ингибирует адгезию что это
Агрегация тромбоцитов
Для оценки функции тромбоцитов в Лаборатории ЦИР проводится анализ на индуцированную агрегацию тромбоцитов. Это анализ высокого качества, выполняется на автоматическом агрегометре. Так как этот анализ резко меняется при приеме препаратов, влияющих на свертывание крови (антиагреганты, например, аспирин, тромбо-асс, антикоагулянты, например, гепарин), желательно сдавать его до начала приема этих лекарств. По каждой агрегатограмме врач-лаборант выдает заключение.
Анализ на агрегацию тромбоцитов рекомендуется в следующих случаях: при
невынашивании беременности, неудачных попытках ЭКО, тяжелых осложнениях беременности в анамнезе, бесплодии неясного генеза, а также при повышенной кровоточивости: легкое образование синяков, меноррагии, носовые кровотечения.
В кривой агрегации оцениваются амплитуда агрегации, форма кривой, наличие одной или двух волн, а также наличие дезагрегации.
Важная информация: сочетание приема пищевых продуктов, фитопрепаратов и пищевых добавок, содержащих компоненты из данного списка, с приемом антиагрегантов (тромбоАСС) и антикоагулянтов (гепарин) является опасной по риску кровотечения комбинацией (категория D по классификации FDA). Риск кровотечения в большинстве случаев превышает потенциальную пользу.
Агрегация с АДФ (синяя линия) и арахидоновой кислотой. Агрегационный ответ резко снижен. Дезагрегация практически отсутствует.
Агрегация с АДФ.
Агрегационный ответ снижен. Дезагрегация практически отсутствует.
Адгезивы в стоматологии: классификация
Многие люди всегда хотят иметь красивые и здоровые зубы. Для этого они используют различные средства и методы. Поэтому стоматология постоянно развивает и совершенствует методы лечения. Одним из таких методов восстановления зубов является адгезия. Перейдем к рассмотрению основных систем для восстановления зубов.
Понятие. Адгезия
Новый способ восстановления передних зубов с разными дефектами и пороками, которые легко устранить путем придания им замечательного эстетического вида. Вещества используются 30 лет. Но совсем недавно удалось улучшить состав таких веществ, и повысить сцепление. Именно адгезивные вещества лучше фиксируют материал эмали и дентина. Практический опыт использования материалов около 50 лет. В переводе с латинского значит «прилипание» нескольких разных по роду твердых тел. Сила сцепления прямо определяется способностью сдерживать сцепление без разрушения. Виды адгезии. Сейчас на практике есть несколько видов материала. Поэтому перейдем к их рассмотрению:
На практике в 1955 г. Буонкоре, замечательный ученый и практик, путем проведения опытов установил, что в результате действий фосфорной кислоты эмаль приобретает искусственную шероховатость. Это одновременно приводит к тому, что существует высокая адгезия зубов. Это новая методика. Если технологию нарушить, то это нарушит сцепление и появятся щели, микробные инвазии, окрасятся края пломбы, повысится восприимчивость. Показатели сцепления разные. Механизм сцепления с эмалью. Эмаль содержит органические/неорганические элементы и воду. При действии кислот растворяются места эмалевых призм. Преобразовывается эмаль. Использование кислоты повышает сцепление. Это вязкие вещества, которые проникают глубоко в эмаль. Когда вещества полимеризуются, то проходит образование зон отростков, что неизбежно улучшает сцепление с эмалью. Протравка эмали. В результате использования этого способа лечения зубов с них убирается слой объемом 10 мкн, что приводит к образованию микропоры на уровне 5-50 мкн. Эффективность воздействия метода зависит от следующих факторов:
Применение
Как правило, на практике, чтобы травить зубы используется ортофосфорная кислота с концентрацией 30-40%. Для дентина подойдут органические кислоты. Травление продолжается от 30 секунд до минуты. Время травления зависит от пористости эмали. Если время увеличить, то это неизбежно разрушит эмаль призм, ухудшит адгезию. Поэтому если существует низкая резистентность эмали, то время травления составляет 15 сек. В ином случае ровно минута. Протравка удаляется водой. Должно соответствовать времени воздействия кислотой. Скос эмали нужен для повышения сцепления. Площадь взаимодействия с эмалью увеличивается. Для увеличения силы лучше использовать поперечное сечение. Происходит растворение межпризменного вещества, образуются глубокие поры. Механизм сцепления с дентином. Все зависит от структуры дентина. Ведь в композиты входят диакрилаты, которые отлично взаимодействуют с эмалью. К дентину они гидрофобны. Основу дентина составляют минеральные вещества 45%, органические структуры 30%, и вода 20%. Внешняя часть дентина влажная. Поэтому сцепление невозможно выполнить. Это объясняется быстрым обновлением жидкости в дентине. Даже при высушивании ее остатки оказывают влияние на характеристику прочности дентина. Системы совмещаются с водой. Здесь существует еще одна главная проблема, представленная в виде слоя «smearlayer», который получается в результате работы с дентином. Здесь есть части гидроксилапатита, остатки одонтобласта и специальные кислоты. Слой связан с видом препарирования. Он действует изолятором, который препятствует попаданию вредных организмов в дентинные канальцы. Поэтому он мешает формироваться прочному соединению. На практике выделяется несколько подходов к использованию механизмов сцепления. В одном варианте смазанный слой хранится на дентине, увлажняется мономерами. В другом случае такой слой поддается искусственному растворению. Сейчас это актуальный способ. Протравливание дентина. Такой способ травления используется с 1979 года врачом Фузаяма. Сейчас это особенно актуально при обработке зубов такими материалами. Поэтому кондиционирование дентина – это химический процесс по перемене дентина с кислотами куда надо отнести лимонную, полиакриловую и молочную. Слой можно легко удалить. Открываются дентинные канальцы. Таким образом, выводятся минералы, появляются коллагеновые волокна органической структуры, а также активируются ионы и апатиты дентина. Такие материалы обязательно удаляются водной массой. Далее сушится поверхность. Здесь важен уровень влажности дентина после применения травильного раствора. Если дентин пересушить, то это приведет к снижению адгезии. Здесь спадают коллагеновые волокна. Это ухудшает связь. Если дентин будет влажным, то он будет «искрить», что приведет к образованию «мокрых луж». Дальнейшая аппликация откроет дентичные канальцы, позволит проникнуть вглубь гидрофобным мономерам в эти канальцы, что неизбежно создаст эффективное сцепление. Такой способ сцепления характерен для A.R.T – Bond (Coltene), Scotchbond (3M) и Syntac (Vivadent). К основным преимуществам систем надо отнести:
Виды адгезивных систем.
Сейчас на практике выделяют пару видов таких систем, куда обязательно надо отнести:
Поколения адгезивов
— первое. Возникло в 70-е годы. Обладает высоким сцеплением с эмалью, и низкой к дентину не более 2МПа. Здесь взаимодействовали бонд и кальций в основе дентина. Система используется с полостями 3 и 5 классов. После операции повышается чувствительность.
— второе. Возникло в 80-е годы. Здесь работали над смазанным слоем. Показатель был увеличен до 2-8 Мпа. Недостатком использования системы являются микроподтекания и послеоперационная чувствительность. Через год такая система утрачивала свои свойства на 30%.
— третье. Возникло в 80-е годы на основе праймера и адгезии. Показатели были улучшены до 8-15 МПа. Это явилось началом эры новой стоматологии. Удалось снизить послеоперационную чувствительность. Не долговечны были бондинговые агенты. Утрата качественных характеристик через несколько лет.
— четвертое. Возникло в 90-х. Адгезия составляет 17-25 МПа. Снизился уровень послеоперационной чувствительности. Здесь появился гибридный слой дентина и композита. Это позволяет сформировать промежуточный слой. Смешивание вещества проходит в равных пропорциях. В лаборатории это легко сделать, однако на практике это сделать довольно сложно. В основе содержится три элемента: кондиционер, праймер, специальные системы. Поэтому слой и каналы дентина поддаются частичному раскрытию.
— пятое поколение. Здесь применяется принцип «одной бутылочки» (адгезия и праймер). Наблюдается высокое травление эмали и дентина. Показатели увеличены до 20-25 МПа. Компоненты смешивать не нужно.
— шестое. Такие системы надо отнести к одношаговым самопротравливающим. Они содержатся в двух бутылочках. Требуется смешение. Характерна для эмали и дентина. Легко используется, сокращается численность этапов, снижается риск ошибки. Показатель адгезии равен 18-23 МПа, но к эмали этот показатель ухудшен.
— седьмое. Это характерно для системы Adper Prompt L-Pop. Все находится в одном флаконе. Она считается умеренной кислотной самопротравливающей. Система частично открывает каналы дентина. Материал создает отличное сцепление. Поэтому использование таких инновационных систем весьма важно для решения вопроса сохранения здоровых зубов на протяжении всей жизни.
В поисках совершенной адгезии
С момента появления бондов 4-го поколения долгие годы не происходило ничего значимого в адгезии с дентином, новые бондинги оказывались менее эффективны, чем прежние. В 2006 году появился адгезив Surpass, показав абсолютную инновацию как по силе и долговечности связки, так и по механизмам работы. Достаточно сказать о силе связки на сдвиг в 50 мПа через 5 лет для эмали и дентина.
История адгезивной стоматологии началась в 1955 году с публикации статьи Мишеля Буонокора о возможности улучшения адгезии путем травления эмали 85%-ной фосфорной кислотой подобно подготовке металла для покраски в автопромышленности. С тех пор было выпущено много адгезивов, достигнуто достаточно долгосрочное соединение с эмалью, но долговечность дентинового бондинга до сих пор остается значительной проблемой, большинство новых адгезивов оказывается даже хуже прежних, производители стремятся к упрощению и приведению к одной-единственной баночке…
Врагами адгезии к дентину являются следующие факторы:
С самопротравливающими адгезивами (6-го и 7-го поколений) возникли значительные сложности: все они недостаточно протравливают эмаль и либо недостаточно, либо и после полимеризации продолжают протравливать дентин, оставляя зияюшие шахты вокруг тегов. Все продукты травления остаются в гибридном слое, вызывая осмотическую активность и быструю гидролитическую дегенерацию. Кислые мономеры активируют матриксные металлопротеиназы и цистеин-катепсины, что приводит также к быстрой деградации коллагеновых волокон в зоне гибридного слоя. Большинство самопротравливающих адгезивов остаются гидрофильными и кислыми и после полимеризации, а наличие кислых мономеров в кислород-ингибированном слое вызывает проблемы с использованием цементов и культевых материалов двойного отверждения, а также вмешивается в процесс полимеризации световых композитов. Эта проблема не решена до конца и в самопротравливающих адгезивах двойного отверждения. Выпуск и широкая рекламная кампания адгезивов с селективным травлением выглядят как акт отчаяния фирм-производителей.
Двухкомпонентные адгезивы тотального протравливания (5-е поколение) явились упрощением и совмещением компонентов 4-го поколения, они, как и самопротравливающие адгезивы, часто имеют значительную кислую реакцию рН, часто рН лишь немного превышает 2, что несет для дентина те же последствия, что и самопротравливающие адгезивы, с точно теми же сложностями.
Есть и другие сложности с 5-м поколением: дело в том, что после протравливания и промывания дентина между коллагеновыми волокнами находится вовсе не вода — там находится высокогидратированный протеогликановый гель, расстояния между волокнами очень малы, и только мономеры с низкой молекулярной массой могут проникнуть через этот барьер, носящий название «молекулярные сита». Ни один из официально существующих протоколов бондинга не направлен на разрушение гидрогеля. В одной баночке 5-го поколения мономеры с низкой молекулярной массой образуют сомономеры с мономерами с крупной молекулярной массой. Смогут ли эти сомономеры преодолеть барьер «молекулярных сит»? Слой адгезива 5-го поколения является частично гидрофильным и работает как полупроницаемая мембрана, при стандартных протоколах создавая проблемы дебондинга и послеоперационной чувствительности. Ин-виво обычный бонд при стандартном протоколе деградирует на дентине всего за 1 год, использование протокола с ВАС и СНХ способно лишь отсрочить крах адгезии с дентином.
Трехкомпонентные системы адгезивов тотального протравливания (4-е поколение) на сегодняшний день являются «золотым стандартом» адгезии, показывая самые высокие результаты как по силе связки, так и по длительности адгезии. Однако и здесь не все хорошо с адгезией к дентину. При протравливании активируются протеазы, применение протоколов с ВАС и СНХ способно отодвинуть начало деградации не более чем на 1,5 года, низкомолекулярные мономеры лучше проникают в дентин, однако в большинстве своем они содержат кислые мономеры или органическую кислоту и могут продолжать активировать ферменты в дентине, не существует официальных протоколов, направленных на разрушение протеогликанового гидрогеля и расширение межфибриллярных пространств. Бонды 4-го поколения чрезвычайно чувствительны к влажности поверхности, при излишней влажности или пересушивании показатели силы связки уменьшаются в 3 раза и могут давать совершенно недопустимые цифры, ниже полимеризационного стресса, приводя к дебондингу и постоперационной чувствительности. Именно по этой причине исследователи так увлечены влажным самопротравливающим бондингом.
Эта грустная ситуация, дополненная умышленным введением стоматологов в мнение о том, что почти все адгезивы одинаково хороши, продуцируемое всем известными фирмами-производителями: только, мол, протокол выполняй, — замалчивание проблем с адгезией к дентину, множество проплаченных статей по адгезии и отсутствие интереса большинства стоматологов на постсоветском пространстве (да и во всем мире) привели к значительному упрощению протоколов и широчайшему использованию самопротравливающих и двухкомпонентных систем тотального протравливания. Маховик рекламы только набирает обороты…
На этом грустном фоне существуют работы исследователей, основанные на разрушении протеогликанового гидрогеля и улучшении стабильности гибридного слоя. Совершенно особо мне хотелось бы выделить труд доктора Джона Канки, всем известного по открытию влажного бондинга во время работы в Bisco, также создавшего олл-бонды. После ухода из «Биско» Джон сосредоточился на совершенно иных принципах адгезии — впервые за 50 лет! В истории адгезии были учтены не только химические, но и физико-химические процессы, происходящие на поверхности зуба при адгезивном протоколе. Первым в линейке вышел двухкомпонентный адгезив Simplisity, до сих пор любимый многими докторами за простоту использования и уникальную долговечность связки. В 2006 году в США был представлен новый трехкомпонентный адгезив Surpass, явивший абсолютно уникальные показатели как по силе связки, так и по длительности адгезии к дентину, через 5 лет сила связки на сдвиг для эмали и дентина находится в районе 50 мПа, показатели невиданные и непревзойденные до сих пор…
Продажи Surpass не сопровождались шумными перформансами, скорее, информация распространялась в среде стоматологов-перфекционистов, через американских коллег попала и к нам. Работа по созданию «Сюрпасса» продолжалась 4 года, процессы при бондинге совершенно уникальны, не имеют аналогов и в промышленности, защищены несколькими патентами на имя Джона Канки.
Принципы работы «Сюрпасса» настолько новые, что фирма Apexdental написала на упаковке с бондом: «Self Etch adhesive», хотя сам Джон позиционирует свое произведение как бонд 4-го поколения с несмываемой кислотой, или 8-е поколение адгезивов.
Понимание основ физической химии и современные труды исследователей в области реликтовых протеаз помогут разобраться в основах работы бондинга.
В процессе травления эмали и дентина создается чрезвычайно сложная среда, называемая дисперсной системой. К слову, она представлена и в композитах, там также имеется множество частиц в коллоидной среде…
Если рассмотреть процесс травления поверхности зуба кислотой, возникают не только микромеханические ретенции, но также и заряженная поверхность. Молекулы кислоты и дериваты травления могут быть либо смыты водой, либо заменены другими молекулами, причем они займут именно те места, где были молекулы кислоты.
Единственным сравнением процесса может быть получение пленки Ленгмюрра — Блоджетт при производстве кристаллов в микроэлектронике. На поверхности зуба происходит еще более сложное явление, носящее характер непрерывной ступенчатой адсорбции: неорганическая кислота способна травить эмаль так же, как и 37%-ная фосфорная. Когда она израсходуется, начинает действовать органическая кислота, вытесняя дериваты травления и образуя на поверхности дентина двойной заряженный слой.
Третье вещество является диспергатором и поперечно-связывающим агентом, вводимым еще на этапе травления. При внесении праймера (Сюр2), безводного спиртового раствора мономера, происходит замещение молекул органической кислоты на молекулы НЕМА, что описывается правилом уравнивания полярностей Ребиндера. Остатки кислот эмульгируются и нейтрализуются избыточным количеством третичных аминов в праймере.
«Сюрпасс3» представляет собой гидрофобную смолу, которую можно раздуть до толщины в 10 мкм, что важно для непрямых реставраций. «Сюрпасс» — совершенно нейтральный бонд (этим отличались еше олл-бонды от «Биско»), поэтому совместим со всеми композитными материалами и цементами, включая двойное отверждение.
В настоящее время мы можем использовать продукт для адгезии, не имеющий себе равных ни по силе связки, ни по стабильности адгезии. «Сюрпасс» дает новое представление о «золотом стандарте адгезии».
Для достижения указанных характеристик требуется следование протоколу, обязательно использование компрессора с осушителем воздуха (вода и влажность — враг любых адгезивов).
Очень желательна установка отдельного пистолета только с воздухом, оснащенного регулятором давления (так же как и для любого адгезива).
Статья носит обзорный характер, множество подробностей можно найти в литературе или в протоколах дистрибьютора: например, как правильно и почему именно так нужно сушить адгезив, зачем нужна такая высокая прочность адгезии и т. д. Также существует форум Джона Канки на сайте производителя.
Список литературы находится в редакции.
Адгезивные системы
Стоматологические композитные материалы не обладают самостоятельной адгезией (связью физической и химической природы между разнородными поверхностями) к тканям зуба. Поэтому пломбирование зубов композитами требует обязательного применения специальных адгезивных систем (бондов). Другими словами, для создания прочного соединения композита с тканями зуба необходимо использовать дополнительные материалы, имеющие химическую или микромеханическую адгезию к тканям зуба. Невыполнение этого условия приводит к нарушению сцепления композита с тканями зуба (вследствие усадки композита при полимеризации) и появлению краевой щели, возникновению вторичного кариеса и иногда – к повреждению пульпы. Основные компоненты органической матрицы композитов обладают довольно высокой адгезией к эмали, но по отношению к влажному дентину ведут себя как гидрофобные вещества, плохо прилегающие к его поверхности.
Эмаль зуба состоит в основном из неорганического вещества (биологический апатит, около 95% по весу), органического компонента (коллагеновые волокна, 1-1,5%) и воды (4%). Благодаря такому составу эмаль можно высушить, что обеспечивает хорошую адгезию гидрофобного органического компонента композита. Для увеличения эффективности сцепления эмали и композита техника пломбирования (реставрации) предусматривает предварительное кислотное протравливание эмали жидкостью или гелем на основе фосфорной (10-37%) или малеиновой (10%) кислоты. В результате кислотного протравливания с поверхности эмали удаляется органический налет, денатурируются белки и, самое главное, формируется микропористость эмали за счет растворения участков эмалевых призм и веществ межпризменного пространства на глубину около 40 мкм. После удаления протравливающего препарата водой и тщательного высушивания поверхность обрабатывается эмалевыми адгезивами, которые являются смесью низковязких мономеров (как правило, без наполнителя), по химическому составу близких к органической матрице композита и способных проникать в пространства между призмами протравленной эмали. Поэтому после полимеризации эмалевый адгезив образует механическое сцепление с эмалью (благодаря полимеризации в микропорах эмали) и химическую связь (благодаря сополимеризации) с органической матрицей пломбировочного композита.
Дентин зуба состоит из неорганических веществ (биологический апатит, 70-72%), органического компонента (коллаген и др. белки, углеводы) и воды (10%). В отличие от эмали, дентин пронизан большим количеством дентинных канальцев, заполненных дентинной жидкостью, веществом пульпы, клеточными отростками. Поверхность дентина всегда влажная, так как жидкость постоянно поступает по дентинным канальцам. Поэтому дентинная адгезия представляет собой более сложную проблему, современное решение которой учитывает ряд специфических факторов.
Поскольку поверхность дентина всегда влажная, дентинные адгезивные системы должны содержать гидрофильные компоненты, способные смачивать поверхность дентина и проникать в дентинные канальцы.
После удаления тканей, пораженных кариесом, образуется “дентинная рана” (обнажение дентинных канальцев, повреждение отростков одонтобластов и т.д.), через которую в пульпу зуба могут проникать токсины, химические реагенты. Поэтому необходимы меры, направленные на герметизацию поверхности дентина.
Вследствие инструментальной обработки дентина на его поверхности образуется т.н. смазанный слой (аморфный слой толщиной примерно 5 мкм), состоящий из неорганических частиц, денатурированных коллагеновых волокон, разрушенных остатков одонтобластов. Этот слой затрудняет диффузию адгезивных систем в поверхностные слои дентина. Предварительное кислотное протравливание поверхности дентина улучшает адгезию с дентинным адгезивом вследствие раскрытия дентинных канальцев, деминерализации поверхностного слоя и (например, при использовании 35-37%-ной фосфорной кислоты) удаления смазанного слоя. Протравливание не оказывает вредного воздействия на пульпу зуба.
Несмотря на различия в технике применения и составах, современные дентинные адгезивные системы объединены тем, что все они основаны на растворах гидрофильных метакрилатов. Наряду с высокой активностью к коллагеновой структуре дентина, они легко полимеризуются в гидрофильной среде зубной ткани. Первые 2 этапа являются подготовительными и способствуют проникновению дентинных адгезивов (за счет гидрофильных частей) в дентинные канальцы и пространства, ранее занятые биологическим апатитом, с последующим инкапсулированием коллагеновых волокон. После полимеризации адгезива образуется тонкий слой вещества, состоящего из адгезивных компонентов и коллагеновых волокон дентина (т.н. гибридный слой). Гибридный слой обеспечивает надежную фиксацию композита к дентину (при последующем пломбировании полости) и является защитным барьером против проникновения микроорганизмов и химических веществ в дентинные канальцы и полость зуба, перекрывает движение жидкости в дентинных канальцах и предупреждает постоперативную чувствительность. Прочность сцепления гибридного слоя с поверхностью дентина очень велика и превышает прочность сцепления природного дентина и эмали. Как правило, в состав современных дентинных адгезивных систем входят компоненты, объединяющие этапы 1 и 2 (самокондиционирующие, самопротравливающие праймеры), этапы 2 и 3 (одноупаковочные препараты) или этапы 1, 2 и 3 (одноступенчатые, одностадийные препараты, самопротравливающие адгезивы)
В настоящее время существует большое разнообразие дентинных адгезивных систем, каждая из которых имеет уникальный химический состав и особенности применения. Но механизмы их адгезии к дентину можно классифицировать по отношению к действию на смазанный слой (т.е. по разному способу формирования гибридного слоя).
В современной стоматологии применяют адгезивные системы нескольких поколений.
Адгезивные системы 4-го поколения содержат 3 компонента: протравливающий агент или кондиционер (для травления эмали и дентина), праймер (смесь гидрофильных мономеров) и адгезив. Предусматривают трехэтапную технику – протравливание (эмали более длительное время, чем дентина) с последующим смывом и подсушиванием, нанесение праймера с высушиванием (попадание праймера на эмаль не влияет на силу адгезии; при протравливании только эмали использование праймера необязательно), нанесение и полимеризация адгезива. Обеспечивают силу адгезии к эмали и дентину около 30 МПа.
Адгезивные системы 5-го поколения – препараты, в которых праймер и адгезив объединены (однокомпонентная система). Предусматривают двухэтапную технику – протравливание (кондиционирование) и нанесение однокомпонентного адгезива. Эти адгезивные системы проще в применении, однако сила адгезии несколько меньше (на 10-30% в лабораторных условиях), чем у 4-го поколения адгезивных систем.
Адгезивные системы 6-го и 7-го поколения – одноэтапные препараты, сочетающие свойства очистителя (кондиционера, протравливающего агента), праймера и адгезива. Пока не получили широкого распространения.
Адгезивные системы различаются также по технике травления зубных тканей. Техника селективного травления подразумевает отдельно травление дентина и эмали (как правило, различными травильными агентами). Полное (тотальное) травление осуществляется одним и тем же травильным агентом, наносимым и на эмаль и на дентин. В составе современных адгезивных систем появились кондиционеры (содержат кислоты пониженной концентрации). Механизм действия кондиционеров идентичен механизму действия протравливающих агентов (содержащих кислоты в большей концентрации). Кондиционеры менее агрессивны и проникают на меньшую глубину в эмаль и дентин, их применяют при низкой сопротивляемости зубных тканей к кариесу.
Адгезивные системы отверждаются тремя способами:
Прокладочные материалы при использовании адгезивных систем применяют только в глубоких кариозных полостях (точечно, в пределах околопульпарного дентина). Лечебная прокладка (на основе гидроксида кальция) обязательно закрывается изолирующей прокладкой, так как компоненты лечебной прокладки нарушают процесс полимеризации.
Принципиальным вопросом в отношении адгезионных систем является цель применения дентинных адгезивов, а именно – прочная фиксация пломбы (реставрации) или герметизация границы пломбы с тканями зуба. Последние исследования показывают, что фиксация пломбы обеспечивается в основном микромеханическим сцеплением с дентином, а также адгезией композита к эмали. Эта точка зрения отводит дентинной адгезии второстепенную роль (значение дентинной адгезии ставится под сомнение), а главным считается обеспечение герметичности границы пломба-дентин, предупреждение микроподтеканий, защита дентина и пульпы.
Типичными представителями адгезивных систем и их компонентов являются следующие.
Этч-райт (Etch-Rite>, Pulpdent). Протравочный гель для дентина, эмали. Содержит фосфорную кислоту (38%), аморфный силикагель.
Гель этчент (Gel Etchant). Протравочный агент, содержит фосфорную кислоту (37,5%).
Прайм Бонд NT (Prime Bond NT). Универсальная (для эмали и дентина) однокомпонентная (праймер и адгезив вместе в одном флаконе) светоотверждаемая адгезивная система. Содержит нанонаполнитель, обеспечивающий повышенную прочность и улучшенную краевую адаптация. При дополнительном смешивании с химическим активатором полимеризации (Self-Cure Activator) получается адгезивная система двойного отверждения (используется для областей, малодоступных для света). Преимущество этой системы – наличие в ее составе комбинации 3-х эластомеров (полимеров, способных к большим обратимым деформациям). Это позволяет слою адгезива растягиваться при деформациях пломбы (реставрации) под повторяющейся жевательной нагрузкой и препятствует разгерметизации соединения композита и зубных тканей.
Оптибонд Соло (Optibond Solo). Универсальная однокомпонентная светоотверждаемая система, в качестве компонента наполнителя (25%) используется бариевое стекло.
Указанные адгезивные системы обеспечивают высокую силу адгезии композитов и компомеров не только к зубным тканям, но и к металлам и керамике.
Запишитесь на прием к лучшим стоматологам Москвы!