ингибирует вирус sars cov 2 что это значит
Кратко о коронавирусе SARS-COV-2 и его мутациях
В последнее время в некоторых странах мира зафиксированы случаи повторного заражения (реинфекции) возбудителем новой коронавирусной инфекции под названием COVID-19.
Также установлено, что если человек заболевает снова, то это, скорее всего, связано со встречей с другим вариантом той же инфекции. Кроме того, известно, что в этом случае заболевание может протекать в тяжелой форме.
ЧТО ТАКОЕ ШТАММ КОРОНАВИРУСА SARS-COV-2?
Геном SARS-CoV-2 представляет собой длинную последовательность РНК, состоящую почти из 30 000 символов (нуклеотидов), которые работают в строгой последовательности. Этот порядок может измениться: если каждая новая копия вируса собрана в одном из этих соединений, может произойти ошибка — замена одного нуклеотида другим — и в результате код всей цепи немного изменится. В каждом новом» хозяине» геном вируса изменяется незначительно.
Эти изменения могут быть очень незначительными, но они позволяют установить связь между инфицированными людьми или следовать по пути, который выбрал вирус. Под словом «племя» ученые подразумевают генетически иную ветвь вируса, которая отличается от своего «отца» одной или несколькими мутациями. Разница может составлять лишь долю процента от общего генома, но каждая новая последовательность РНК может вызвать новую ветвь вируса, то есть новый штамм.
Скорость, с которой происходят генетические изменения, варьируется от вируса к вирусу, и SARS-CoV-2 мутирует относительно медленно. Большинство геномов этого вируса отличаются друг от друга небольшим количеством точечных заменителей, а число отличий от исходного варианта не превышает 30-почти 30 тысяч нуклеотидов.
КАКИЕ ШТАММЫ КОРОНАВИРУСА СУЩЕСТВУЮТ?
Основных штаммов нового коронавируса семь, они начинались с букв GR, G, GH, O, S, L и V. С индексом L — вирус был обнаружен в декабре 2019 года в Ухане, Китай. Но теперь он постепенно исчезает.
Остальные штаммы неравномерно распределены по всему миру: на каждом континенте, как правило, наиболее распространены не более двух основных вариаций.
ЧТО НУЖНО ЗНАТЬ О СТРУКТУРЕ И ДЕЙСТВИИ КОРОНАВИРУСА SARS-COV-2?
Последний импортируется не из Китая, а из других азиатских стран. Эти два штамма были обнаружены в 99% образцов, протестированных в России. На рисунке схематически показано, как проявляет себя коронавирус в отношении человека.
КАК РАЗВИВАЛСЯ КОРОНАВИРУС SARS-COV-2 В РОССИИ?
Общее число мутаций, обнаруженных в секвенированных геномах вируса SARS-CoV-2, составляет многие тысячи, но лишь немногие из них были зарегистрированы и стабильно наследуются.
Сейчас таких единичных мутаций насчитывается около 22, они произошли в январе-марте этого года. Позднее новые племена перестали широко распространяться, т. е. до начала эпидемии в России в геноме вируса стабильно регистрировались три основные группы мутаций, которые, согласно исследованию Роспотребнадзора, формировали «три ветви эволюционного развития».
К концу марта 2020 года развитие этих трех основных направлений и циркулирующих штаммов с мутациями в генах orf1b (P314L) и S (D614G) замедлилось. Эти две мутации были основными долгосрочными изменениями в геноме вируса SARS-CoV-2, подчеркивается в исследовании.
Роспотребнадзор считает, что мутация в гене S связана со снижением патогенности (способности вызывать заболевания, попадающие в организм). Агентство отмечает, что это также связано с улучшением лечения пациентов во время пандемии. Влияние мутации в гене orf1b (P314L) до сих пор плохо изучено.
Вирусы постоянно мутируют, но коронавирусы мутируют гораздо медленнее, чем другие РНК-вирусы. Несмотря на активную циркуляцию по всему миру, SARS-CoV-2 изменился менее чем на 0,1% по сравнению с вирусом, первоначально выделенным в Китае 11 месяцев назад.
Основные изменения были выявлены в первые месяцы размножения, и распространенные в настоящее время варианты вируса аналогичны тем, которые были выделены весной. Штамм S (D614G) в настоящее время является предметом пристального внимания ученых.
Впервые он был обнаружен в Индонезии в августе 2020 года; в то время сообщалось, что этот штамм был в 10 раз более заразным, чем исходный штамм вируса. Некоторые исследования, проведенные в Forerunner (т. е. не рецензируемые и не опубликованные в научных публикациях), заключают, что эта мутация действительно может иметь более высокую инфекционную способность и более высокую вирусную нагрузку при заражении этой разновидностью. Но окончательных решений нет. Вирус быстро замещает S (Спайк) вирион в поверхностном белке, что повышает переносимость (свойство инфекционных заболеваний, венерических организмов — здоровых), но не клиническое течение заболевания, так как другие различия в штаммах вируса минимальны.
Первые варианты вируса двух мутаций, распространенные в России, были обнаружены в конце января 2020 года в Китае, а затем и в Австралии. В феврале 2020 года эти варианты были обнаружены в большинстве западноевропейских стран, Саудовской Аравии, США, Канаде, Мексике, Бразилии, Марокко и Сенегале. Детальное сравнение геномов вирусов в России и за рубежом показывает, что в стране циркулируют штаммы, завезенные из Западной Европы. Они были отправлены в марте и апреле 2020 года.
Коронавирус очень мало мутировал за эти девять месяцев и не изменился в местах, ответственных за проявления эпидемического процесса, за его, скажем так, агрессивность и ожесточенность. Минздрав России считает, что вирус обладает низкой способностью к мутациям — он накапливает всего около двух точечных изменений в месяц, то есть за год может произойти около 24 мутаций. Распространение основных вариантов вируса, циркулирующих в России, в целом аналогично распространению в Европе.
Есть некоторые различия, но у нас нет оснований полагать, что эти различия каким-то образом изменяют клиническое течение или эпидемиологию COVID-19 в России по сравнению с европейскими странами. Роспотребнадзор сообщил, что ежемесячно ученые ФБУН ГНЦ совместно с РИЦ «Вектор» полностью расшифровывают более 150 геномов нового коронавируса. Полученные ими данные будут использованы для анализа актуальности используемых диагностических тест-систем, выявления завозных случаев заболевания и оценки региональных особенностей генетического разнообразия SARS-CoV-2.
Сейчас геномы вирусов секвенируются и собирают данные в различных лабораториях по всему миру, в том числе в российском центре имени Чумакова. Ученые, по ее словам, будут коррелировать геномы вирусов с клинической картиной пациентов, от которых они изолированы, что прольет свет на важность наиболее распространенных мутаций. Она признает, что изучение влияния каждой конкретной мутации на клиническую картину КОВИДА-19 сложно.
Ученые должны изучить важность каждой конкретной мутации для структуры мутировавших белков и определить роль этих мутаций в развитии клинических симптомов и повреждении легких в экспериментах на животных. В настоящее время разрабатываются, анонсируются и регистрируются всё новые вакцины против SARS-CoV-2.
ДОЛЖНЫ ЛИ МЫ БОЯТЬСЯ МУТАЦИЙ?
Важен также вопрос о различном воздействии инфицированных, например, могут ли некоторые штаммы быть более заразными, чем другие. Из заявлений Роспотребнадзора следует, что мутации вируса не так уж плохи. Однако в научной литературе уже сообщалось о нескольких случаях повторной коронавирусной инфекции. Для повторного выявления инфекции ученые каждый раз проверяют генетический состав возбудителя и убеждаются, что штамм вируса отличается от первого, чем вызывает заболевания, — иначе нельзя с уверенностью сказать, что это вторичная инфекция, а не длительный первичный случай. Голландское информационное агентство BNO подсчитывает все повторяющиеся заболевания, когда-либо записанные, и сопровождает их ссылкой на источник.
По данным агентства, во всем мире известно 24 случая повторных инфекций, один из которых был смертельным. 89-летний пациент из Нидерландов скончался от рака. Повторные случаи заражения также произошли в Гонконге, Бельгии, США и Эквадоре. Каждый день в России почти 20 тысяч случаев, некоторые из которых связаны с вирусами, издавна циркулирующими в стране, частично с импортными вариантами, связанными с инфекциями в других странах, часто очень далекими.
Поэтому, конечно, можно импортировать, а затем изолировать вариант вируса, который ранее не был обнаружен в России, как это было недавно в Норвегии. Однако это не означает немедленного изменения эпидемиологической ситуации с Ковид-19.
В октябре 2020 года The Lancet опубликовала исследование, в котором были описаны два случая повторной коронавирусной инфекции. У пациента из американского штата Невада болезнь была более тяжелой после очередной инфекции. 25- летний мужчина должен был попасть в больницу из-за недостатка кислорода, и компьютерная томография показала, что у него вирусная пневмония.
Ученые обнаружили, что он был заражен другим штаммом, генетически отличным от предыдущего возбудителя. Таким образом, более раннее воздействие SARS-CoV-2 не может гарантировать полный иммунитет. Все люди, независимо от того, был ли ранее диагностирован коронавирус или нет, должны принимать те же меры предосторожности.
БУДУТ ЛИ ВАКЦИНЫ ЭФФЕКТИВНЫМИ, ЕСЛИ ВИРУС МУТИРУЕТ?
До сих пор ученые считают, что вакцины, разработанные во всем мире для борьбы с первыми штаммами нового коронавирус, будут столь же эффективны против новых мутаций. Ученые пояснили, что большинство вакцин, разработанных во всем мире, были смоделированы оригинальным штаммом d-вируса, который чаще встречается в последовательностях, опубликованных в начале пандемии.
С тех пор вирус мутировал в штамм G, вариации которого в настоящее время доминируют в мире. Исследователи были обеспокоены тем, что эта мутация негативно повлияет на эффективность разработанных вакцин. Несмотря на мутацию d614g в белке, эксперименты и моделирование подтвердили, что вакцины остаются эффективными.
Наиболее распространенный штамм G, вероятно, не требует частого выбора новых вакцин, в отличие от гриппа, который требует разработки вакцин против циркулирующих штаммов каждый год. Поскольку различия в штаммах, циркулирующих в России, минимальные, они, вероятно, существенно не влияют на структуру вирусных белков.
Таким образом, созданные и применяемые вакцины от COVID-19, не нужно воспроизводить каждый год.
Составили: канд. мед. наук, доцент Гуменюк С.А., врач-оториноларинголог Байчорова О.Х. , 2021 год
Новые ущербы от инфекции SARS-CoV-2 за пределами дыхательной системы
Автор
Редакторы
Статья на конкурс «Био/Мол/Текст»: Все мы помним, как с начала декабря 2019 года в китайском городе Ухань был выявлен ряд случаев пневмонии, связанных с коронавирусной инфекцией COVID-19 c серьезными симптомами, такими как респираторные проблемы (кашель, одышка, поражение легких) и лихорадка. Но вы когда-нибудь задумывались о том, что же происходит с остальными органами нашего тела? Так давайте разберём, как крошечный вирус может поражать не только дыхательную систему, но и вызвать повреждение других систем человеческого организма.
Конкурс «Био/Мол/Текст»-2020/2021
Эта работа опубликована в номинации «Школьная» конкурса «Био/Мол/Текст»-2020/2021.
Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.
Партнеры номинации — медико-биологическая школа «Вита» и «Новая школа».
Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Введение
Согласно исследованиям немецких ученых, SARS-CoV-2 проникает внутрь организма с помощью клеточного рецептора — ангиотензинпревращающего фермента 2 (АПФ2; ACE2 — англ.), который специфически синтезируется в определенных органах и тканях. Соответственно, ACE2 играет важную роль в регуляции сердечно-сосудистой, кишечной, почечной и репродуктивной функций [1]. Попав в систему кровообращения, коронавирус, вероятнее всего, распространяется через кровоток [2]. Следуя этим данным, мы можем понять, как SARS-CoV-2 заражает не только дыхательную систему, но и представляет потенциальную угрозу для пищеварительной и мочеполовой систем, ЦНС и системы кровообращения.
Рисунок 1. Поражения органов, подтвержденные клиническими признаками или биопсией, у пациентов с COVID-19
Рисунок 2. Механизм вторжения SARS-CoV-2 в клетку
SARS-CoV-2 и пищеварительная система
Помимо главного рецептора ACE2, SARS-CoV-2 использует трансмембранную сериновую протеазу 2 (TMRPSS2), фермент, который также экспонируется на эпителиальных клетках тонкой кишки. Он способствует проникновению вируса в клетки [3]. Активность SARS-CoV-2 может вызывать модификации ACE2 в кишечнике, которые повышают восприимчивость к воспалению кишечника и диарее. ACE2 оказывает значительное влияние на состав кишечной микробиоты [4]. Первичные воспалительные стимулы вызывают высвобождение в систему кровообращения микробных продуктов и цитокинов, которые могут вызвать микробный дисбиоз и воспалительную реакцию.
Изменения микробиоты кишечника могут быть связаны с изменениями в иммунной системе и предрасположенностью к более серьезным последствиям COVID-19. Наш микробиом меняется с возрастом: в первые несколько лет жизни микробиота малоразнообразна и нестабильна [5], [6]; во взрослом возрасте стабильна и разнообразна, а к пожилому возрасту разнообразие микробиоты уменьшается, а дисбиоз увеличивается, что связывают с когнитивным дефицитом, депрессией и воспалением [7]. Сниженное разнообразие микробиоты — еще один фактор риска заражения COVID-19 для пожилых людей.
Рисунок 3. Инфекция SARS-CoV-2 и ее связи с осью легких—кишечника—мозга и дисбиозом микробиома
Изменение кишечной флоры также связано с ожирением, еще одним фактором риска для тяжелого течения COVID-19 [8], [9]. Жировая ткань может служить резервуаром для распространения SARS-CoV-2 и активации системного иммунитета [10]. Коронавирусная инфекция вызывает изменения в кишечной бактериальной флоре, которые могут повлиять на ось «кишечник—мозг». Таким образом, кишечная флора играет решающую роль в регуляции неврологических функций, таких как депрессия или тревога [11].
Следовательно, режим питания играет значительную роль во время заражения вирусом SARS-CoV-2. Из-за вирусной инфекции иногда начинается дисбиоз, который может быть скомпенсирован компонентами диеты и пробиотиками [12]. Несколько исследований показывают, что оптимальный иммунный ответ зависит от правильного питания [13], [14]. Недоедание может поставить под угрозу иммунитет, тем самым влияя на уязвимость ответа на COVID-19. Потребление достаточного количества белка имеет решающее значение для выработки антител, поддержания ворсинчатой морфологии кишечника и уровня кишечного иммуноглобулина, что улучшает кишечный барьер [15–17]. Таким образом, высококачественные белки являются важным компонентом противовоспалительной диеты, которая включает омега-3 жирные кислоты, витамины С и Е, фитохимические вещества, которые широко присутствуют в продуктах растительного происхождения (фруктах, овощах, орехах, злаках и т.д.) [18–21]. Правильная диета укрепляет иммунную систему и способствует защите организма от тяжелого течения COVID-19.
SARS-CoV-2 и центральная нервная система (ЦНС)
Кроме пищеварительной системы, коронавирусная инфекция (COVID-19) также затрагивает центральную и периферическую нервную систему. Неврологические проявления могут возникать по разным причинам, включая прямое вирусное поражение центральной нервной системы (ЦНС) и иммунноопосредованные процессы. Примеры заболеваний ЦНС при COVID-19 могут включать энцефалит (воспаление головного мозга), менингит и инсульт. В периферической нервной системе COVID-19 ассоциируется с дисфункцией обоняния и вкуса, повреждением мышц и синдромом Гийена—Барре, при котором иммунная система человека поражает собственные периферические нервы.
Рисунок 4. Коронавирусная инфекция и нервная система
Ученые Университета Гонконга отметили, что механизмы инфекции SARS-CoV-2 могут быть аналогичны механизмам инфекции SARS-CoV из-за 79,5% сходства последовательностей РНК этих двух коронавирусов [22]. Однако SARS-CoV-2 обладает более мощной способностью к распространению, чем SARS-CoV и MERS-CoV. Причина в том, что SARS-CoV-2 и ACE2 обладают более сильной связывающей способностью [23]. S-белок (спайк-белок) на поверхности коронавируса связывается с ACE2 и прикрепляется к поверхности клетки; затем сериновая протеаза (TMPRSS2) активирует S-белок, что помогает вирусу проникать в нейрон [1]. Так как клетки кровеносных сосудов экспонируют ACE2 в большом количестве, SARS-CoV-2 может атаковать эндотелиальные клетки в кровеносных сосудах головного мозга через этот рецептор и нарушить гематоэнцефалический барьер (ГЭБ — барьер между кровеносной системой и центральной нервной системой). Нарушенный ГЭБ может способствовать вторжению вируса в ткани мозга и нейроны и привести к серьезным неврологическим осложнениям [24].
SARS-CoV-2 и система кровообращения
Помимо дыхательных путей, SARS-CoV-2 поражает сердечно-сосудистую систему. Это приводит к высвобождению высокочувствительных сердечных тропонинов (hs-cTnl) — белков, содержащихся в сердце и скелетных мышцах человека. В процессе заражения мембраносвязанный белок ACE2 может расщепляться трансмембранным дезинтегрином ADAM17, высвобождая ACE2 в кровоток. Таким образом, вирус циркулирует в крови зараженного организма. Воспаление сосудистой системы и миокарда может привести к миокардиту, сердечной недостаточности и быстрому ухудшению состояния больного [25].
Рисунок 5. Сердечно-сосудистое поражение при COVID-19
SARS-CoV-2 и мочеполовая система
Инфекция репродуктивной системы требует большего внимания, потому что она не только влияет на нынешнее поколение, но также может распространяться на потомство через поврежденные гаметы. На сегодняшний день несколько исследований подтвердили влияние SARS-CoV-2 как на мужскую, так и на женскую репродуктивную систему [26], [27]. В настоящее время хорошо известен факт, что мужчины более восприимчивы к инфекции SARS-CoV-2 и у них выше уровень смертности, чем у женщин. Это объясняется тем, что клетки семенного протока и сперматогонии синтезируют много ACE2 [28–30].
По мнению ученых, SARS-CoV-2 нарушает репродуктивные функции мужчин через несколько механизмов, таких как воспалительные реакции, окислительный стресс и апоптоз [31–33]. Инфекция SARS-CoV-2 приводит к перепроизводству активных форм кислорода, которые могут усиливать внутриклеточные сигнальные пути (NF-κB-TLR). Это приводит к высвобождению цитокинов, что еще больше усиливает воспалительный ответ. К примеру, орхит, вызванный инфекцией SARS-CoV-2, может привести к окислительному стрессу в тканях яичка. Окислительный стресс может вызвать внутриклеточное окислительное повреждение сперматозоидов, что приводит к ухудшению их качества и мужскому бесплодию.
Рисунок 6. Инфекция SARS-CoV-2 и репродуктивная система
Рецепторы ACE2 были также обнаружены в женских яичниках [34], [35]. Можно предположить, что SARS-CoV-2 поражает ткань яичников и клетки гранулезы и таким образом ухудшает функцию яичников и жизнеспособность ооцитов, что может привести к бесплодию или невынашиванию [33]. Недавно ученые (Виванти и др.) сообщили о трансплацентарной передаче вируса от матери, инфицированной COVID-19, новорожденному. Мать была инфицирована в последнем триместре беременности, и гены SARS-CoV-2 были обнаружены в ткани плаценты. Согласно этому отчету, трансплацентарная передача может привести к воспалению плаценты [36]. Однако стоит отметить, что плацента имеет плацентарный барьер, который не смешивает кровь матери и плода, тем самым защищая плод от всех видов материнской инфекции. Невосприимчивые клетки плаценты обладают противовирусными свойствами, которые дополнительно предотвращают проникновение SARS-CoV-2 в клетки ребенка [37].
Вывод
Прочитав эту статью, мы с вами узнали, как вирус поражает не только дыхательную систему, но и другие системы человека. Это осложняет потенциальные клинические проявления и затрудняет лечение случаев COVID-19. Однако биомедицинские исследования могут помочь нам больше узнать о способностях нового коронавируса и о том, как с ним бороться, чтобы определить важные ориентиры для дальнейших исследований, диагностики и лечения. Также стоит всегда помнить, что соблюдая правильную диету и карантинные меры, мы снижаем риски заражения и ухудшения состояния здоровья во время COVID-19. Ведь вирус не всегда может вызвать вышеуказанные осложнения, если мы будем правильно заботиться о своем здоровье.
Ангиотензинпревращающий фермент 2. Подходы к патогенетической терапии COVID-19
Полный текст:
Аннотация
Возбудителем коронавирусной инфекции, которая привела к пандемии в 2020 г., является вирус SARSCoV-2. Он относится к β-коронавирусам и имеет высокое генетическое сходство с вирусом SARS-CoV, вызвавшим вспышку тяжелого острого респираторного синдрома в 2002–2003 гг. Анализ межмолекулярных взаимодействий показывает, что SARS-CoV-2 более вирулентен вследствие снижения свободной энергии при связывании с ангиотензинпревращающим ферментом 2 (АСЕ2), который является транспортером для вируса в клетку-хозяина. В связи с широким распространением коронавирусной инфекции по всему миру остро встает вопрос о подробном изучении ключевого звена патогенеза заболевания — АСЕ2. Детальное изучение фермента, который является рецептором на поверхности различных тканей и в норме осуществляет превращение ангиотензина II в ангиотензин (1–7), привело к неоднозначным выводам. Будучи нетканеспецифичным, рецептор широко распространен в сердце, почках, тонкой кишке, яичках, щитовидной железе, жировой ткани. Помимо прямой барорегулирующей функции он подавляет воспаление, главным образом в легочной ткани, участвует в транспорте аминокислот и поддерживает жизнедеятельность микробиома кишечника. Ввиду существенных положительных функций становится очевидной неоднозначность АСЕ2, в том числе при коронавирусной инфекции. Перспективным терапевтическим направлением при коронавирусной инфекции может оказаться влияние на ренин-ангиотензиновую систему. Предварительные данные о применении ингибиторов АСЕ2, препаратов, содержащих данный рецептор в циркуляторной форме, и блокаторов ангиотензинового рецептора II свидетельствуют об их эффективности и, как следствие, улучшении состояния и прогнозов для пациентов с коронавирусной инфекцией.
В обзоре представлена информация о распространении ACE2 в различных тканях человека, его взаимодействии с SARS-CoV-2, дано теоретическое обоснование практического применения препаратов, связанных с метаболическим путем ACE2, для лечения и ограничения распространения коронавирусной инфекции.
Ключевые слова
Введение
В декабре 2019 г. в Китае произошла вспышка острой респираторной инфекции с такими клиническими проявлениями, как лихорадка, сухой кашель, одышка и пневмония [1]. Возбудителем является новый коронавирус, принадлежащий к β-коронавирусам и имеющий схожие характеристики с вирусом, вызывающим тяжелый острый респираторный синдром (SARS), который являлся пандемичным штаммом в 2002-2003 гг. Новый вирус получил название коронавирус-2 (SARS-CoV-2), а болезнь была названа коронавирусной инфекцией 2019 года (COVID-19). Смертность от COVID-19 повышается в группах пожилых людей (старше 70 лет) и лиц с хроническими заболеваниями (гипертензией, сахарным диабетом, сердечно-сосудистыми нарушениями). Два из вышеперечисленных заболеваний тесно связаны с приемом лекарств, которые действуют в качестве ингибитора рецептора ангиотензинпре- вращающего фермента (ACE). Они применяются для блокировки ангиотензинового рецептора и, как следствие, снижения артериального давления.
Ученые тщательно исследуют патофизиологические механизмы COVID-19, взаимодействие вируса с легкими и сердцем человека. Согласно нескольким источникам, ACE2, расположенный на альвеолярных эпителиальных клетках, служит котранспортером для SARS-CoV-2 в клетки легких человека. Таким образом, ACE2 является ключом для понимания механизма развития COVID-19.
В данном обзоре представлена информация о распространении ACE2 в различных тканях человека, его взаимодействии с SARS-CoV-2, дано теоретическое обоснование практического применения препаратов, связанных с метаболическим путем ACE2, для лечения и ограничения распространения COVID-19.
Роль ACE2 в патогенезе COVID-19
SARS-CoV-2
Для проникновения в клетку хозяина и обеспечения слияния мембраны вируса с мембраной клетки хозяина во время инфицирования SARS-CoV-2 использует поверхностный спайковый гликопротеин (S). S-гликопротеин является тримерным белком. Он играет ключевую роль в обеспечении выживаемости коронавирусов, т.к. не только выступает в качестве важной функциональной части вириона, но и всецело обеспечивает присоединение и слияние с мембранами клетки-хозяина. Кроме того, S-белок, являющийся самым крупным поверхностным белком коронавирусов, определяет растворимость вирусных частиц и, как следствие, контагиозность SARS-CoV-2.
S-белок имеет два важных участка — S1 и S2: S1 связывается с рецептором на поверхности клетки хозяина, а S2 обеспечивает слияние мембран [4]. В S1-участке имеется N-концевой (NTD) и С-кон- цевые домены (CTD1, CTD2 и cTd3). У вируса SARS-CoV на CTD1 располагается рецепторсвязы- вающий домен (RBD).
Коронавирус SARS-CoV-2 проявляет высокую степень гомологичности к SARS-CoV [5]. Он проникает в клетку-хозяина с помощью взаимодействия между S-белком вируса и ACE2 человека. Однако молекулярный механизм данной связи, как и эволюция SARS-CoV-2, остаются не до конца изученными.
Было доказано, что S-гликопротеин SARS- CoV-2 обладает меньшей свободной энергией по сравнению с SARS-CoV [5]. Данное наблюдение подчеркивает, что SARS-CoV-2 является более стабильным и меньше подвержен разрушению при повышенных температурах — следовательно, SARS- CoV-2 имеет более высокую персистирующую способность, чем SARS-CoV при такой же температуре.
На S-белке у коронавирусов расположен RBD — крайне важный для жизнедеятельности вируса домен, обеспечивающий инфицирование. Интересно, что свободная энергия RBD у SARS-CoV-2 оказалась ниже, чем у SARS-CoV, как и его энергия сольватации. Дело в том, что для связи RBD с ACE2 он должен отсоединиться от S-гликопротеина и раствориться в воде. Другими словами, SARS-CoV-2 становится более растворимым, и в этом случае взаимодействие с ACE2 происходит гораздо легче.
Снижение свободной энергии S-гликопротеина и энергии сольватации RBD у SARS-CoV-2 может быть следствием эволюции вируса или адаптации к организму хозяина, поскольку обычно природным резервуаром для SARS-подобных коронавирусов являются летучие мыши, у которых температура тела в норме выше, чем у людей [6].
Говоря о RBD SARS-CoV-2, необходимо упомянуть еще одну важную особенность — он более гибкий, чем аналогичный участок вируса SARS- CoV. Иными словами, для связи с ACE2 он должен преодолеть большую энтропию, а значит, при повышении температуры комплекс RBD-ACE2 становится нестабильным. Эта деталь позволяет надеяться на снижение темпов роста пандемии при наступлении жаркой погоды.
При сравнении комплексов, которые образуют анализируемые вирусы с ACE2, выяснилось, что SARS-CoV-2 связывается с ферментом с более высокой аффинностью. Мутационные адаптивные изменения в SARS-CoV-2 относительно SARS- CoV могут служить разгадкой высокой контагиозной способности и широкого распространения COVID-19.
Строение и функции ACE2
Человеческая карбоксипептидаза ACE2 кодируется геном ACE2, расположенным на 22-й хромосоме [7]. ACE2 представляет собой трансмембранный белок I типа, имеющий внеклеточный N-гликозилированный N-концевой участок, на котором находится карбоксипептидазный сайт, а также короткий внутриклеточный С-концевой цитоплазматический хвост [8]. N-концевой пептидазный домен является местом связи ACE2 с SARS-CoV. Также выделяют две формы белка ACE2: клеточную (связанную с мембраной) и циркулирующую (растворимую). Клеточная форма — это полноценный белок, синтезируемый в больших количествах пневмоцитами или энтероцитами тонкой кишки.
Циркулирующая форма (у нее сохраняется N-концевой пептидазный участок) возникает после расщепления клеточной формы ACE2 металлопротеазой ADAM17, после чего она попадает в межклеточное пространство [8]. Напротив, взаимодействие ACE2 с трансмембранной сериновой протеазой II типа TMPRSS2 обеспечивает вхождение SARS- CoV-2 в клетки — мишени легочной ткани и тонкой кишки. TMPRSS2-путь расщепления может ингибировать ADAMH-путь. TMPRSS2 связывается с ADAM17 для диссоциации комплекса ADAM17- ACE2. Как ADAM17, так и TMPRSS2 отщепляют от ACE2 небольшой С-концевой фрагмент. Именно это служит началом проникновения вируса SARS- CoV в клетку.
Несмотря на схожесть генов ACE и ACE2, белки ACE и ACE2 выполняют различные функции в организме человека. Так, ACE отщепляет от субстрата по одной аминокислоте, действуя как карбоксипептидаза, в то время как ACE2 гидролизует связь между белковым остовом и дипептидом с С-конца субстрата. ACE и ACE2 являются незаменимыми компонентами ренин-ангиотензиновой системы (RAS), задачи которой — поддержание гомеостаза сердечно-сосудистой системы и функционирования различных органов, регуляция систолического давления, осмотического и электролитного баланса.
Ангиотензиноген синтезируется в печени, после чего преобразуется ренином в ангиотензин I (AngI), а затем при участии ACE — в AngII. AngII — это ключевое звено RAS, он связывается с ангиотензиновым рецептором I типа (AT1R). Это взаимодействие приводит к сокращению гладкой мускулатуры бронхов, пролиферации фибробластов в легких, апоптозу альвеолярных эпителиальных клеток, повышению проницаемости сосудов в легочной ткани, а также к острому респираторному дистресс-синдрому [9]. Тем временем ACE2 выступает в качестве контррегулятора активности комплекса ACE-AngII-AT1R, он гидролизует AngII в Angl-7, который, взаимодействуя через Mas-рецептор, вызывает вазодилатацию, снижение артериального давления и индукцию апоптоза. Схожая защитная функция наблюдается при связывании AngII с рецептором AT2R. Кроме того, ACE2 может взаимодействовать с AngI, превращая его в Ang1-9, из которого возможен переход в Ang1-7 при участии ACE. Также, выступая в качестве партнера для транспортера аминокислот B0AT1, ACE2 принимает участие в абсорбции нейтрально заряженных аминокислот в кишечнике [9].
ACE2 в больших количествах экспрессируется в альвеолярных эпителиальных клетках I и II типов, эндотелиальных клетках сосудов, гладкомышечных клетках легочной ткани [10]. Коронавирус может проникать в организм человека различными способами. Самым распространенным считается аэрогенный механизм передачи, при котором у заболевшего человека появляются симптомы тяжелой пневмонии. Однако было установлено, что ACE2 содержится в больших количествах в тонкой кишке, яичках, почках, сердце, щитовидной железе, жировой ткани. В меньшей концентрации его обнаруживают в печени, толстом кишечнике, мочевом пузыре и надпочечниках.
Структурное моделирование показало, что комплекс ACE2-B0AT1 может связываться с S-белком вируса SARS-CoV-2. Таким образом, SARS-CoV-2 может проникать в организм человека через другие ткани и органы, минуя респираторный тракт [11]. Об этом свидетельствуют недавние исследования, показывающие наличие SARS-CoV-2 в стуле зараженных пациентов, а также развитие заболевания без пневмонии или с добавочными симптомами, не связанными с респираторным трактом. В данном случае у больных наблюдаются симптомы заражения желудочно-кишечного тракта: диарея, тошнота, рвота, а также спутанность сознания, головная боль и инфекционные поражения сердца [12][13][14].
Наличие ACE2 в яичках и тестикулярных сосудах указывает на большую восприимчивость к COVID-19 у мужчин. Гендерных, возрастных или расовых различий в концентрации ACE2 в тканях организма человека не выявлено, тем не менее риск смертности повышается для мужчин по сравнению с женщинами и для пожилых людей относительно более молодого поколения. Это связано с возрастными и функциональными особенностями механизмов врожденного и адаптивного иммунитета, способностью SARS-CoV-2 вызывать цитокиновый шторм, который приводит к иммунопатологическим нарушениям у пациентов с коронавирусной инфекцией. Различное количество клеток иммунной системы в легочной ткани способно по-разному противостоять инфекции и аутоповреждению. Установлено, что у женщин (рассматривая гендерные группы) и у людей молодого возраста (рассматривая две возрастные группы до и после 49 лет) те клетки легочной ткани, которые экспрессировали ACE2 в большем количестве, легче инфицировались вирусом SARS-CoV, при этом клеток иммунной системы в данном случае обнаруживалось меньше, чем в аналогичных тканях со средней экспрессией ACE2. Для пожилых лиц и лиц мужского пола характерна обратная зависимость — при высокой экспрессии ACE2 наблюдается рост числа иммунных клеток в легочной ткани. Это означает, что при инфицировании SARS-CoV и SARS-CoV-2 у этих людей с большей вероятностью будут наблюдаться аутоагрессия и цитокиновый шторм, что существенно отягощает течение болезни.
АСЕ2 и коронавирусная инфекция
COVID-19 представляет собой заболевание, поражающее нижние дыхательные пути [15]. При вскрытии трупов людей, болевших COVID-19, обнаружены массивные поражения легких с фиброзными и экссудативными изменениями. При этом мокрота и экссудат заполняли нижние дыхательные пути и альвеолы. По сравнению с воздействием SARS-CoV, при SARS-CoV-2 экссудативных поражений наблюдается больше, но фиброз протекает в более легкой форме. Наличие у трупов сегментальной дилатации и стеноза тонкой кишки подчеркивает развитие инфекционного процесса в данном органе. Поражений иных органов и тканей не выявлено. Исследование, проведенное с другими заболевшими [12], указывает на присутствие у них билатерального диффузного поражения альвеол с фибромукоидным экссудатом, десквамацией пневмоцитов и формированием гиалиновой мембраны в легких.
Если иммунная система не в состоянии справиться с SARS-CoV-2, то вирус активно реплицируется с использованием внутриклеточного ACE2 и затем при выходе во внеклеточное пространство разрушает клетку-хозяина. Как следствие, метаболический путь ангиотензина не ингибируется. Это обстоятельство только усугубляет инфекционный процесс и развитие воспаления, а цитокиновый шторм нарушает функционирование не только респираторного тракта, но и сердечно-сосудистой и иных систем органов. Для людей с такими хроническими заболеваниями, как артериальная гипертензия, ишемическая болезнь сердца и сахарный диабет, крайне опасно инфицирование SARS- CoV-2 — при этих заболеваниях метаболический путь ангиотензина является избыточным, а приобретение коронавирусной инфекции серьезно усугубляет течение сопутствующих заболеваний и с большей вероятностью может привести к тяжелым состояниям и даже к смерти.
ACE2 играет значимую роль во многих патологических и физиологических состояниях. Установлено, что мыши, зараженные вирусом SARS-CoV, испытывают недостаток ACE2, у них повышается уровень AngII и развиваются тяжелые заболевания органов дыхания [16]. Отсутствие ACE2, обеспечивающего протективную функцию, ведет к дисфункции RAS и острым патологическим респираторным состояниям. Интересно, что защитная функция ACE2 при острых поражениях легких наблюдается не только при инфицировании коронавирусом. У лабораторных мышей, имеющих массивный отек легких, тяжелейшую гипоксию, гиалиноз и воспалительные клеточные инфильтраты, при введении рекомбинантного ACE2 наблюдалось восстановление легочной ткани. Также ACE2 защищает от избыточного воспаления при заражении птичьим гриппом. При данном состоянии тяжесть заболевания, его прогрессирование и летальность находятся в прямой зависимости от уровня AngII в плазме крови.
Наличие ACE2 в нереспираторных органах оказывает положительный эффект на функционирование данных тканей. У лабораторных мышей с эндогенной недостаточностью ACE2 наблюдаются тяжелые поражения сердца — снижение сократительной способности за счет незначительной вентрикулярной дилатации и истончения стенки левого желудочка [9].
Концентрация ACE2 может увеличиваться после ишемического инсульта. Это компенсаторная реакция, направленная на устранение избытка Ang1-7 и обеспечение защитных эффектов путем уравновешивания AngII.
ACE2 участвует в патологических процессах почечной ткани, хотя точный механизм еще не установлен. У мышей с недостаточностью ACE2 развиваются гломерулосклероз и альбуминурия [17]. Снижение концентрации ACE2 вызывает дисбаланс AngII, который участвует в почечном воспалении и фиброзе, объясняя, по крайней мере частично, прогрессирующее поражение почек.
Важной непептидазной функцией ACE2 является участие в транспорте аминокислот через стенку тонкого кишечника. Одной из таких аминокислот является триптофан, регулирующий секрецию антимикробных пептидов, которые влияют на состав кишечного микробиома. Это объясняет наличие колита у мышей с недостаточностью ACE2, у которых происходит нарушение транспорта триптофана и его недостаток ведет к дисбактериозу и воспалению.
Несмотря на проведение интенсивной терапии, смертность от COVID-19 по-прежнему остается на высоком уровне. Изобретение вакцины — к сожалению, крайне трудоемкий и длительный процесс. Кроме того, SARS-CoV-2 мутирует в каждом репликационном цикле. Это существенно осложняет разработку вакцины, а при определенном исходе и вовсе может сделать ее бесполезной. Лекарственные препараты, направленные на регулирование дисбаланса RAS, теоретически можно использовать в иных целях. Например, для блокирования сайта связывания SARS-CoV-2 с ACE2 возможно применение растворимой формы ACE2, которая, связываясь с RBD вируса, будет ингибировать его проникновение в клетку. Кроме того, ACE2 уменьшит развитие патологических изменений, участвуя в различных протективных метаболических путях.
Сериновая протеаза TMPRSS2 играет ключевую роль в клеточном проникновении SARS-CoV-2 и дисфункции ACE2, поэтому блокировка данного фермента может служить для предотвращения тяжелых критических осложнений COVID-19. Установлено, что ингибитор TMPRSS2 камостат мези- лат частично блокирует TMPRSS2-ACE2-опосредованный вход SARS-CoV-2 в клетку [18]. В то же время нафамостат мезилат, являющийся ингибитором мембранного слияния мембран клетки-хозяина и SARS-CoV-2, показывает десятикратную эффективность относительно камостатат мезилата. Оба препарата обладают доказанной безопасностью для клинического применения, поэтому могут использоваться для лечения COVID-19 в медицинских организациях. Нафамостат мезилат имеет еще одно свойство — он блокирует протеолиз фибриногена и его переход в фибрин. При коронавирусной инфекции наблюдается увеличение в сыворотке крови уровня D-димера — продукта деградации фибрина, а его концентрация более 1 мг/мл ассоциирована с высоким риском смерти пациентов с COVID-19. Таким образом, нафамостат мезилат потенциально является препаратом двойного действия — он не только блокирует вхождение вируса SARS-CoV-2 в клетку, но и предотвращает тромбоз и синдром диссеминированного внутрисосудистого свертывания. В Японии в марте 2020 г. начались клинические испытания данного препарата для лечения коронавирусной инфекции.
Ингибиторы ACE, блокаторы рецептора AngII, агонисты Mas, возможно, позволят скорректировать нарушения RAS. Блокаторы рецептора AngII приобретают доверие благодаря доказанной функции облегчения симптомов поражения легочной ткани под действием SARS и вируса птичьего гриппа. Ожидается, что блокирование рецепторов Ang — более надежный способ, чем применение ингибиторов ACE, т.к. AngII может синтезироваться различными ферментами. Важно отметить, что препараты с указанным действием терапевтически безопасны и часто применяются. Парадоксально, но, исходя из клинических данных [19], увеличение экспрессии ACE на фоне приема этих лекарственных препаратов не приводит к возрастанию вирулентности SARS- CoV-2. Исследования вируса иммунодефицита человека (HIV) показали, что повышенная экспрессия HIV-связывающих сайтов CCR5 и CD4 защищает пациентов от вирулентности вируса. HIV избегает суперинфекции во время процесса попадания в клетку посредством уменьшения количества CCR5. Данное снижение способствует эффективной репликации вируса и, как следствие, влияет на патогенетические механизмы синдрома приобретенного иммунодефицита. Остается неясным, применима ли данная концепция для SARS-CoV-2, однако, если коронавирус использует такой же механизм, применение блокаторов рецептора AngII и ACEI вполне обоснованно.
Заключение
Важные мутационные изменения в геноме вируса SARS-CoV привели к появлению более сильного вида SARS-CoV-2 и развитию пандемии в 2020 г. АСЕ2, с одной стороны, играет ключевую роль в проникновении вируса в клетку-хозяина, а с другой стороны, защищает организм человека от тяжелых поражений внутренних органов при коронавирусной инфекции. Разработка вакцины против вируса, который претерпевает множество мутаций, остается длительным и трудоемким процессом. Зная роль АСЕ2 в RAS, становится возможным применение лекарственных средств, воздействующих на данный метаболический путь, для лечения COVID-19.