движением с большой амплитудой выполняемым за счет внешних растягивающих сил называется
Физическая культура. 5 класс
Конспект урока
Физическая культура, 5 класс
Урок № 17. Развитие гибкости
Перечень вопросов, рассматриваемых в теме:
1. Понятие «гибкость», его значение для здоровья человека.
2. Виды гибкости и физические упражнения, способствующие ее развитию.
3. Основные правила при выполнении упражнений на развитие гибкости с учетом индивидуальных особенностей.
4. Оценка уровня развития гибкости.
Гибкость — это способность выполнять упражнения с большой амплитудой.
Подвижность в суставах — это перемещение сочлененных в суставах костей друг относительно друга (степень ее зависит от формы суставных поверхностей и эластичности мышечно-связочного аппарата).
Растяжимость — способность мышцы изменять свою длину под действием растягивающей ее силы.
Расслабление (релаксация) мышц — это уменьшение напряжения мышечных волокон, составляющих мышцу.
Основная и дополнительная литература по теме урока:
Физическая культура. 5-7 классы: учебник для общеобразовательных организаций / под ред. М. Я. Виленского. — 2-е изд. — М.: Просвещение, 2013.
Физическая культура. 5 класс: учебник для обшеобразоват. организаций / А. П. Матвеев; Рос. акад. наук, Рос. Акад. образования, Изд-во «Просвещение». — 2-е изд. — М.: Просвещение, 2013.
Теоретический материал для самостоятельного изучения:
На уроке мы ознакомимся с физическим качеством как гибкость, узнаем роль и значение ее развития для здоровья человека. Сможем охарактеризовать виды гибкости и что влияет на ее развитие. Выделим правила при выполнении упражнений на развитие гибкости с учетом индивидуальных особенностей. Научимся ее проверять при помощи специальных упражнений.
Примеры и разбор решения заданий тренировочного модуля
Выберите тип интерактивного теста:
12. Ввод с клавиатуры пропущенных элементов в тексте
Информация о тестовом вопросе:
Вставьте в пропуски необходимые слова:
«Упражнения на _________ несут огромную пользу для всего организма. Они снижают риск _______. Улучшается _________ мышц, связок и сухожилий. Увеличивается подвижность _________, что благоприятно влияет на формирование навыка правильной ________. «
Информация об ответах
Тип вариантов ответов: (Текстовые, Графические, Комбинированные):
Упражнения на гибкость несут огромную пользу для всего организма. Они снижают риск травм. Улучшается эластичность мышц, связок и сухожилий. Увеличивается подвижность позвоночника, что благоприятно влияет на формирование навыка правильной осанки.
Неправильный вариант/варианты (или комбинации): все остальные варианты являются не правильными
Выберите тип интерактивного теста:
4. Добавление подписей к изображениям
Информация о тестовом вопросе:
Подпиши все виды движений, которые знаешь. Подпиши изображения.
Информация об ответах
Тип вариантов ответов: (Текстовые, Графические, Комбинированные):
А) Вращательное движение;
Неправильный вариант: все возможные другие.
Гибкость тела как физическое качество
Содержание
Метрология гибкости [ править | править код ]
Факторы, влияющие на гибкость [ править | править код ]
Основное влияние на проявление гибкости оказывает ряд факторов [1] [8] [11] :
Существенное влияние на проявление гибкости оказывают также внешние условия:
Функциональное состояние организма тоже способно оказывать влияние на подвижность суставов. Так, утомление способствует уменьшению активной гибкости (ввиду снижения способности мышц к полному расслаблению после предшествующего сокращения) и повышению пассивной (ввиду пониженного тонуса мышц, противодействующих растяжению).
Кроме всего перечисленного, мотивация и положительные эмоции повышают гибкость, а негативные личностно-психические факторы снижают.
