичным звуком, и звуки становятся неразборчивыми.

Эхолокация — это способ определить местонахождение объекта, измеряя время, за которое ультразвуковые волны добрались до него и вернулись обратно. Эхолокаторы измеряют морскую глубину, ищут на дне океана затонувшие объекты, следят за стаями рыб. Акустическая система посылает ко дну ультразвук (очень высокий звук), а компьютер замеряет время его возвращения. Некоторые животные, например летучие мыши и дельфины, ориентируются и ищут добычу с помощью эхолокации. Дельфин издает больше 700 ультра звуковых щелчков в секунду. С их помощью он находит добычу.

Отражение звука используется так же для изучения процессов внутри организма, в частности, для слежения за развитием ребенка в утробе. Когда звук переходит из одной среды в другую, часть его возвращается назад в виде эха, с помощью которого компьютер строит «эхокартину». Эта процедура называется ультразвуковой диагностикой.

Отражение звуковых волн от гладких поверхностей используют в рупоре. При использовании рупора звук не рассеивается в разные стороны, наоборот, с помощью рупора образуется узконаправленный пучок звуковых волн, которые распространяются на большее расстояние.

Неслышимые звуки

Звук, который воспринимается или слышится ухом человека, имеет частоты в диапазоне 20-20 000 Гц. Звуковые волны с более низкими частотами называют инфразвуком, а с выше — ультразвуком.

Когда были созданы высокочувствительные приемники звуков для различных частот, оказалось, что инфра- и ультразвуки так же распространены в природе, как и слышимые звуки.

Инфразвук

Инфразвук возникает при работе промышленных установок, автомобилей, тракторов и бытовых приборов. Например, сельскохозяйственные тракторы на резиновом ходу и грузовики имеют максимальные вибрации в диапазоне 1,5-3,5 Гц, гусеничные тракторы — около 5 Гц. Музыкальный орган так же может излучать инфразвук. Могут излучать звуки инфракрасных частот всевозможные взрывы и обвалы.

Чувствительные приемники ультразвука показали, что он входит в состав шума ветра и водопадов, в состав звуков, излучаемых некоторыми животными.

Механизм восприятия инфразвука и его влияние на физиологическое состояние человека пока полностью не изучены. Такие звуки неслышимые, однако в результате их воздействия на организм человека появляются повышенная нервозность, чувство страха, приступы тошноты. Иногда из носа и ушей идет кровь.

Свойство инфразвука вызывать страх используется полицией в ряде стран мира. При необходимости разогнать толпу полицейские включают мощные генераторы и вызывают у многих людей неосознанное чувство страха, желание поскорее уйти оттуда, где действует инфразвук.

При воздействии на человека мощного инфразвука с частотами, близкими к 6 Гц, могут отличаться друг от друга изображения, воспринимаемые левым и правым глазом, возникают проблемы с ориентацией в пространстве, возникать необъяснимые ощущения тревоги, страха. Подобные ощущения вызывают и пульсации света на частотах 4-8 Гц. Еще египетские жрецы, чтобы добиться признания от пленника, привязывали его и с помощью зеркал направляли на глаза пульсирующие солнечные лучи. Через некоторое время в пленника появлялись судороги, шла пена изо рта, его психика подавлялась, и он отвечал на вопросы.

Ультразвук

Ультразвуковые волны можно получить с помощью специальных высокочастотных излучателей. Узкий пучок ультразвуковых волн в процессе распространения очень мало расширяется. Благодаря этому ультразвуковую волну можно излучать в заданном направлении.

О ультразвуке не раз упоминается на уроках биологии — дельфины и летучие мыши используют его для эхолокации, то есть определения положения окружающих предметов.

Оказывается, что многие насекомые воспринимают ультразвук. Восприятие ультразвука в диапазоне частот до 100 кГц — способность многих грызунов. Собаки воспринимают ультразвук с частотой до 40 кГц.

Ультразвук сегодня широко применяют в различных отраслях науки и техники. Например, с его помощью измеряют глубину моря. С корабля посылают ультразвуковой сигнал и фиксируют промежуток времени до возвращения сигнала, отраженного от дна. Зная скорость звука в воде, можно определить расстояние до дна. Прибор для измерения глубины дна называют эхолотом.

С помощью ультразвука «просвечивают» металлические изделия для выявления в них скрытых дефектов — посторонних включений, трещин или пустот.

Ультразвук широко используют и в медицине — как для обследования больного, так и для его лечения. Лечебный эффект ультразвука основан на том, что он вызывает внутренний разогрев тканей организма.

Звук в жизни человека

Мы живем в мире звуков. Этот мир необходим нам для нормального развития и существования. Звуки, которые мы слышим, сообщают о том, что происходит вокруг нас, даже если мы не видим источника звука. Благодаря звукам мы можем общаться, слышим телефонный звонок, гудки автомобилей или шум дождя.

Музыкальные инструменты

Звучание всех музыкальных инструментов основано на колебаниях воздуха. Но делают это они по-разному. На звук влияют также форма инструмента и материал, из которого он сделан. У некоторых инструментов корпус резонирует (колеблется с той же частотой, что и воздух), и тогда получается особенно громкий и глубокий звук. У струнных инструментов струны вибрируют при касании. Чем струна толще, длиннее и слабее натянута, тем ниже звук. При закрывании отверстия духового инструмента акустическая колонна удлиняется, что понижает тон звука. Мы нажимаем на клавишу пианино, рычаг бьет по струне, и она начинает вибрировать. Струны разной длины издают разные звуки. Колебания кожи барабана вызывают это и усиливаются внутри корпуса. Многие инструменты производят сложные звуки, в состав которых входят более высокие звуки меньшей громкости, которые называются гармониками. Они придают каждому инструменту особый тембр.

Синтезатор – это инструмент, в электронной памяти которого хранятся характеристики звуков, записанные двоичным кодом. Электрические импульсы, представляющие тот или иной звук, превращаются в электрический ток и посылаются к громкоговорителю. В синтезаторе хранятся записанные двоичным кодом звуки многих разных инструментов. Даже шаги или собачий лай можно записать двоичным кодом и воспроизвести на синтезаторе.

Микрофоны и громкоговорители

Микрофон превращает звук в электрический ток. Сила тока меняется в зависимости от характера звука. Громкоговоритель превращает электрический ток обратно в звук. В микрофоне имеется тонкая металлическая пластинка — диафрагма, прикрепленная к проволочной спирали, находящейся между полюсами магнита. Звуковая волна заставляет диафрагму вибрировать с соответствующей звуку частотой. Благодаря диафрагме начинает вибрировать спираль, и по проволоке (ведь она движется между полюсами магнита) бежит ток. Сила возникающего в микрофоне тока зависит от амплитуды и частоты звуковых волн. Этот ток можно затем направить к громкоговорителю, использовать для записи звука на кассете или послать по телефонным проводам. В телефонной трубке есть микрофон, превращающий звук в электрический ток, который либо идет по проводам к другому телефону, либо преобразуется в радиоволны и передается на спутник. В трубке имеется также встроенный громкоговоритель.

Первый граммофон был создан в 1895 году. Канавки на поверхности пластинки вызывали вибрацию иглы, и возникали звуковые волны, которые затем усиливались рупором. В громкоговорителе имеются магнит и электромагнит (железный сердечник обмотанный проволокой). Когда по проволоке идет ток, возникает магнитное поле. Проволока соединена с диафрагмой конической формы. Когда вызванный звуковыми волнами электрический ток проходит по проволоке, магнитное поле проволоки и магнита заставляют вибрировать проволоку и диафрагму. Находящийся перед диафрагмой воздух вибрирует с частотой первоначального звука.

звуковые волны что это. звуковые волны что это фото. картинка звуковые волны что это. смотреть фото звуковые волны что это. смотреть картинку звуковые волны что это.Запись и воспроизведение звука

Магнитофон. Магнитная запись представляет собой набор намагниченных участков в слое железа или оксида хрома, нанесенном на пластиковую ленту. Записывающая головка — это электромагнит, металлический сердечник, обмотанный проволокой. Он намагничивает­ся при прохождении электрического тока по проволоке. Магнитная запись на ленте создается перемещаемым магнитным полем записывающей головки. При этом на ленте возникают намагниченные участки, которые и содержат информацию о звуке. Магнитную запись с ленты считывает головка воспроизведения. В ней возникает переменный электрический ток, который в громкоговорителе преобразуется в звук.

На поверхности компакт-диска (CD) звуковые волны (и другая информация) записываются двоичным кодом в виде маленьких углублений — ямок и плоских участков — площадок. В CD-плеере лазерный луч проходит но поверхности диски. В ямках свет рассеивается, а от площадок отражается и попадает ни светочувствительный детектор. При попадании света в детекторе возникает ток. Так читается двоичная запись звуков. Электрические импульсы, возникают при считывании двоичного кода, в громкоговорителе преобразуются в звук.

Шум стал неотъемлемой частью нашей повседневной жизни. Идет ли речь о стрижки газонов, движение на шоссе или шум поездов, наши уши не имеют покоя. Шум вызывает сильнейший стресс, который может привести к бессоннице, высокого кровяного давления и нарушение функций мозга.

По данным Национального института по изучению глухоты, почти 30 миллионов людей в США подвергаются воздействию шума такой степени, что это угрожает их здоровью, а 10 миллионов из них уже пострадали от необратимой потери слуха.

Современный шумовой дискомфорт вызывает у живых организмов болезненные реакции. Шум от пролетающего реактивного самолета, например, угнетающе действует на пчелу, она теряет способность ориентироваться. Этот же шум убивает личинки пчел, и даже разбивает яйца птиц в гнезде. Транспортный или производственный шум угнетающе действует на человека — утомляет, раздражает, мешает сосредоточиться. Как только такой шум исчезает, человек испытывает чувство облегчения и покоя.

Проблема эта усугубляется еще и потому, что чаще всего потеря остроты слуха и другие негативные последствия для здоровья человека проявляются лишь со временем. Это означает, что популярные сегодня портативные плееры с их громкой музыкой через наушники могут стать в будущем причиной снижения слуха у целого поколения.

Однако если уровень шума оказывает такое влияние на качество нашей жизни, приводит к таким последствиям, как снижение производительности труда, нарушение концентрации внимания, повышению кровяного давления и даже агрессивному поведению, то почему мы уделяем этой проблеме так мало внимания?

«Я считаю, причина этого в том, что двадцатый век стало самым громким в истории человечества, — говорит Лес Бломберг, исполнительный директор Центра по борьбе с шумовым загрязнением. Сегодня люди рождаются в громком мире, и поэтому им кажется, что именно таким мир и должно быть — ведь значительная часть этого шума производится техникой».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *