для квадратичной формы а х1 х2 5х1 4х1х2 х2 матрица имеет следующий вид
Математический портал
Nav view search
Navigation
Search
Квадратичные формы. Матрица квадратичной формы. Положительно определенные квадратичные формы, критерий Сильвестра.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Примеры.
Решение.
Ответ: положительно определенная.
Решение.
Ответ: отрицательно определенная.
4.223.$2x_4^2+x_1x_2+x_1x_3-2x_2x_3+2x_2x_4.$
Решение.
Следовательно, квадратичная форма не является ни положительно, ни отрицательно определенной.
Ответ: общего вида.
Домашнее задание.
4.220.$x_1^2-15x_2^2+4x_1x_2-2x_1x_3+6x_2x_3.$
4.221.$12x_1x_2-12x_1x_3+6x_2x_3-11x_1^2-6x_2^2-6x_3^2.$
Ответ: отрицательно определенная.
4.222.$9x_1^2+6x_2^2+6x_3^2+12x_1x_2-10x_1x_3-2x_2x_3.$
Ответ: положительно определенная.
4.224.$x_1^2+4x_2^2+4x_3^2+8x_4^2+8x^2x_4.$
5.1.4. Квадратичные формы и их связь с симметрическими матрицами
Квадратичной формой действительных переменных Х1, х2,…,хN называется многочлен второй степени относительно этих переменных, не содержащий свободного члена и членов первой степени.
Примеры квадратичных форм:
Напомним определение симметрической матрицы:
Квадратная матрица называется Симметрической, если
,
То есть если равны элементы матрицы, симметричные относительно главной диагонали.
Свойства собственных чисел и собственных векторов симметрической матрицы:
1) Все собственные числа симметрической матрицы действительные.
Доказательство (для N = 2).
Пусть матрица А имеет вид:
Составим характеристическое уравнение:
Следовательно, уравнение имеет только действительные корни.
2) Собственные векторы симметрической матрицы ортогональны.
Доказательство (для N = 2).
Координаты собственных векторов
Должны удовлетворять уравнениям:
Следовательно, их можно задать так:
Скалярное произведение этих векторов имеет вид:
По теореме Виета из уравнения (9) получим, что
Подставим эти соотношения в предыдущее равенство:
Значит, .
Замечание. В примере 1 были найдены собственные векторы симметрической матрицы и обращено внимание на то, что они оказались попарно ортогональными.
Матрицей квадратичной формы (8) называется симметрическая матрица
Таким образом, все собственные числа матрицы квадратичной формы действительны, а все собственные векторы ортогональны. Если все собственные числа различны, то из трех нормированных собственных векторов матрицы (10) можно построить базис в трехмерном пространстве. В этом базисе квадратичная форма будет иметь особый вид, не содержащий произведений переменных.
Квадратичные формы
Квадратичной формой f(х1, х2. хn) от n переменных называют сумму, каждый член которой является либо квадратом одной из переменных, либо произведением двух разных переменных, взятым с некоторым коэффициентом: f(х1, х2. хn) = (aij = aji).
Матрицу А, составленную из этих коэффициентов, называют матрицей квадратичной формы. Это всегда симметрическая матрица (т.е. матрица, симметричная относительно главной диагонали, aij = aji).
В матричной записи квадратичная форма имеет вид f(Х) = Х Т AX, где
. В самом деле
Например, запишем в матричном виде квадратичную форму .
Таким образом, при невырожденном линейном преобразовании С матрица квадратичной формы принимает вид: А * = C T AC.
Квадратичная форма называется канонической (имеет канонический вид), если все ее коэффициенты aij = 0 при i ≠ j, т.е.
f(х1, х2. хn) = a11 x1 2 + a22 x2 2 + … + ann xn 2 = .
Ее матрица является диагональной.
Теорема (доказательство здесь не приводится). Любая квадратичная форма может быть приведена к каноническому виду с помощью невырожденного линейного преобразования.
Для этого вначале выделим полный квадрат при переменной х1:
Теперь выделяем полный квадрат при переменной х2:
Отметим, что канонический вид квадратичной формы определяется неоднозначно (одна и та же квадратичная форма может быть приведена к каноническому виду разными способами[1]). Однако полученные различными способами канонические формы обладают рядом общих свойств. В частности, число слагаемых с положительными (отрицательными) коэффициентами квадратичной формы не зависит от способа приведения формы к этому виду (например, в рассмотренном примере всегда будет два отрицательных и один положительный коэффициент). Это свойство называют законом инерции квадратичных форм.
Также следует отметить, что ранг матрицы квадратичной формы, называемый рангом квадратичной формы, равен числу отличных от нуля коэффициентов канонической формы и не меняется при линейных преобразованиях.
В большинстве практических ситуации установить знакоопределенность квадратичной формы несколько сложнее, поэтому для этого используют одну из следующих теорем (сформулируем их без доказательств).
Теорема. Квадратичная форма является положительно (отрицательно) определенной тогда и только тогда, когда все собственные значения ее матрицы положительны (отрицательны).
Теорема (критерий Сильвестра). Квадратичная форма является положительно определенной тогда и только тогда, когда все главные миноры матрицы этой формы положительны.
Главным (угловым) минором k-го порядка матрицы А n-го порядка называют определитель матрицы, составленный из первых k строк и столбцов матрицы А ( ).
Отметим, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, причем минор первого порядка должен быть отрицательным.
Способ 2. Главный минор первого порядка матрицы А D1 = a11 = 2 > 0. Главный минор второго порядка D2 = = 6 – 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма – положительно определенная.
Дата добавления: 2015-10-06 ; просмотров: 2695 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
69. Квадратичные формы и их приведение к каноническому виду
При рассмотрении евклидового пространства мы вводили определение квадратичной формы. С помощью некоторой матрицы
Строится многочлен второго порядка вида
Который называется квадратичной формой, порождаемой квадратной матрицей А.
— симметричная матрица (aij = aji)
Положим для общности, что многочлен
Есть линейная форма. Тогда общее уравнение поверхности есть сумма квадратичной формы, линейной формы и некоторой постоянной.
Основной задачей теории квадратичных форм является приведение квадратичной формы к максимально простому виду с помощью невырожденного линейного преобразования переменных или, другими словами, замены базиса.
Вспомним, что при изучении поверхностей второго порядка мы приходили к выводу о том, что путем поворота осей координат можно избавиться от слагаемых, содержащих произведение xy, xz, yz или xixj (i¹j). Далее, путем параллельного переноса осей координат можно избавиться от линейных слагаемых и в конечном итоге свести общее уравнение поверхности к виду:
В случае квадратичной формы приведение ее к виду
Называется приведением квадратичной формы к каноническому виду.
Поворот осей координат есть не что иное, как замена одного базиса другим, или, другими словами, линейное преобразование.
Запишем квадратичную форму в матричном виде. Для этого представим ее следующим образом:
L(x, y,z) = x(a11x+a12y+a13z)+
Тогда — где X T =(x, y,z)
— матричная форма записи квадратичной формы. Эта формула, очевидно, справедлива и в общем случае:
Канонический вид квадратичной формы означает, очевидно, что матрица А имеет диагональный вид:
Матрица S называется матрицей линейного преобразования. Отметим попутно, что всякой матрице n-ного порядка при заданном базисе соответствует некоторый линейный оператор.
Линейное преобразование X = SY заменяет переменные x1, x2, x3 новыми переменными y1, y2, y3. Тогда:
где B = S T A S
Задача приведения к каноническому виду сводится к отысканию такой матрицы перехода S, чтобы матрица В приобрела диагональный вид:
(*)
Итак, квадратичная форма с матрицей А после линейного преобразования переменных переходит в квадратичную форму от новых переменных с матрицей В.
Т. е.
Или В = S-1 А S, где S – матрица перехода от первоначального базиса <E> к базису <Y>. Причем в ортонормированном базисе матрица S будет ортогональной.
Т. о. для приведения квадратичной формы к каноническому виду необходимо найти собственные числа и собственные векторы линейного оператора А, имеющего в первоначальном базисе матрицу А, которая порождает квадратичную форму, перейти к базису собственных векторов и в новой системе координат построить квадратичную форму.
Обратимся к конкретным примерам. Рассмотрим линии второго порядка.
или
С помощью поворота осей координат и последующего параллельного переноса осей это уравнение можно привести к виду ( переменные и коэффициенты переобозначены х1 = х, х2 = у):
1) если линия центральная, l1 ¹ 0, l2 ¹ 0
2) если линия нецентральная, т. е. один из li = 0.
Напомним виды линий второго порядка. Центральные линии:
1) эллипс;
2) гипербола;
3) точка;
4) две пересекающиеся прямые.
5) х2 = а2 две параллельные линии;
6) х2 = 0 две сливающиеся прямые;
7) у2 = 2рх парабола.
Для нас представляют интерес случаи 1), 2), 7).
Рассмотрим конкретный пример.
Привести к каноническому виду уравнение линии и построить ее:
Матрица квадратичной формы есть . Характеристическое уравнение:
Его корни:
Найдем собственные векторы:
При l2 = 9: 2u1 = u2; u1 = c, u2 = 2c или g2 = c2(I+2J).
Нормируем эти векторы:
Составим матрицу линейного преобразования или матрицу перехода к базису g1, g2:
— ортогональная матрица!
Формулы преобразования координат имеют вид:
или
Подставим в наше уравнение линии и получим:
Сделаем параллельный перенос осей координат. Для этого выделим полные квадраты по х1 и у1:
Обозначим
. Тогда уравнение приобретет вид: 4х22 + 9у22 = 36 или
Это эллипс с полуосями 3 и 2. Определим угол поворота осей координат и их сдвиг для того, чтобы построить эллипс в старой системе.
Построим:
При у =0: 5х2 – 32х + 80 = 0 Здесь нет корней, т. е. нет точек пересечения с осью Х!
Квадратичные формы.
Знакоопределённость форм. Критерий Сильвестра
Прилагательное «квадратичный» сразу наталкивает на мысль, что что-то здесь связано с квадратом (второй степенью), и очень скоро мы узнаем это «что-то» и что такое форма. Прямо скороговоркой получилась 🙂
Приветствую вас на своём новом уроке, и в качестве незамедлительной разминки мы рассмотрим форму в полосочку линейную. Линейной формой переменных называют однородный многочлен 1-й степени:
, где:
– какие-то конкретные числа* (предполагаем, что хотя бы одно из них отлично от нуля), а
– переменные, которые могут принимать произвольные значения.
* В рамках данной темы будем рассматривать только действительные числа.
С термином «однородный» мы уже сталкивались на уроке об однородных системах линейных уравнений, и в данном случае он подразумевает, что у многочлена нет приплюсованной константы .
Например: – линейная форма двух переменных
Теперь форма квадратичная. Квадратичной формой переменных называют однородный многочлен 2-й степени, каждое слагаемое которого содержит либо квадрат переменной, либо парное произведение переменных. Так, например, квадратичная форма двух переменных
имеет следующий вид:
Внимание! Это стандартная запись, и что-то менять в ней не нужно! Несмотря на «страшный» вид, тут всё просто – двойные подстрочные индексы констант сигнализируют о том, какие переменные входят в то или иное слагаемое:
– в этом слагаемом находится произведение
и
(квадрат);
– здесь произведение
;
– и здесь произведение
.
Далее будем полагать, что хотя бы одна из констант не равна нулю, и вот, пожалуйста, «неполный» пример: , в котором:
– сразу упреждаю грубую ошибку, когда теряют «минус» у коэффициента, не понимая, что он относится к слагаемому:
Иногда встречается «школьный» вариант оформления в духе , но то лишь иногда. Кстати, заметьте, что константы
нам тут вообще ни о чем не говорят, и поэтому запомнить «лёгкую запись» труднее. Особенно, когда переменных больше.
И квадратичная форма трёх переменных содержит уже шесть членов:
…почему в «смешанных» слагаемых ставятся множители-«двойки»? Это удобно, и скоро станет понятно, почему.
Далее ситуация начинает усугубляться:
и усугублять мы её дальше не будем, т.к. формы с бОльшим количеством переменных встречаются довольно редко.
Однако общую формулу запишем, её удобно оформить «простынёй»:
– внимательно изучаем каждую строчку – ничего страшного тут нет!
Квадратичная форма содержит слагаемых с квадратами переменных и
слагаемых с их парными произведениями (см. комбинаторную формулу сочетаний). Больше ничего – никаких «одиноких иксов» и никакой приплюсованной константы (тогда уже получится не квадратичная форма, а неоднородный многочлен 2-й степени).
Матричная запись квадратичной формы
Как на счёт матриц? 🙂 Знаю, знаю, соскучились. В практических задачах широко распространенная матричная запись квадратичных форм. Объяснения опять начну с формы линейной, например, от трёх переменных: . Её можно записать, как произведение двух матриц:
И действительно, выполняя матричное умножение, получаем матрицу «один на один»: , единственный элемент которой можно эквивалентно записать вне матрицы:
.
Легко понять, что линейная форма «эн» переменных записывается в виде:
Квадратичная форма представима в виде произведения уже трёх матриц:
, где:
– столбец переменных;
– его транспонированная строка;
– матрица квадратичной формы.
Это так называемая симметрическая матрица, на главной диагонали которой расположены коэффициенты при квадратах неизвестных, а симметрично относительно неё – «смешанные» коэффициенты, причём, строго на «своих местах» (например,
– в 1-й строке, 3-м столбце и 1-м столбце, 3-й строке).
Определитель называют дискриминантом квадратичной формы, а ранг матрицы
– рангом квадратичной формы.
Если перемножить три матрицы , то получится в точности длинная «простыня» из предыдущего параграфа, но разворачивать её мы, конечно, не будем, а посмотрим, как это происходит в элементарном случае
. Согласно общей формуле, матричная запись данной формы имеет следующий вид:
И в самом деле:
далее:
, в чём и требовалось убедиться.
Как вариант, сначала можно было перемножить правые матрицы, и затем первую матрицу умножить на полученный результат.
Вам понравилось так же, как и мне? Ну тогда пример для самостоятельного решения =)
Записать квадратичную форму в матричном виде и выполнить проверку. Определить дискриминант и ранг формы.
…что-то смущает? 😉 Краткое решение и ответ в конце урока! Статьи об определителе и ранге матрицы – в помощь.
После чего разберём аналогичную задачу с формой трёх переменных:
Записать матрицу квадратичной формы, найти её ранг и дискриминант
Решение: сбросим тяжёлую ношу лишних формул, и будем ориентироваться на сами члены:
– слагаемое дважды содержит 1-ю переменную, поэтому
;
– из аналогичных соображений определяем и сразу записываем результаты на главную диагональ симметрической матрицы:
.
Так как в слагаемое входят 1-я и 2-я переменная, то
(не забываем поделить на 2) и данный коэффициент занимает свои законные места:
.
Поскольку в форме отсутствует член с произведением (а точнее, присутствует с нулевым множителем:
), то
, и на холст отправляются два нуля:
.
И, наконец, из слагаемого определяем
, после чего картина завершена:
– матрица квадратичной формы. Вот так-то оно бывает – мы не только не испугались «страшных обозначений»
, но и заставили их работать на себя!
По условию не требовалось записывать матричное уравнение, однако науки ради:
Желающие могут перемножить три матрицы, в результате чего должна получиться исходная квадратичная форма.
Теперь определим ранг формы. Он равен рангу матрицы . Так как в матрице есть хотя бы один ненулевой элемент, например,
, то ранг не меньше единицы. Теперь вычислим минор
, значит, ранг не меньше двух. И осталось проверить минор 3-го порядка, т.е. определитель всей матрицы. Здесь я ко второму столбцу прибавлю третий и раскрою определитель по 3-й строке:
, значит,
Если не очень понятно, что к чему, обязательно изучите статью о ранге матрицы – это довольно замысловатая задачка, и перед нами оказался лишь простой случай, когда угловые миноры не равны нулю.
Дискриминант квадратичной формы получен автоматом.
Ответ: , ранг равен трём, дискриминант
Следующее задание для самостоятельного решения:
Восстановить квадратичную форму по её матрице
При этом не нужно вспоминать никаких формул! Решение почти устное:
– сначала смотрим на главную диагональ и записываем слагаемые с квадратами переменных;
– затем анализируем симметричные элементы 1-й строки (или 1-го столбца), и записываем все слагаемые, в которые входит 1-я переменная (не забывая удвоить коэффициенты);
– далее смотрим на оставшиеся симметричные элементы 2-й строки (справа от диагонали) либо 2-го столбца (ниже диагонали) и записываем соответствующие парные произведения (с удвоенными коэффициентами!).
– и, наконец, анализируем правую нижнюю пару симметричных чисел.
Подробное решение и ответ в конце урока.
Знакоопределённость квадратичной формы. Критерий Сильвестра
До сих пор мы рассматривали «внешнее устройство» форм и пришло время изучить их функциональное назначение. Да, по существу, они работают, как функции. Вернёмся к простенькой линейной форме .
Как отмечалось в начале урока, переменные могут принимать произвольные действительные значения (мы ограничились ими), и каждой такой паре соответствует определённое значение
, например:
, и так далее.
Говоря языком науки, перед нами скалярная функция векторного аргумента, в которой каждому вектору ставится в соответствие определённое число
. Обращаю ваше внимание, что сейчас идёт речь не о геометрическом векторе, а о векторе в его алгебраическом понимании.
В зависимости от значений рассматриваемая форма может принимать как положительные, так и отрицательные значения, и то же самое касается любой линейной формы
– если хотя бы один из её коэффициентов отличен от нуля, то она может оказаться как положительной, так и отрицательной (в зависимости от значений
).
Такая форма называется знакопеременной. И если с линейной формой всё прозрачно, то с формой квадратичной дела обстоят куда более интересно:
Совершенно понятно, что данная форма может принимать значения любого знака, таким образом, квадратичная форма тоже может быть знакопеременной.
– всегда, если только
одновременно не равны нулю.
– для любого вектора
, кроме нулевого
.
И вообще, если для любого ненулевого вектора ,
, то квадратичную форму называют положительно определённой; если же
– то отрицательно определённой.
Можно предположить, что форма определена положительно, но так ли это на самом деле? Вдруг существуют значения , при которых она меньше нуля?
На этот счёт существует теорема: если ВСЕ собственные числа матрицы квадратичной формы положительны*, то она определена положительно. Если все отрицательны – то отрицательно.
* В теории доказано, что все собственные числа действительной симметрической матрицы действительны
Запишем матрицу вышеприведённой формы:
и из уравнения
найдём её собственные значения:
Решаем старое доброе квадратное уравнение:
, значит, форма
определена положительно, т.е. при любых ненулевых значениях
она больше нуля.
Рассмотренный метод вроде бы рабочий, но есть одно большое НО. Уже для матрицы «три на три» искать собственные числа – есть занятие долгое и неприятное; с высокой вероятностью получится многочлен 3-й степени с иррациональными корнями.
Как быть? Существует более простой путь!
Критерий Сильвестра
Нет, не Сильвестра Сталлоне 🙂 Сначала напомню, что такое угловые миноры матрицы. Это определители которые «разрастаются» из её левого верхнего угла:
и последний из них в точности равен определителю матрицы.
Теперь, собственно, критерий:
1) Квадратичная форма определена положительно тогда и только тогда, когда ВСЕ её угловые миноры больше нуля: .
2) Квадратичная форма определена отрицательно тогда и только тогда, когда её угловые миноры знакочередуются, при этом 1-й минор меньше нуля: ,
, если
– чётное или
, если
– нечётное.
Если в 1-й или 2-й последовательности есть нулевые миноры, то это два особых случая, которые я разберу чуть позже, после того, как мы перещёлкаем более распространённые примеры. При любой другой комбинации плюсов-минусов (и опционально нулей) форма знакопеременна.
Проанализируем угловые миноры матрицы :
, и это сразу говорит нам о том, что форма не определена отрицательно (отпал пункт 2).
Вывод: все угловые миноры больше нуля, значит, форма определена положительно.
Есть разница с методом собственных чисел? 😉
Запишем матрицу формы из Примера 1:
первый её угловой минор , а второй
, откуда следует, что форма знакопеременна, т.е. в зависимости от значений
, может принимать как положительные, так и отрицательные значения. Впрочем, это и так очевидно.
Возьмём форму и её матрицу из Примера 2:
тут вообще без озарения не разобраться. Но с критерием Сильвестра нам всё нипочём: , следовательно, форма точно не отрицательна.
, и точно не положительна (т.к. все угловые миноры должны быть положительными).
Вывод: форма знакопеременна.
Разминочные примеры для самостоятельного решения:
Исследовать квадратичные формы на знакоопределенность
а)
б)
В этих примерах всё гладко (см. конец урока), но на самом деле для выполнения такого задания критерия Сильвестра может оказаться не достаточно.
Дело в том, что существуют «краевые» случаи, а именно: если для любого ненулевого вектора , то форма определена неотрицательно, если
– то неположительно. У этих форм существуют ненулевые векторы
, при которых
.
Здесь можно привести такой «баян»:
Выделяя полный квадрат, сразу видим неотрицательность формы: , причём, она равна нулю и при любом векторе с равными координатами, например:
.
«Зеркальный» пример неположительно определённой формы:
и ещё более тривиальный пример:
– здесь форма равна нулю при любом векторе
, где
– произвольное число.
Как выявить неотрицательность или неположительнось формы?
Для этого нам потребуется понятие главных миноров матрицы. Главный минор – это минор, составленный из элементов, которые стоят на пересечении строк и столбцов с одинаковыми номерами. Так, у матрицы существуют два главных минора 1-го порядка:
(элемент находится на пересечении 1-й строки и 1-го столбца);
(элемент находится на пересечении 2-й строки и 2-го столбца),
и один главный минор 2-го порядка:
– составлен из элементов 1-й, 2-й строки и 1-го, 2-го столбца.
У матрицы «три на три» главных миноров семь, и тут уже придётся помахать бицепсами:
– три минора 1-го порядка,
три минора 2-го порядка:
– составлен из элементов 1-й, 2-й строки и 1-го, 2-го столбца;
– составлен из элементов 1-й, 3-й строки и 1-го, 3-го столбца;
– составлен из элементов 2-й, 3-й строки и 2-го, 3-го столбца,
и один минор 3-го порядка:
– составлен из элементов 1-й, 2-й, 3-й строки и 1-го, 2-го и 3-го столбца.
Задание на понимание: записать все главные миноры матрицы .
Сверяемся в конце урока и продолжаем.
Критерий Шварценеггера:
1) Ненулевая* квадратичная форма определена неотрицательно тогда и только тогда, когда ВСЕ её главные миноры неотрицательны (больше либо равны нулю).
* У нулевой (вырожденной) квадратичной формы все коэффициенты равны нулю.
2) Ненулевая квадратичная форма с матрицей определена неположительно тогда и только тогда, когда её:
– главные миноры 1-го порядка неположительны (меньше либо равны нулю);
– главные миноры 2-го порядка неотрицательны;
– главные миноры 3-го порядка неположительны (пошлО чередование);
…
– главный минор -го порядка неположителен, если
– нечётное либо неотрицателен, если
– чётное.
Если хотя бы один минор противоположного знака, то форма знакопеременна.
Посмотрим, как работает критерий в вышеприведённых примерах:
Составим матрицу формы, и в первую очередь вычислим угловые миноры – а вдруг она определена положительно или отрицательно?
Полученные значения не удовлетворяют критерию Сильвестра, однако второй минор не отрицателен, и это вызывает надобность проверить 2-й критерий (в случае 2-й критерий будет не выполнен автоматически, т.е. сразу делается вывод о знакопеременности формы).
Главные миноры 1-го порядка:
– положительны,
главный минор 2-го порядка:
– не отрицателен.
Таким образом, ВСЕ главные миноры не отрицательны, значит, форма неотрицательна.
Запишем матрицу формы
, для которой, очевидно, не выполнен критерий Сильвестра. Но и противоположных знаков мы тоже не получили (т.к. оба угловых минора равны нулю). Поэтому проверяем выполнение критерия неотрицательности / неположительности. Главные миноры 1-го порядка:
– не положительны,
главный минор 2-го порядка:
– не отрицателен.
Таким образом, по критерию Шварценеггера (пункт 2), форма определена неположительно.
Теперь во всеоружии разберём более занятную задачку:
Исследовать квадратичную форму на знакоопределенность
Данную форму украшает орден «альфа», который может равняться любому действительному числу. Но это ж только веселее будет, решаем.
Сначала запишем матрицу формы, наверное, многие уже приноровились это делать устно: на главную диагональ ставим коэффициенты при квадратах, а на симметричные места – споловиненные коэффициенты соответствующих «смешанных» произведений:
Вычислим угловые миноры:
третий определитель я раскрою по 3-й строке:
Кстати, в силу симметрии, по 3-му столбцу он раскрывается точно так же.