Тесты для оценки гибкости [ править | править код ]
Наиболее популярными педагогическими тестами для контроля за подвижностью различных суставов являются:
Подвижность в плечевом суставе [5] [8] [13] [14] [15] [16] [ править | править код ]
В практике спорта наибольшее распространение нашли следующие вариации:
а) Спортсмен, удерживая гимнастическую палку, выполняет выкрут прямых рук назад. О степени подвижности плечевого сустава судят по расстоянию между кистями рук при выкруте: чем оно меньше — тем выше гибкость данного сустава, и наоборот. Кроме того, полученный показатель сравнивается с шириной плечевого пояса испытуемого, на основании чего выводится конечный результат.
б) Испытуемый принимает положение основная стойка, сжимает пальцы рук в кулаки, при этом большие пальцы находятся внутри кулаков. Спортсмен совершает максимально возможное приведение и вращение правой руки внутрь, максимально сгибая её в локтевом суставе; и одновременно максимально возможное отведение и вращение левой руки наружу, максимально сгибая её в локтевом суставе. Таким образом, оба кулака должны располагаться за спиной испытуемого.
Исследователь замеряет расстояние мужду двумя кулаками (рисунок 2).
После выполнения первой попытки, упражнение повторяется со сменой положения рук на противоположное.
в) Ещё одним способом контроля подвижности в плечевом суставе является активное отведение прямых рук с гимнастической палкой вверх из положения лежа на груди, руки выпрямлены над головой. Фиксируется расстояние от пола до гимнастической палки. Чем оно больше — тем выше гибкость.
Подвижность позвоночного столба [5] [8] [13] [14] [15] [17] [18] [ править | править код ]
В практике спорта применяется несколько способов, позволяющих оценить подвижность позвоночного столба:
а) Один из них подразумевает выполнение наклона туловища вперёд в положении стоя на скамейке, не сгибая ног в коленях. Гибкость позвоночника определяется при помощи линейки или сантиметровой ленты по расстоянию от нулевой отметки до третьего пальца руки. В случаях, когда пальцы не достают до нулевой отметки, зафиксированное расстояние обозначается со знаком «минус» (-), когда опускаются ниже нулевой отметки — со знаком «плюс» (+).
Рисунок 2. Оценка подвижности в плечевых суставах в положении стоя
Рисунок 3. Оценка подвижности в плечевых суставах из положения лёжа на груди
Рисунок 4. Подвижность позвоночного столба
Рисунок 5. Шкала градусов
Рисунок 6. Оценка подвижности тазобедренных суставов в положении лёжа у стены
Рисунок 7. Подвижность в коленных суставах
Рисунок 8. Подвижность в голеностопных суставах
Рисунок 9. Тесты для оценки гибкости
В ходе его выполнения испытуемый в положении сидя на полу без обуви наклоняется вперёд до предела, не сгибая ног в коленях. Испытуемый должен зафиксировать данное положение на 2 секунды. Гибкость позвоночника оценивают с помощью линейки или ленты по расстоянию в сантиметрах от нулевой отметки до третьего пальца руки. В избежание отрицательных отметок, вместо нулевой устанавливается отметка 25,4 см. Следовательно, испытуемый, выходя за пределы пальцев ног, получает результат выше 25,4 см.
Подвижность в тазобедренном суставе [5] [8] [ править | править код ]
При выполнении данного контрольного упражнения задача испытуемого как можно шире развести ноги: 1) в стороны и 2) вперед-назад с опорой на руки. Об уровне подвижности в данном суставе судят по расстоянию от пола до копчика: чем оно меньше — тем выше гибкость, и наоборот.
Выполнять разведение ног в стороны можно также лёжа у стены с начерченной на ней шкалой.
Подвижность в коленных суставах [5] [8] [14] [ править | править код ]
Испытуемому ставится задача выполнить приседание с вытянутыми вперёд руками или с расположенными за головой. При помощи гониометра измеряется угол сгибания в коленных суставах, что служит количественной оценкой подвижности.
Подвижность в голеностопных суставах [5] [8] [14] [ править | править код ]
Испытуемый занимает положение седа, затем производит сгибание («тыльное сгибание») и разгибание (в литературе встречается также понятие «подошвенное сгибание») в голеностопных суставах. Регистрируется расстояние от коньчиков пальцев ног до пяток. Количественная оценка гибкости осуществляется с помощью гониометра (рисунок 8).
При измерениях гибкости в суставах следует особо тщательно соблюдать условия стандартизации тестирования, поскольку их несоблюдение способно значительно повлиять на конечный результат:
Оценка гибкости [ править | править код ]
Источник:
Учебное пособие для ВУЗов «Спортивная физиология».
Автор: И.И. Земцова Изд.: Олимпийская лит-ра, 2010 год.
Гибкость — это способность человека выполнять движения с максимальной амплитудой. Она характеризуется степенью подвижности суставов, выражением которой является амплитуда движений (в градусах).
Уровень гибкости зависит от эластичности мышц и связочного аппарата, анатомических особенностей суставных поверхностей. Максимальная амплитуда движений определяется также функциональным состоянием ЦНС, согласованностью работы мышц-синергистов и антагонистов. Гибкость зависит также от температуры окружающей среды (при повышенной температуре она выше), поэтому использование разминки, согревающих процедур (горячая ванна) способствует существенному увеличению гибкости. В то же время физическое утомление, снижение температуры воздуха приводят к снижению гибкости. Она зависит также от возраста (у детей выше, чем у взрослых) и пола (у женщин выше, чем у мужчин) (Алтер, 2001; Дубровский, 2005; Кашуба, 2003; Фомин, Вавилов, 1991).
Различают такие виды гибкости:
В младшем школьном возрасте имеются благоприятные условия для развития гибкости. Это, прежде всего, морфологические особенности опорно-двигательного аппарата — высокая эластичность связок и мышц, большая подвижность позвоночника. Самые высокие естественные темпы развития гибкости наблюдаются у детей 7—10 лет. У девушек 11—13 лет и у мальчиков 13—15 лет активная гибкость достигает максимальных величин. Физиологические и морфологические предпосылки для улучшения гибкости в этом возрасте не должны быть самоцелью, ведь избыточная подвижность суставов неблагоприятно влияет на формирование некоторых двигательных навыков.
Подвижность в суставах увеличивается, когда в растянутых мышцах увеличено кровоснабжение и, наоборот, уменьшается, если кровообращение ухудшается (Алексанянц, 2003; Виксне, 1989; Ермолаев, 2001; Козлов, Гладышева, 1997).
У людей зрелого и пожилого возраста гибкость уменьшается, поэтому тренировочные оздоровительные занятия должны быть направлены и на ее развитие.
Основным методическим приемом во время развития гибкости суставов является обязательная разминка перед выполнением упражнений на растягивание. Чем лучше подготовлен мышечно-связочный аппарат, тем совершеннее выполняются движения, тем меньший риск травмирования — растяжения, разрывы мышц, сухожилий.
Упражнения на растягивание выполняют сериями в определенной последовательности: упражнения для суставов верхних конечностей, туловища и нижних конечностей, а между сериями — упражнения на расслабление.
Выполняя упражнения на растягивание, амплитуду движений увеличивают постепенно, поскольку даже после хорошей разминки возможно травмирование мышц и связок. Постепенное увеличение дает возможность организму приспособиться к специфической работе. Обычный темп движений с небольшой амплитудой (махи ногами, рывки руками и т. д.) — примерно 60 за 1 мин, других движений (наклоны туловища) — 40—45 за 1 мин. Упражнения на растягивание, особенно наклоны туловища, лица зрелого и пожилого возраста должны выполнять с большой осторожностью и произвольной скоростью.
Во время развития гибкости ведущим является повторный метод с интервалами отдыха, недостаточными для полного восстановления.
Уровень развития гибкости следует регулярно проверять. Это осуществляется методами измерения, при которых подвижность суставов оценивается в градусах или в метрах как на самом испытуемом, так и по изготовленным фотографиям.
Точнее всего подвижность суставов можно определить при помощи механического гониометра, представляющего собой соединение штангенциркуля и угломера в одну систему. Это дает возможность проводить измерения частей тела и их наклонов по вертикали и горизонтали в градусах в разных плоскостях (горизонтальной, саггитальной и фронтальной). Во время поворотов и наклонов штанги и угломера стрелка, благодаря противовесу, постоянно находится в вертикальном положении и показывает углы наклона измеряемого объекта к вертикали или горизонтали в градусах.
В пазы ножек штангенциркуля вставляют дугообразные или прямые ножки и закрепляют винтами. С помощью этих ножек проводят разнообразные глубинные измерения тела — например таза, ребер и др. Самым распространенным является гониометр конструкции Гамбурцева. Результаты гониометрии выражаются в угловых единицах (Алексаньянц, 2003; Аптер, 2001; Козлов, Гладышева, 1997).
Во время определения подвижности в суставах при помощи гониометров следует соблюдать соответствующие правила:
После проведения разминки (в соответствии с положениями и условиями, изложенными в теоретическом вступлении к работе) у испытуемых (желательно разной спортивной специализации и тренированности) при помощи гониометра по очереди определяют подвижность таких суставов: плечевого, локтевого, лучезапястного, тазобедренного, коленного, голеностопного. Результаты измерений вносят в таблицу, сравнивают, делают выводы и дают рекомендации.
О спорте и физических способностях [часть 5. Гибкость.]
Ссылки на предыдущие посты:
Продолжаем разговор о наших физических качествах. Ребят хочу сказать сразу, Я не стремлюсь свалить все и сразу в кучу, имейте терпение, расскажу и покажу вам все, но только в свое время) Итак, поехали!
Я не буду писать о классификации, которая забита и перепечатана всеми и везде.
Хочу рассказать вам о более «поверхностной» классификации:
— Активная (выполняется за счёт собственной активности соответствующих мышц)
Вот вам пара примеров активной гибкости:
А вот это уже пассивная гибкость:
Гибкость человека позволяет принять ему такое положение, но в данном случае только с помощью другого человека.
Сенситивный период гибкости.
Наиболее интенсивно гибкость развивается до 10-14 лет. При этом для развития пассивной гибкости сенситивным периодом будет являться возраст 9-10 лет, а для активной 10-14 лет. После 15-16 лет показатели гибкости стабилизируются и если не выполнять упражнений, направленно воздействующих на развитие гибкости. Она начинает уменьшаться уже в юношеском возрасте. Но это не значит что к 30, 40, 50 годам вы не сможете согнуться, нужно лишь поддерживать свою гибкость в тонусе и вы не станете палкой.
«Гибкость, или, точнее, степень подвижности в различных сочленениях опорно-двигательного аппарата, зависит от формы и строения суставов и от эластичности мышц и связок. С возрастом в связи с увеличением массы сухожилий сравнительно с мышцами и некоторым уплотнением самой мышечной ткани тоническое сопротивление мышц действию растягивающих сил увеличивается и гибкость ухудшается. Сопротивление растягиваемых мышц значительно возрастает с 12– 13 лет, причем у мальчиков в большей степени, чем у девочек.» Олег Меньшиков
Будет важно заметить, что активная гибкость тесна связана с силой, ведь чтобы выполнить то или иное упражнение нужно иметь достаточно развитый мышечный аппарат. Разумеется это правило работает не для всех упражнений, но исключения лишь подтверждают правило.
Ну я думаю основную суть вы уловили, поэтому сильно много теории и воды лить не стану. Если будут вопросы, то я отвечу на них в следующем посте) А пока все.
ПОДПИСЫВАЙТЕСЬ, ЧИТАЙТЕ И РАЗВИВАЙТЕСЬ! КАК ИНТЕЛЛЕКТУАЛЬНО, ТАК И ФИЗИЧЕСКИ.
Коммент для минусов внутри.
Пару видео оч познавательных от мастеров цирка
Ссылки в первом посте ведут на 404
Баланс и гибкость
Гибкая
С содроганием вспоминая приседания пистолетиком
Почему болит спина и как этого избежать?
В прошлых постах, посвященных теме здоровой спины, меня попросили показать упражнения, которые бы я рекомендовал, потому что зачастую в сфере йоги и физкультуры на эту тему царит полный бардак к великому сожалению ( первый рассказ на эту тему, а это второй).
В общем нюансов много и о них в тех статьях я рассказываю.
Но сейчас я хочу поговорить о том, почему болит спина и какие есть распространенные заблуждения (вроде диагноза «остеохондроз») на этот счет.
(тут я хотел подобрать смешную картинку в тему, но что-то ничего не нашлось по душе, поэтому сегодня пост будет без развлекающих иллюстраций)
1. Почему болит спина?
Это так называемая «диагностическая триада», которая вошла во все современные медицинские руководства около десяти лет назад. При этом, до сих пор не существует оптимального стандарта для лечения скелетно-мышечных болей. Методы диагностики, эффективные в одном случае, будут бесполезны в другом.
Скелетно-мышечные боли, т.е. то, почему болит спина в 85 процентах случаев, могут иметь шесть разных причин:
1) Межпозвоночный диск. Нервные окончания обнаружены в наружной 1/3 кольца.
4) Позвонки. Ноцицепторы (болевые рецепторы) обнаружены в надкостнице и в кровеносных сосудах.
5) Твердая мозговая оболочка. спинномозговые узлы, периневральная соединительная ткань.
Из этих шести причин наиболее распространенной (70%) является микротравматизация мышц (миофасциальный синдром).
Обратите внимание, что пункты 1-4 и 6, это то, на что мы можем влиять в лучшую или худшую сторону непосредственно через движения.
Т.е., если говорить простыми словами, то подавляющий процент причин болей в спине по данным данного авторитетного института, это МИОФАСЦИАЛЬНЫЙ СИДРОМ.
Проблема в том, что хотя такой диагноз и есть в МКБ10 (М42) в нашей стране, наряду с диагнозом ВСД, например, он используется как свалка диагнозов, причем не только ортопедических, но и неврологических.
На западе под понятием Chondropathy (M91-M94), которая по значению как раз ближе к нашему понятию остеохондроза ( https://en.wikipedia.org/wiki/Chondropathy ), понимаются гораздо более конкретные патологии суставов, не говоря уже про узкую группу заболеваний попадающих под диагноз Spinal osteochondrosis (тот самый М42).
Вот по этому поводу Антон Алексеев в своем видео хорошо рассказывает о данной проблеме:
Однозначных рецептов тут нет просто потому, что даже у одной и той же симптоматики могут быть совершенно разные причины. На сегодняшний день медицина не знает абсолютно действенного способа избавления от болей в спине, который бы подходил каждому человеку даже с похожей симптоматикой.
(здесь должна быть картинка с котом барабанщиком и текстом «BA-DUM-TSS»)
Однако, есть несколько моментов, на которые стоит обратить свое пристальное внимание.
Самое главное: ваше здоровье. нет, тут я не буду говорить про вашу ответственность и вот это все, это вы, как сознательные люди, знаете и без меня.
Так вот, ваше здоровье зависит в первую очередь от следующих факторов:
0. Наследственность (но оставим этот пункт за скобками пока, так как все же, бОльшее значение имеют следующие пункты)
2. Действия, которые вы чаще всего совершаете, следуя этому образу жизни (если вы внимательно посмотрите на это, то увидите, что там не такой уж и большой набор этих действий, большинство из которых а) автоматизированно-стереотипные и б) некорректные для физиологической нормы).
4. Доступность квалифицированной медицинской помощи и своевременное диагностирование заболеваний на начальной стадии их возникновения (ну да, это банально, но это пункт, тем не менее, играет далеко не последнюю роль в вопросе того, как долго мы сможем прожить).
Тут я хочу подробнее коснуться вопроса влияния образа жизни на здоровье с рассматриваемого нами сейчас ракурса
И еще один интересный нюанс, хорошо описанный и успешно применяемый в методе йоги «Корректный подход к позвоночнику»: ваше здоровье в первую очередь зависит от того, что вы НЕ делаете, и во вторую от того, что вы делаете. Если вы не носите тяжести, если вы не мерзнете и не перенапрягаетесь, если вы не спите в скрученной буквой «зю» позе, если вы не совершаете активных вращательный движений головой и не воздействуете ротаторной нагрузкой на свой позвоночник, то вы уже будете более здоровым человеком, чем тот, у кого нет частицы «не» в каких-то из этих моментах.
Но так что же по поводу действий, которые мы можем делать для поддержания здоровья своего позвоночника и спины в целом?
2. Больше свежего воздуха и солнечного света. Без этого наш мозг будет себя чувствовать плохо, уровень серотонина будет невысоким и привет разные расстройства вегетатики, хроническая усталость и прочие прелести, которые сопутствуют таким «энергетическим сбоям» нашего организма.
3. Питание (чтобы были жиры, белки, углеводы в балансе, а еще витамины, солнышко и свежий воздух).
3. Ходьба (это самая правильная кардио-нагрузка для нашего тела, если ходить регулярно и активно, то это будет полезнее бега). Про этот пункт можно писать очень и очень много.
Подавляющее большинство людей, которые приходят ко мне на массаж или на занятия в Питере имеют проблемы со спиной, которых не было бы, если бы в их жизни было бы больше правильной ходьбы.
Что значит «ПРАВИЛЬНАЯ ХОДЬБА»?
Здесь остановимся поподробней.
Что такой миофасциальный синдром?
Надеюсь, что информация была интересна и полезна.
Стоит ли заморачиваться и делать видео с упражнениями? И если да, то какой формат был бы интересен для таких видео?
Наблюдая сломал позвоночник
Гибкость
Робин Гуд нервно курит в сторонке
Как работают мышцы ч1.1
Представьте себе любую свою скелетную мышцу: грудную, бицепс, четырёхглавую мышцу бедра и т.п. Она состоит из нескольких компонентов. На обоих её концах находятся сухожилия, прикрепляющие мышцы к костям. Сухожилия представляют собой соединительные ткани, более плотные у точки крепления к кости и менее плотные у мышечно-сухожильного соединения. Когда люди «рвут» мышцу, то почти всегда разрывается именно мышечно-сухожильное соединение. Оторвать же сухожилие от кости практически невозможно, эта часть невероятно прочная.
Между сухожилиями находится сама мышца. Она состоит из нескольких компонентов:
— миофибриллы, обеспечивающие сокращение;
— саркоплазмы, куда входит всё, что не является миофибриллами, — жидкость, ферменты, гликоген.
Кстати, саркоплазматическая гипертрофия, о которой так долго спорили, похоже, происходит на самом деле.
Также в мышце есть некоторые соединительные ткани — титин, десмин и пр., — которые соединяют миофибриллы разными способами. Одни проходят вдоль мышечных волокон, другие соединяют мышечные волокна друг с другом и с прочими клеточными структурами.
Как развивается сила
Мозг посылает определённые сигналы, которые проходят по двигательному нерву, пока не достигнут нейромышечного узла. Затем мышцы сокращаются, генерируя достаточное усилие (будем надеяться) для выполнения задуманного. Детали чуть дальше. Я уже писал раньше, что на развитие усилия влияет множество факторов.
Важно отметить, что большое значение имеет физиологическая площадь поперечного сечения мышц или мышечных волокон. Представьте, что вы разрезали огурец пополам, по диаметру среза можно рассчитать площадь поперечного сечения. То же и с мышцей.
Количество силы, которую мышца может развить, зависит от площади сечения и удельного напряжения, т.е. величины генерируемого усилия на единицу площади поперечного сечения.
Почему растут мышцы
Десятилетиями самые дурацкие тренировочные методики оправдывались тем, что «мы не знаем, что заставляет мышцы расти». Если вы не можете точно сказать, что именно приводит к росту, то любая тренировочная система выглядит нормальной, пока «работает».
Проблема в том, что «работает» слишком многое. Особенно тогда, когда подключают стероиды. На стероидах вообще всё работает, даже отсутствие тренировочной нагрузки. Любой маразм, которым вы страдаете в зале, работает, пока достаточно высока доза.
Это не значит, что за все эти годы не предлагались и не опровергались различные теории мышечного роста.
Наиболее распространенной была и, наверное, остаётся концепция мышечного повреждения: на тренировке мышцы получают микротравмы, а потом отстраиваются и увеличиваются. Это основано на почти полностью неверном представлении о суперкомпенсации, но сегодня не об этом.
Сюда же идея о том, что повреждение мышц само по себе является стимулом для роста, хотя многие методики приводят к гипертрофии без всякого травмирования. Более того, повреждения могут негативно сказаться на росте.
Это в некоторой степени связано с энергетической теорией роста: тренировки снижают энергетический статус скелетной мышцы (АТФ/КФ), что каким-то образом провоцирует рост. В своей первой книге The Ketogenic Diet я писал о популярной тогда теории, согласно которой тренировка истощает запас АТФ в мышцах, вызывая «ригидность» и последующие повреждения, что стимулирует рост.
Тренировочная программа Bodycontract Дэна Дучейна была основана на следующем: отказной подход из 8-12 повторений, чтобы исчерпать запас АТФ, а затем 3 более тяжёлых эксцентричных повторения, чтобы вызвать повреждения рабочих мышечных групп, когда волокна станут ригидными. Сомневаюсь, что эта модель до сих пор в моде, учитывая, что повреждение мышц не так заметно влияет на рост.
Были также идеи, связанные с ишемией/гипоксией (в основном с низким кровотоком/кислородом в крови), от которых на долгие годы отказались, но сейчас снова вспоминают. Это тоже тема для отдельной статьи, сейчас лишь скажу, что гипоксия, видимо, косвенно способствует росту, поскольку помогает включать в работу больше мышечных волокон.
Были и обратные взгляды, например, памповая теория роста. Это может иметь смысл, если принимать стероиды: при пампинге препараты дольше удерживаются в мышцах и связываются с рецепторами. Но вообще влияние пампа на рост тоже переоценено.
Уже более десяти лет существуют теории о набухании клеток, но я не встречал убедительных работ в этом направлении. Большинство исследований проводилось в клетках печени в нефизиологических условиях вроде вливания солевого раствора и т.п. Я не говорю, что это не играет никакой роли. Я говорю, что пока не убежден в решающем значении данного фактора.
Недавно вышло наитупейшее исследование с использованием «специфических саркоплазматических» тренировочных протоколов, которые привели к значительному увеличению толщины мышц сразу после тренировки из-за перемещения жидкости. Хочешь круто выглядеть в клубе несколько часов? Тогда надо до одури напампиться. Может, Арнольд был прав.
В последнее время вырос интерес к метаболитной теории роста, но вряд ли и она всё объяснит. Как и гипоксия, накопление метаболитов, вероятно, помогает набрать больше мышечных волокон к концу подхода.
Ещё была теория гормонального ответа, но в реальности всплески тестостерона или гормона роста после тренировки слишком малы. А вот инъекция супрафизиологической, т.е. превышающая физиологическую, дозы препарата, конечно, повлияет.
Последняя теория, которая, возможно, наиболее близка к истине, предложена Владимиром Зациорским. Он отметил, что при выполнении каждого подхода берётся определённое число мышечных волокон для создания силы. Но самого «включения» мышечных волокон мало, мышцы должны поработать до утомления (основано на идее, что усталость волокна сама по себе вызывает рост, а это не совсем верно). Короче, требуется взять мышечное волокно и достаточно его нагрузить, чтобы заставить адаптироваться.
Глядя на всё это многообразие теорий, легко понять, почему народ до сих пор разводит руками: «мы не знаем, что вызывает рост мышц».
Ещё в 1975-м году исследователям удалось на 90% разобраться в данном вопросе и установить, что основным фактором, вызывающим рост скелетной мышцы, было воздействие высокого уровня напряжения на мышечные волокна:
«Предполагается, что высокое напряжение (пассивное или активное) является критическим моментом в инициировании компенсационного роста».
Однако народ до сих пор повторяет любимую мантру про «мы не знаем». Что ж, пусть не знают, а физиологи, например, в курсе.
Поскольку напряжение может создаваться разными способами, коротко скажу об активном и пассивном. Пассивное напряжение — это как в исследованиях, где изверги привязывают груз к крылу несчастной перепёлки на 30 дней. Продолжительной перегрузкой мышц (пассивным напряжением) вызывается быстрый рост с увеличением количества мышечных волокон (гиперплазия). Это, кстати, не работает у людей.
Нас интересует активное напряжение, когда мы сами заставляем свои мышцы генерировать усилие. Один изящный способ, с помощью которого исследователи создают повышенное активное напряжение у животных, — так называемая «synergist ablation model» (модель абляции синергистов). За этим милым названием скрывается перерезание одной из мышц (в группе синергистов), поддерживающих сустав. Из-за чего оставшаяся нетронутой мышца за ночь перегружается до безумной степени.
И рост при этом до абсурда быстрый. Примерно на 50% у животных за несколько дней. Чтобы было понятнее, попробуйте перерезать себе камбаловидную мышцу, тогда вся нагрузка свалится на икроножную, и та быстро накачается. Некоторым людям только так и удастся увеличить икры. Шутка. Наверное, шутка.
А вот чего мы не знали до недавнего времени, какие биохимические пути задействованы в процессе включения синтеза белков. И теперь выяснили, что основным фактором роста мышц является так называемый mTOR, мишень рапамицина у млекопитающих.
Тренировка активирует mTOR, как и аминокислоты, особенно лейцин, из-за которого и был весь BCAA-хайп. Да, есть и иные пути/факторы — АКТ, рибосомальная активность и многие другие, — но именно mTOR является ключевым. Если заблокировать mTOR (рапамицином), то синтез белка после тренировки не запустится, что бы вы ни предприняли.
Нам не хватало понимания, как одно приводит к другому: как чисто механический сигнал (напряжение мышц/механическая работа) трансформировался в химический/биологический сигнал? Как механический процесс может активировать биологический?
Понятно, что какое-то одно биологическое изменение в мышцах (АТФ, лактат, гормоны и пр.) может быть триггером для другого. А тут именно механическое воздействие вызывает активизацию биохимического пути. Что ж там происходит?
Биоинженеры, на помощь!
Как я слышал, физиологи не смогли найти ответ и обратились к биоинженерам, чтобы те по-новому взглянули на проблему. Происходило всё это ещё до обнаружения таких вещей, как десмин и титин. Тогда ещё не задумывались, как мышечные волокна соединяются друг с другом и окружающими элементами. Просто считалось, что волокно пролегает по всей длине мышцы с сухожилиями на концах, и когда волокна сокращаются, происходит движение в суставах, к которым крепятся мышцы. И вот каким-то образом это запускает биологический процесс роста.
А биоинженеры, наверное, сказали: «Знаете, вот если б у вас была какая-то ткань, соединяющая мышечные волокна с другими структурами клетки, это могло бы объяснить, как механический сигнал превращается в биологический. Сокращение волокна натягивало б другие ткани, что влияло бы на клеточную структуру и могло трансформироваться в биологический сигнал». Так мог бы выглядеть механизм, с помощью которого мышечное напряжение запускает биохимический каскад.
Сперва, уверен, физиологи такие: «Лол, ок». Но затем, поискав и обнаружив описываемые структуры, вскрикнули «Ничоси! Они были правы!» или как-то так. А потом, наверное, и приписали себе всю славу открытия.
Может, конечно, эта история мне приснилась, но в нашем организме всё так реально и работает. В скелетной мышце имеются механосенсоры, которые при активации преобразуют чисто механический сигнал (мышечные волокна, генерирующие/подвергающиеся высокому напряжению под нагрузкой) в биологический, активирующий mTOR.
Так что же такое механосенсоры? Это так называемая FAK (Focal Adhesion Kinase, киназа фокальных контактов), активирующая mTOR. По-видимому, с помощью образования фосфатидной кислоты (Phosphatidic Acid (PA)), почему эти добавки и стали так популярны некоторое время назад. В дальнейшем я буду называть это сокращенно: FAK/PA/mTOR.
Бац, механический сигнал превратился в биологический.
Высокое напряжение активирует mTOR и стимулирует рост.
Проблема решена.
- движение щит кирово чепецк инн
- движений по расчетному счету не было