геометрическая форма записи комплексного числа
Геометрическая форма записи комплексного числа
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Числа. Геометрическое представление комплексных чисел.
Комплексным числом z является пара действительных чисел x и y, упорядоченная.
Первое число x из этой пары является действительной частью комплексного числа z и обозначают его как Rez, x = Rez. Второе число y является мнимой частью комплексного числа z и обозначают его как Imz, y = Imz.
Действительные числа изображают точками на числовой прямой:
Здесь точка A означает число –3, точка B – число 2, и O – ноль. В отличие от этого, комплексные числа изображаются точками на координатной плоскости. Выберем для этого прямоугольные (декартовы) координаты с одинаковыми масштабами на обеих осях. Тогда комплексное число a + bi будет представлено точкой Р с абсциссой а и ординатой b. Эта система координат называется комплексной плоскостью.
Модуль комплексного числа a + bi обозначают |a+ bi| либо буквой r и он равняется:
У сопряженных комплексных чисел равные модули.
Тригонометрическая форма комплексного числа. Абсциссу a и ординату b комплексного числа a + bi выражают через модуль этого числа r и аргумент φ:
Операции с комплексными числами, которые представлены в тригонометрической форме.
Это знаменитая формула Муавра.
Чтобы получить n разных значений корня n-ой степени из z нужно задать n последовательных значений для k (к примеру, k = 0, 1, 2,…, n – 1).
Комплексные числа
Известно, что квадратное уравнение с вещественными коэффициентами и отрицательным дискриминантом не имеет вещественных корней. В частности, уравнение
$$
z^2+1=0\nonumber
$$
не имеет корней на множестве \(\mathbb
Определение комплексного числа.
Комплексными числами называют пары \((x,y)\) вещественных (действительных) чисел \(x\) и \(y\), для которых следующим образом определены понятие равенства и операции сложения и умножения.
Обозначим комплексное число \((x,y)\) буквой \(z\), то есть положим \(z=(x,y)\). Пусть \(z_1=(x_1,y_1)\), \(z_2=(x_2,y_2)\). Два комплексных числа \(z_1\) и \(z_2\) считаются равными тогда и только тогда, когда \(x_1=x_2\) и \(y_1=y_2\), то есть
$$
\<(x_1,y_1) = (x_2,y_2)\>\Leftrightarrow \
$$
Сумма и произведение комплексных чисел \(z_1\) и \(z_2\) обозначаются соответственно \(z_1+z_2\) и \(z_1z_2\) и определяются формулами
$$
z_1+z_2=(x_1+x_2,y_1+y_2),\label
$$
$$
z_1z_2=(x_1x_2-y_1y_2,x_1y_2+x_2y_1).\label
$$
Из формул \eqref
$$
(x_1,0) + (x_2,0) = (x_1+x_2,0),\qquad (x_1,0)(x_2,0) = (x_1x_2,0),\nonumber
$$
которые показывают, что операции над комплексными числами вида \((x, 0)\) совпадают с операциями над действительными числами. Поэтому комплексное число вида \((x, 0)\) отождествляют с действительным числом \(x\), то есть полагают \((x,0) = x\).
Следовательно, любое комплексное число \(z= (x,y)\) можно записать в виде \(x + iy\), то есть
$$
z = x + iy.\label
$$
Запись комплексного числа \(z = (x,y)\) в виде \eqref
В записи \eqref
$$
Re\ z = x,\quad Im\ z = y. \nonumber
$$
Если \(x= 0\), то есть \(z = iy\), то такое комплексное число называют чисто мнимым.
Здесь и всюду в дальнейшем, если не оговорено противное, в записи \(x+iy\) числа \(x\) и \(y\) считаются действительными (вещественными).
Число \(\displaystyle\sqrt
$$
|z|=|x + iy|=\sqrt
$$
Заметим, что \(|z|\geq 0\) и \(\<|z| = 0\>\Leftrightarrow \
Комплексное число \(x-iy\) называют сопряженным комплексному числу \(z = x + iy\) и обозначают \(\overline
$$
\overline
$$
Из равенств \eqref
$$
|z| = |\overline
$$
так как \(z\overline
Свойства операций.
Операции сложения и умножения комплексных чисел обладают свойствами:
Эти свойства вытекают из определения операций сложения и умножения комплексных чисел и свойств операций для вещественных чисел.
Из уравнения \eqref
$$
z_1-z_2=(x_1-x_2)+i(y_1-y_2).\nonumber
$$
Деление на множестве \(\mathbb
$$
zz_2=z_1\label
$$
и обозначается \(z_1:z_2\) или \(\displaystyle \frac
Докажем, что уравнение \eqref
\(\circ\) Умножая обе части уравнения \eqref
$$
z|z_2|^2 = z_1\overline
$$
которое равносильно уравнению \eqref
Эту формулу можно не запоминать — важно знать, что она получается умножением числителя и знаменателя на число, сопряженное со знаменателем.
Найти частное \(\displaystyle \frac
Геометрическая форма записи комплексного числа
VII .1. Формы записи комплексных чисел и действия над ними
где x и y – действительные числа, а i так называемая мнимая единица. Соотношение для мнимой единицы
Понятия «больше» и «меньше» для комплексных чисел не вводятся.
Числа z = x + iy и называются комплексно сопряженными.
Алгебраической формой комплексного числа называется з апись числа z в виде z = x + iy.
Модуль r и аргумент φ можно рассматривать как полярные координаты вектора , изображающего комплексное число z = x + iy (см. рис. 7.1). Тогда из соотношений сторон в прямоугольном треугольнике получаем
Равенство (7.3) есть тригонометрическая форма комплексного числа. Модуль r = |z| однозначно определяется по формуле
Аргумент определяется из формул:
Используя формулу Эйлера
комплексное число можно записать в так называемой показательной (или экспоненциальной) форме
где r =| z | — модуль комплексного числа, а угол ( k =0;–1;1;–2;2…).
Пример 7.1. Записать комплексные числа в тригонометрической и показательной формах.
На множестве комплексны х чисел определен ряд операций.
Из (7.11) следует важнейшее соотношение i 2 = –1. Действительно,
Видно, что при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей. Нетрудно видеть, что если есть n множителей и все они одинаковые, то частным случаем равенства (7.12) является формула возведения комплексного числа в натуральную степень:
(7.13) называется первой формулой Муавра.
Произведение двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
На практике при нахождении частного двух комплексных чисел удобно умножить числитель и знаменатель дроби на число, сопряженное знаменателю, с дальнейшим применением равенства i 2 = –1 и формулы разности квадратов.
Деление комплексных чисел осуществляется также и в тригонометрической форме, при этом имеет место формула:
Видно, что при делении комплексных чисел их модули делятся, а аргументы вычитаются соответственно.
Частное двух комплексных чисел в показательной (экспоненциальной) форме имеет вид:
Пользуясь формулой (7.11), вычислим их произведение
На основании формулы (7.14) вычислим их частное
Решение. Используя (7.4) и (7.5), получаем:
Аналогично, для z 2 можно записать:
По формулам (7.12) и (7.16) получим в тригонометрической форме:
Пользуясь формулами (7.14) и (7.17), получим в показательной форме:
в натуральную степень, определенному ранее формулой (7.13).
(7.18) называется второй формулой Муавра.
Пример 7.4. Найти все корни уравнения z 4 +16=0.
Теорема 7.1 (основная теорема алгебры). Для всякого многочлена с комплексными коэффициентами
Приведем еще одну теорему, имеющую место над множеством комплексных чисел.
Таким образом, произведение линейных множителей, соответствующих сопряженным корням, можно заменить квадратным трехчленом с действительными коэффициентами, а соответствующее квадратное уравнение будет иметь отрицательный дискриминант.
Комплексные числа
Формы
Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:
Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.
Изображение
Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:
Вычислить сумму и разность заданных комплексных чисел:
Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:
Аналогично выполним вычитание чисел:
Выполнить умножение и деление комплексных чисел:
Так, теперь разделим первое число на второе:
Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:
Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:
Для возведения в квадрат достаточно умножить число само на себя:
Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:
В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.
Вычисляем значение модуля:
Найдем чем равен аргумент:
$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$
Записываем в тригонометрическом виде:
Преобразуем в алгебраическую форму для наглядности:
Представим число в тригонометрической форме. Найдем модуль и аргумент:
Используем знакомую формулу Муавра для вычисления корней любой степени: