действия над комплексными числами заданными в тригонометрической форме
Лекция на тему:»Тригонометрическая форма комплексного числа»
Ищем педагогов в команду «Инфоурок»
Тригонометрическая форма комплексного числа
1.Геометрическое изображение комплексных чисел.
2.Тригонометрическая запись комплексных чисел.
3.Действия над комплексными числами в тригонометрической форме.
Геометрическое изображение комплексных чисел.
а) Комплексные числа изображают точками плоскости по следующему правилу: a + bi = M ( a ; b ) (рис.1).
б) Комплексное число можно изобразить вектором, который имеет начало в точке О и конец в данной точке (рис.2).
Тригонометрическая запись комплексных чисел.
Комплексное число z = a + bi можно задать с помощью радиус – вектора с координатами ( a ; b ) (рис.4).
Рисунок 4
Для любого комплексного числа z его модуль r = | z | определяется однозначно по формуле .
Такая запись комплексного числа называется тригонометрической формой комплексного числа.
φ = .
1 – i = ( cos
+ i sin
).
Действия над комплексными числами в тригонометрической форме.
На основании исходного определения правила умножения и формулы косинуса и синуса суммы получаем:
Умножение комплексных чисел в тригонометрической форме обладает следующими свойствами:
Пример 9. Найти произведение комплексных чисел
Решение. Тригонометрические формы этих чисел имеют вид:
z 1 = 2 · (cos 50º + i sin 50º), z 2 = 1· (cos 40º + i sin 40º). Тогда
z 1 · z 2 = 1· 2 · (cos (50º + 40º) + i sin (50º + 40º)) = 2(cos 90º + i sin 90º) = = 2(0 + i) = 2i.
2) Деление комплексных чисел в тригонометрической форме.
Решение. Тригонометрические формы этих чисел имеют вид:
3) Возведение в степень.
Определение . n – ой степенью комплексного числа z называется комплексное число, получающееся в результате умножения числа z самого на себя n раз.
Число z называется основанием степени, а натуральное число n – показателем степени.
Эту формулу при r =1 часто называют формулой Муавра:
Запишем комплексное число 1 + i в тригонометрической форме.
.
cos φ = , sin φ =
, φ =
.
4) Извлечение квадратного корня из комплексного числа.
При извлечении квадратного корня из комплексного числа a + bi имеем два случая:
если b , то .
Так как из комплексного числа всегда можно извлечь квадратный корень, то любое квадратное уравнение всегда будет иметь решения во множестве комплексных чисел. Решения квадратного уравнения ах 2 + b х + с = 0 можно найти по известной формуле:
.
Пример 12. Вычислите .
Так как b , то воспользуемся формулой
.
=
,
=
.
1. Записать в тригонометрич еской форм е число
2. Записать в тригонометрич еской форм е число — 1 – і.
Тогда
3. Записать в тригонометрич еской форм е число 1. Имеем
, или
4. Выполнить действия
1)
5. Представить следующие комплексные числа в тригонометрическом виде:
3) .
.
Вычислить: 1) ; 2)
; 3)
; 4)
.
Вопросы для самопроверки :
1.Дать определение модуля комплексного числа. Каков его геометрический смысл?
2. Комплексное число умножили на 2. изменился модуль этого числа?
4. Что такое аргумент комплексного числа?
5. Как определить главное значение аргумента числа z = a + bi?
7. Найти геометрическое место точек плоскости, изображают комплексные числа с одинаковыми модулями.
8.Как размещаются на плоскости точки, изображающие комплексные числа с одинаковыми аргументами?
9. Как представить комплексное число вида а + b i в тригонометрической форме? Как найти модуль и аргумент этого числа?
10. Как перейти от тригонометрической формы комплексного числа в алгебраической?
11. Вывести правила умножения и деления комплексных чисел, записанных в тригонометрической форме.
12. По какому правилу выполняют действие возведения в степень комплексных чисел, записанных в тригонометрической форме?
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени:
Комплексные числа
Алгебраическая форма записи комплексных чисел
Множеством комплексных чисел называют множество всевозможных пар (x, y) вещественных чисел, на котором определены операции сложения, вычитания и умножения по правилам, описанным чуть ниже.
Тригонометрическая и экспоненциальная формы записи комплексных чисел будут изложены чуть позже.
Сложение, вычитание и умножение комплексных чисел, записанных в алгебраической форме
Комплексно сопряженные числа
Модуль комплексного числа
Модулем комплексного числа z = x + i y называют вещественное число, обозначаемое | z | и определенное по формуле
Для произвольного комплексного числа z справедливо равенство:
а для произвольных комплексных чисел z1 и z2 справедливы неравенства:
Деление комплексных чисел, записанных в алгебраической форме
Деление комплексного числа z1 = x1 + i y1 на отличное от нуля комплексное число z2 = x2 + i y2 осуществляется по формуле
Используя обозначения модуля комплексного числа и комплексного сопряжения, частное от деления комплексных чисел можно представить в следующем виде:
Деление на нуль запрещено.
Изображение комплексных чисел радиус-векторами координатной плоскости
Рассмотрим плоскость с заданной на ней прямоугольной декартовой системой координат Oxy и напомним, что радиус-вектором на плоскости называют вектор, начало которого совпадает с началом системы координат.
При таком представлении комплексных чисел сумме комплексных чисел соответствует сумма радиус-векторов, а произведению комплексного числа на вещественное число соответствует произведение радиус–вектора на это число.
Аргумент комплексного числа
Считается, что комплексное число нуль аргумента не имеет.
Тогда оказывается справедливым равенство:
(3) |
(4) |
а аргумент определяется в соответствии со следующей Таблицей 1.
Для того, чтобы не загромождать запись, условимся, не оговаривая этого особо, символом k обозначать в Таблице 1 произвольное целое число.
Таблица 1. – Формулы для определения аргумента числа z = x + i y
Расположение числа z | Знаки x и y | Главное значение аргумента | Аргумент | Примеры |
Положительная вещественная полуось | ||||
Положительная мнимая полуось | ||||
Второй квадрант | ||||
Отрицательная вещественная полуось | Положительная вещественная полуось | |||
Знаки x и y | ||||
Главное значение аргумента | 0 | |||
Аргумент | φ = 2kπ | |||
Примеры |
значение
аргумента
значение
аргумента
значение
аргумента
x z
квадрант
x z
мнимая
полуось
y z
квадрант
Положительная вещественная полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Положительная мнимая полуось
Главное значение аргумента:
Расположение числа z :
Главное значение аргумента:
Расположение числа z :
Отрицательная вещественная полуось
Отрицательная мнимая полуось
x z = x + i y может быть записано в виде
Формула Эйлера. Экспоненциальная форма записи комплексного числа
В курсе «Теория функций комплексного переменного», который студенты изучают в высших учебных заведениях, доказывается важная формула, называемая формулой Эйлера :
Из формулы Эйлера (6) и тригонометрической формы записи комплексного числа (5) вытекает, что любое отличное от нуля комплексное число z = x + i y может быть записано в виде
Из формулы (7) вытекают, в частности, следующие равенства:
а из формул (4) и (6) следует, что модуль комплексного числа
Умножение, деление и возведение в натуральную степень комплексных чисел, записанных в экспоненциальной форме
Экспоненциальная запись комплексного числа очень удобна для выполнения операций умножения, деления и возведения в натуральную степень комплексных чисел.
Действительно, умножение и деление двух произвольных комплексных чисел и
записанных в экспоненциальной форме, осуществляется по формулам
Таким образом, при перемножении комплексных чисел их модули перемножаются, а аргументы складываются.
При делении двух комплексных чисел модуль их частного равен частному их модулей, а аргумент частного равен разности аргументов делимого и делителя.
Возведение комплексного числа z = r e iφ в натуральную степень осуществляется по формуле
Другими словами, при возведении комплексного числа в степень, являющуюся натуральным числом, модуль числа возводится в эту степень, а аргумент умножается на показатель степени.
Извлечение корня натуральной степени из комплексного числа
Пусть — произвольное комплексное число, отличное от нуля.
Для того, чтобы решить уравнение (8), перепишем его в виде
следствием которых являются равенства
(9) |
Из формул (9) вытекает, что уравнение (8) имеет n различных корней
(10) |
то по формуле (10) получаем:
- действия над комплексными числами заданными в алгебраической форме
- действия налоговой при неуплате налогов юридическим лицом