Дальнейшее решение удобно разбить на 2 пункта:
1) Выясним, существуют ли значения «альфа», при которых форма определена положительно или неотрицательно. Согласно критерию Сильвестра, условию положительности формы соответствует следующая система линейных неравенств:
В соответствии с поставленной задачей, сначала разберёмся со 2-м неравенством:
умножим обе его части на , сменив у неравенства знак:
, что противоречит первому неравенству системы.
Таким образом, система несовместна, а значит, форма не может быть положительно определённой ни при каких «альфа», из чего логически и автоматически следует, что она не может быть и неотрицательной.
2) Проведём исследование на отрицательность / неположительнось. По Сильвестру, условию отрицательности формы соответствует следующая система линейных неравенств:
Второе неравенство уже решено: , и оно не противоречит первому. И третье неравенство тоже «вписалось в рамки»:
.
Таким образом, имеем совместную систему:
из которой следует, что форма определена отрицательно при . Например, если
:
– то при любом ненулевом векторе
данная форма будет строго отрицательна.
Осталось исследовать «пограничный» случай. Если , то:
Последнее значение не удовлетворяет 2-му пункту критерия Сильвестра, однако оно равно нулю, что позволяет предположить неположительнось формы. Запишем матрицу формы и проверим критерий Шварценеггера. Главные миноры первого порядка:
– отлично, все миноры неположительны, поэтому проверка продолжается.
Рассчитываем миноры 2-го порядка. Если хотя бы один из них окажется отрицательным, то форма будет знакопеременной:
Нет, все миноры неотрицательны, и минор 3-го порядка уже рассчитан:
Таким образом, по критерию Шварценеггера (пункт 2), имеет место неположительнось формы, иными словами, , причём, нулю она равна и при некоторых ненулевых значениях
.
Ответ: при форма определена отрицательно, при
неположительно, в остальных случаях форма знакопеременна.
И творческое задание для самостоятельного решения:
Исследовать квадратичную форму на знакоопределенность
И в заключение статьи хочу выразить благодарность Сергею Хохлову, некогда ст. преподавателю МПГУ – за важные замечания и интересные дополнительные примеры, а также Арнольду Шварценеггеру, который сыграл в непривычном для себя амплуа и помог мне ярче объяснить материал 🙂
Как сказал актёр, I’ll be back, и я жду вас на следующем уроке – о каноническом виде квадратичной формы.
Пример 1. Решение: сначала приведём подобные слагаемые:
Квадратичная форма двух переменных имеет вид , в данном случае:
. Запишем форму в матричном виде:
Проверка:
что и требовалось проверить.
Вычислим дискриминант формы:
Поскольку , то ранг формы равен двум.
Ответ: ,
, ранг формы равен двум.
Пример 3. Решение: симметрическая матрица 4*4 определяет квадратичную форму 4 переменных. Коэффициенты главной диагонали , следовательно:
Симметричные коэффициенты 1-й строки: , таким образом:
Оставшиеся симметричные элементы 2-й строки: , и:
И, наконец,
Ответ:
Пример 4. Решение:
а) запишем матрицу формы:
и вычислим её угловые миноры:
Таким образом, по критерию Сильвестра, форма определена отрицательно.
б) запишем матрицу формы:
и вычислим её угловые миноры:
Вывод: форма знакопеременна.
Задание на понимание: у данной матрицы четыре главных минора 1-го порядка: ,
шесть главных миноров 2-го порядка:
четыре главных минора 3-го порядка:
и один главный минор 4-го порядка, равный определителю матрицы.
Пример 5*. Решение: запишем матрицу формы и вычислим её угловые миноры:
Таким образом, форма не удовлетворяет критерию Сильвестра, однако, может оказаться неотрицательной (т.к. и остальные миноры нулевые). Для этого все главные миноры должны быть неотрицательны. Главные миноры 1-го порядка:
.
Вычислим главные миноры 2-го порядка:
– среди главных миноров встретился отрицательный, следовательно, форма не удовлетворяет критерию неотрицательности.
Ответ: форма знакопеременна.
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам