испытания на мкк что это
Межкристаллитная коррозия – опасная и невидимая
Межкристаллитная коррозия (МКК) считается одним из наиболее опасных вариантов разрушения металла из-за того, что в большинстве случаев ее невозможно определить визуально.
1 Ключевые особенности МКК – механизм и факторы развития
Под описываемым типом коррозии понимают разрушения металлов, наблюдаемые, как правило, вдоль границ кристаллов (иначе их называют зернами). Это приводит к тому, что материал теряет свои прочностные возможности и пластичность. МКК является разновидностью местной коррозии. Обычно она негативно воздействует на сплавы и металлы, склонные к пассивности. К таковым относят нержавеющие стали (хромистые и хромоникелевые), композиции на основе никеля, алюминия.
Межкристаллитная коррозия обусловлена расслаиванием твердого раствора, что приводит к появлению по границам зерен особых фаз, в которых имеется чрезмерное количество того или иного элемента металлического сплава. При этом в зонах, прилегающих к границам кристаллов, объем такого элемента получается минимальным. Под влиянием определенной среды с агрессивными характеристиками на анодах отмечается растворение обедненных либо обогащенных участков.
По сути, МКК, как видно из описания ее механизма, является электрохимической реакцией, приводящей к быстрому разрушению металлических конструкций и изделий. Чаще всего подобное наблюдается в сплавах с большим содержанием хрома. В средах с высоким показателем окисленности описываемая нами коррозия обуславливается тем, что насыщенные фазы растворяются по избирательному принципу. В ситуациях, когда в фазах есть легирующие добавки (медь, ванадий, молибден, марганец, вольфрам), процесс растворения ускоряется.
Основные факторы МКК следующие:
Межкристаллитное разрушение может иметь различную скорость. Она зависит от того, каким конкретно потенциалом располагает металл. Обычно ускорение протекания МКК фиксируется при далее указанных величинах: 0,35 В (потенциал так называемого активно-пассивного перемещения); от 1,15 до 1,25 В (транспассивная зона).
2 Частные случаи межкристаллитного разрушения
МКК сильно подвержены дюралюминиевые сплавы. Механизм их разрушения следующий. На границах кристаллов происходит выпадение CuAl2 – соединения интерметаллического типа. Оно разрушается, при этом наблюдается выделение водорода. На данном интерметаллиде нет предохраняющей пленки (из-за отсутствия в растворе окисляющего вещества), поэтому он растворяется достаточно быстро.
В большинстве случаев межкристаллитная коррозия дюралюминиевых изделий отмечается на участках, где имеются микроскопические поры и небольшие трещины. Реже разрушения начинаются в питтингах. Они образуются между границами кристаллов. В этом случае развитию коррозии способствует то, что внутри питтинга отмечается некоторое подкисление электролита. По указанным причинам дюралюминиевые изделия (как и многие иные сплавы на основе алюминия) желательно защищать от разрушения посредством уплотнения их структуры.
Часто встречающейся разновидностью МКК является ножевая коррозия. Она отмечается на сварных соединениях. Ножевое разрушение считается локальным, оно протекает между швом и основным металлом. В большинстве случаев такому разрушению подвергаются сварные соединения: сплавов с высоким содержанием молибдена; металлических композиций, в которые добавлен титан; хромоникелевых высокоуглеродистых сталей.
При сварке таких сплавов происходит взаимодействие холодного и нагретого до 1300° металла. Карбиды титана либо хрома при этом растворяются в расплаве. Когда последний охлаждается, новых карбидов не образуется, в твердой фазе остается углерод, наблюдается выпадение карбидов хрома (в очень больших количествах). Если атмосфера, в которой происходят подобные процессы, является агрессивной, на узком участке сварного соединения на межкристаллитном уровне отмечается растворение (постепенное) элементов, входящих в сплав.
Ножевые разрушения можно предупредить такими методами:
3 Испытания на МКК – что оговорено Госстандартом?
Стойкость к МКК аустенитно-ферритных, аустенитных, аустенитно-мартенситных, ферритных и прочих коррозионностойких сталей, а также наплавленного металла и сварных соединений указанных сплавов определяется по ГОСТ 6032. На территории стран СНГ он действует с 2005 года.
В соответствии с этим стандартом существуют следующие методы испытаний на межкристаллитную коррозию:
Кроме того, в некоторых случаях проводятся испытания в композиции, состоящей из цинкового порошка и серной кислоты. Также применяется методика травления (анодного) металлов в серной ингибированной кислоте. Далее мы рассмотрим все эти методики подробнее. Но сначала поговорим о том, как следует подготавливать образцы для проведения испытаний на стойкость к МКК. Заготовки для них вырезают из:
Заготовки должны иметь такие геометрические параметры, которые дают возможность подготовить нужное по условиям испытаний число образцов. Последние могут быть плоскими, кольцеобразными, сегментными, в виде патрубков, цилиндрическими. Образцы по ГОСТ делают из плакирующего слоя, но только после того, как с изделия полностью удаляется переходный и основной слои.
Нестабилизированные сплавы, в которых углерода имеется максимум 0,03 %, композиции с ниобием и титаном в качестве добавок, а также стабилизированные стали должны испытываться на заготовках, прошедших процедуру предварительного прогрева (профессионалы называют его провоцирующим). Конкретную методику испытаний выбирают по разным показателям. Обычно учитывается эксплуатационное назначение сплава и его химсостав.
4 АМУ и АМУФ – самые популярные методы
Межкристаллитная коррозия чаще всего поражает такие сплавы: 03Х17Н14М3, 03Х18Н12, 08Х21Н6М2Т, 08Х17Т, 06Х18Н11, 01Х25ТБЮ-ВИ, 08Х18Н10, 09Х16Н15М3Б, 15Х25Т, 12Х18Н12Т, 12Х18Н9, 10Х17Н13М3Т, 01-015Х18Т-ВИ, 03Х18Н11, 12Х18Н9Т, 03Х16Н15М3Б, 02Х24Н6М2 и некоторых других аустенитных сталей.
Изделия и конструкции из них анализируются на стойкость к межкристаллическому разрушению по методам АМУ и АМУФ. Эти методики являются по своей сути одинаковыми. Вторая представляет собой ускоренный вариант испытаний АМУ. Анализ образцов по таким технологиям заключается в погружении заготовок в подготовленные растворы (их состав мы указали выше) и выдерживании их в течение определенного времени.
После этого образцы вынимают и загибают на 85–95° либо в форме литеры Z. А затем устанавливают наличие коррозии при помощи лупы или по специальной металлографической технологии. Если при осмотре образцов под лупой (7–12-кратное увеличение) на заготовках не видно трещин, это означает, что изделия обладают требуемой стойкостью к межкристаллическому разрушению. Заметим – допускается наличие микротрещин на кромках заготовок.
Металлографическая методика применяется в ситуациях, когда образцы не могут изогнуть под требуемым углом из-за их малых геометрических параметров. При такой проверке вырезается шлиф длиной около 2 см из заготовки. Обратите внимание! Плоскость реза при этом по отношению к поверхности заготовки должна быть перпендикулярной. Затем шлиф протравливают и анализируют при 200-кратном увеличении (используется микроскоп).
Если на образце при подобной проверке отмечают разрушение границ кристаллов металла глубиной не более 30 мкм, заготовка считается стойкой к коррозии. В противном случае (глубина разрушений больше) говорят о склонности сплава к МКК.
5 Другие способы определения стойкости металлов – как проводятся исследования?
Для проверки стойкости к МКК сталей 02Х25Н22АМ2, 03Х17Н14М3, 03Х18Н1102Х18Н11, 03Х24Н6АМ3 и 03Х18Н12 применяется метод ДУ. Анализ выполняется так:
Общая длительность такой проверки составляет 5 циклов по 48 часов каждый. Все это время заготовки находятся в кислоте, которая равномерно кипит (без выделения окислов и выпаривания). Затем образцы вынимают и оценивают на склонность к коррозии по описанной ранее металлографической методике.
Технология ВУ применяется для анализа изделий из сплавов ХН30МДБ, 06ХН28МДТ, 03Х21Н21М4ГБ и 03ХН28МДТ. При такой проверке образцы кипятят 48 часов в серной кислоте, а затем оценивают результаты по методу АМУ. Менее надежным аналогом технологии ВУ считаются испытания с применением цинкового порошка и серной кислоты (метод В). Образцы при этом анализе выдерживаются в кипящем растворе в течение 144 часов.
Нередко металлоизделия, которые проверяются на стойкость к МКК по технологиям АМУ и АМУФ, предварительно анализируют по методу Б. Он обычно используется для анализа деталей, сделанных гибкой, горячим штампованием либо сваркой из сплавов 12Х18Н12Т, 03Х18Н11, 08Х18Н10, 12Х18Н9Т, 08Х18Н12Т, 12Х18Н9, 06Х18Н11, 12Х18Н10Т и 04Х18Н10.
Проверка по методу Б осуществляется на специальной установке, состоящей из катода (его функцию выполняет сосуд из свинца), источника тока (постоянного), реостата и амперметра. Добавим, что такой анализ не проводится для металла сварного соединения.
Важность исследований на стойкость к МКК заключаются не только в установлении долговечности эксплуатации изделий из той или иной марки стали, но еще и в точном определении механизма межкристаллитного разрушения. Поэтому таким испытаниям всегда уделяется повышенное внимание. Ведь они позволяют разрабатывать новые способы антикоррозионной защиты.
Испытания на мкк что это
ГОСТ 6032-2017
(ISO 3651-1:1998,
ISO 3651-2:1998)
СТАЛИ И СПЛАВЫ КОРРОЗИОННО-СТОЙКИЕ
Методы испытаний на стойкость против межкристаллитной коррозии
Corrosion-resistant steels and alloys. Test methods of intercrystalline corrosion resistance
____________________________________________________________________
Текст Сравнения ГОСТ 6032-2017 с ГОСТ 6032-2003 см. по ссылке.
— Примечание изготовителя базы данных.
__________________________________________________________________
Дата введения 2018-08-01
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»
Сведения о стандарте
1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 145 «Методы контроля металлопродукции», Акционерным обществом «Научно-исследовательский и конструкторский институт химического машиностроения» (АО «НИИхиммаш»)
2 ВНЕСЕН Федеральным агентством по технологическому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 1 июня 2017 г. N 51)
За принятие проголосовали:
Краткое наименование страны по МК (ИСО 3166) 004-97
Код страны по
МК (ИСО 3166) 004-97
Сокращенное наименование национального органа по стандартизации
Минэкономики Республики Армения
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
4 Приказом Федерального агентства по техническому регулированию и метрологии от 12.09.2017 г. N 1054-ст межгосударственный стандарт ГОСТ 6032-2017 введен в действие в качестве национального стандарта Российской Федерации с 1 августа 2018 г.
5 Настоящий стандарт включает в себя модифицированные основные нормативные положения следующих международных стандартов:
Сведения о соответствии ссылочных межгосударственных стандартов международным стандартам, использованным в качестве ссылочных в примененных международных стандартах, приведены в дополнительном приложении ДК
1 Область применения
В зависимости от химического состава стали и сплава и их назначения выбирают один из следующих методов испытаний на стойкость металла против МКК: АМУ, АМУФ, АМ, ВУ, ДУ, В, Б.
Выбор метода испытания определяется химическим составом металла и указаниями в нормативном документе на изготовляемое оборудование.
Методы испытания на стойкость против МКК Б и В, указанные в приложениях ДА и ДБ, являются рекомендуемыми.
Применение методов, приводимых в приложениях ДД и ДЕ, допускается наряду с основными методами испытания на стойкость против МКК настоящего стандарта.
Все вышеуказанные методы не могут быть использованы для определения коррозионной стойкости сталей и сплавов к другим видам коррозии (сплошной, питтинговой, язвенной, коррозионного растрескивания и т.д.).
В условных обозначениях методов АМУ, АМУФ, АМ, ВУ, ДУ, Б, В буквы обозначают:
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ГОСТ 1381-73 Уротропин технический. Технические условия
ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики
ГОСТ 3118-77 Реактивы. Кислота соляная. Технические условия
ГОСТ 3652-69 Реактивы. Кислота лимонная моногидрат и безводная. Технические условия
ГОСТ 3769-78 Реактивы. Аммоний сернокислый. Технические условия
ГОСТ 3776-78 Реактивы. Хрома (VI) оксид. Технические условия
ГОСТ 4165-78 Реактивы. Медь (II) сернокислая 5-водная. Технические условия
ГОСТ 4204-77 Реактивы. Кислота серная. Технические условия
ГОСТ 4461-77 Реактивы. Кислота азотная. Технические условия
ГОСТ 4463-76 Реактивы. Натрий фтористый. Технические условия
ГОСТ 4518-75 Реактивы. Аммоний фтористый. Технические условия
ГОСТ 6552-80 Реактивы. Кислота ортофосфорная. Технические условия
ГОСТ 6709-72 Вода дистиллированная. Технические условия
ГОСТ 6996-66 (ИСО 4136-89, ИСО 5173-81, ИСО 5177-81) Сварные соединения. Методы определения механических свойств
ГОСТ 9485-74 Реактивы. Железо (III) сернокислое 9-водное. Технические условия
ГОСТ 9940-81 Трубы бесшовные горячедеформированные из коррозионно-стойкой стали. Технические условия
ГОСТ 9941-81 Трубы бесшовные холодно- и теплодеформированные из коррозионно-стойкой стали. Технические условия
ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия
ГОСТ 12601-76 Порошок цинковый. Технические условия
ГОСТ 14019-2003 (ИСО 7438:1985) Материалы металлические. Метод испытания на изгиб
ГОСТ 19347-2014 Купорос медный. Технические условия
ГОСТ 20848-75 Реактивы. Калий фтористый 2-водный. Технические условия
ГОСТ 22180-76 Реактивы. Кислота щавелевая. Технические условия
3 Обозначения
В настоящем стандарте применены следующие обозначения:
— наружный диаметр образца, мм;
— толщина образца, мм;
— длина трубчатого или цилиндрического образца, мм;
Испытания на стойкость к межкристаллитной коррозии
Одно из опасных разрушений металла — межкристаллитная коррозия (МКК), то есть появление ржавчины вдоль границ кристаллов (зерен). Визуально этот процесс невозможно определить, металл же при этом теряет прочность и пластичность. В вы можете заказать испытания на стойкость к межкристаллитной коррозии в соответствии с
К межкристаллитной коррозии склоны многие сплавы, имеющие неоднородную структуру и содержащие в составе железо, алюминий и никель. Также ей подвержена нержавеющая сталь.
Причины возникновения межкристаллитной коррозии
Обычно межкристаллитная коррозия возникает в месте сварного шва или в ситуации, когда неправильно проводится термообработка металла. При неверно выбранном термическом режиме границы зерен остаются активными, а сами зерна пассивными. В результате содержание хрома на границах уменьшается, и это способствует образованию ржавчины.
Поэтому этот вид испытаний часто заказывается в комплексе мероприятий по контролю сварных швов.
Методы испытаний
В зависимости от химического состава специалисты лаборатории выбирают наиболее подходящий анализ для выявления коррозии. Наиболее распространены следующие методы:
В растворе образец находится определенный промежуток времени. Затем его вынимают, загибают и рассматривают при помощи лупы или микроскопа. Если будут обнаружены трещины на заготовках, то металл признается неустойчивым к межкристаллитной коррозии.
Данные образцы не прошли испытание на стойкость к межкристаллитной коррозии
Данные образцы успешно прошли испытание на стойкость к межкристаллитной коррозии.
Например, испытания на МКК, за которым к нам обращались в последнее время:
Цена исследования
Стоимость исследования зависит от объема работ и применяемого метода.
Оплата счёта обычно происходит за результат — после проведения исследования.
Требования к образцам по
4.2. Изготовление образцов из заготовок
Образцы изготавливают из следующих видов металлопродукции:
Допускается изготовление цилиндрических образцов для испытания по методу ДУ — из всех видов металлопродукции:
ООО «Диагностика-металлов» предлагает представительство Ваших интересов в Уральском регионе:
Челябинск, Екатеринбург, Курган (уточните возможность по телефону):
Аккредитованная лаборатория. Проводим ультразвуковую диагностику металла (неразрушающий контроль), химический анализ и испытания чёрных и цветных металлов и сплавов.
1 Область применения
В зависимости от химического состава стали и сплава и их назначения выбирают один из следующих методов испытаний на стойкость металла к МКК: АМУ, АМУФ, ВУ, ДУ, В, Б.
Выбор метода испытания определяется химическим составом металла и указаниями в нормативном документе на изготовляемое оборудование.
Все вышеуказанные методы не могут быть использованы для определения коррозионной стойкости сталей и сплавов к другим видам коррозии (сплошной, питтинговой, язвенной, коррозионного растрескивания и т.д.).
В условных обозначениях методов АМУ, АМУФ, ВУ, ДУ, Б, В буквы обозначают:
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 1381-73 Уротропин технический. Технические условия
ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики
ГОСТ 3118-77 Кислота соляная. Технические условия
ГОСТ 3652-69 Кислота лимонная моногидрат и безводная. Технические условия
ГОСТ 3769-78 Аммоний сернокислый. Технические условия
ГОСТ 3776-73 Хрома ( VI ) оксид (хромовый ангидрид). Технические условия
ГОСТ 4165-78 Медь ( II ) сернокислая 5-водная. Технические условия
ГОСТ 4204-77 Кислота серная. Технические условия
ГОСТ 4461-77 Кислота азотная. Технические условия
ГОСТ 4463-76 Натрий фтористый. Технические условия
ГОСТ 4518-75 Аммоний фтористый. Технические условия
ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки
ГОСТ 6552-80 Кислота ортофосфорная. Технические условия
ГОСТ 6709-72 Вода дистиллированная. Технические условия
ГОСТ 6996-66. Сварные соединения. Методы определения механических свойств
ГОСТ 9485-74 Железо ( III ) сернокислое 9-водное. Технические условия
ГОСТ 9940-81 Трубы бесшовные горячедеформированные из коррозионно-стойкой стали. Технические условия
ГОСТ 9941-81 Трубы бесшовные холодно- и теплодеформированные из коррозионно-стойкой стали. Технические условия
ГОСТ 11125-84 Кислота азотная особой чистоты. Технические условия
ГОСТ 12601-76 Порошок цинковый. Технические условия
ГОСТ 14019-2003 (ИСО 7438:1985) Материалы металлические. Метод испытания на изгиб
ГОСТ 19347-99 Купорос медный. Технические условия
ГОСТ 20848-75 Калий фтористый 2-водный. Технические условия
ГОСТ 22180-76 Кислота щавелевая. Технические условия
3 Подготовка образцов
3.1 Вырезка заготовок для образцов
Заготовки для образцов вырезают:
Допускается отбор заготовок для образцов проводить из промежуточной передельной заготовки при условии последующей аустенизации и провоцирующего нагрева или аустенизации без провоцирующего нагрева изготовляемых из нее образцов.
Размеры заготовок под образцы должны быть достаточными для изготовления требуемого количества образцов.
Образцы изготовляют следующих видов:
Допускается изготовлять плоские образцы из толстостенных труб большого диаметра, а также из труб толщиной стенки не более 1,5 мм путем сплющивания кольца или патрубка с последующей обрезкой сторон или путем развертки кольца или патрубка с последующим выпрямлением. В патрубках номинальным наружным диаметром не более 5 мм допускается удалять на 1 /2 окружности стенку патрубка с одного из его концов или в средней части на 1 /2 длины патрубка (таблица 1 ) при испытании всеми методами, кроме ДУ;
Требуемая толщина образцов из заготовок достигается механической обработкой:
При наличии данных относительно условий работы изделия удаление металла проводят со стороны, не соприкасающейся с рабочей средой.
3.3 Изготовление образцов из сварных стыковых соединений
Из сварных стыковых соединений изготовляют образцы следующих видов (таблица 1 ):
Покрытые электроды, сварочную проволоку и наплавочную ленту контролируют, испытывая металл в соответствии с нормативными документами на их изготовление (приемосдаточные испытания).
Наплавленный металл испытывают на плоских образцах (таблица 1 ), вырезанных из верхних слоев многослойной наплавки или металла сварного шва, выполненного по ГОСТ 6996 контролируемыми сварочными материалами (нижние неиспользуемые слои наплавки допускается выполнять другими присадочными материалами аналогичного химического состава).
3.4 Размеры образцов для испытаний
Размеры образцов для испытаний методами АМУ, АМУФ, ВУ, В должны обеспечивать возможность:
— изгиба на угол 90° ± 5° плоского образца, сегмента, цилиндра или патрубка диаметром до 10 мм, проволоки;
— осмотра поверхности изгиба на участке, ширина которого позволяет выявить межкристаллитные трещины с учетом возможного влияния кромок.
Образцы для испытания методом ДУ должны удовлетворять следующим требованиям:
— наибольший размер образца должен быть в направлении проката;
— длина плоского образца, сегмента (а) или длина цилиндра и высота патрубка ( h ) должны быть не меньше двойной ширины или диаметра;
— площадь меньших боковых поверхностей для плоского образца и сегмента или площадь торцов для кольца, патрубка, цилиндра должна составлять не более 15 % общей поверхности образца.
3.5 Количество образцов
Сварные образцы изготовляют в количестве 8 шт., 4 из которых являются контрольными.
Контрольные образцы не подвергают кипячению в растворах, используемых в указанных выше методах. Они предназначены для определения реакции металла на изгиб без воздействия среды.
Для испытания методом ДУ изготовляют не менее двух образцов для всех классов сталей из всех указанных видов металлопродукции, а также из сварных соединений, наплавленного металла и металла шва.
3.6 Провоцирующий нагрев
Продолжительность выдержки, мин
08Х17Т, 15Х25Т, 01-015Х18Т-ВИ, 01Х18М2Т-ВИ, 01Х25ТБЮ-ВИ
08Х22Н6Т, 08Х21Н6М2Т, 08Х18Г8Н2Т
03ХН28МДТ, ХН30МДБ, 03Х21Н21М4ГБ
Все остальные стабилизированные и нестабилизированные стали с содержанием углерода не более 0,030 % **
* Предварительно обезжиренные заготовки загружают в печь, нагретую до температуры провоцирующего нагрева.
** Стали марок 03Х17Н14М3, 03Х24Н6АМ3, 02Х25Н22АМ2 испытывают методом ДУ на образцах без дополнительного провоцирующего нагрева при отсутствии иных требований потребителя.
Допускается подвергать провоцирующему нагреву образцы.
При разногласии между потребителем и изготовителем провоцирующему нагреву подвергают заготовки.
Допускается по согласованию потребителя с изготовителем проводить провоцирующий нагрев при других режимах.
Нестабилизированные стали (не содержащие титан или ниобий) с содержанием углерода более 0,030 % испытывают на образцах без провоцирующего нагрева, если нет дополнительных указаний в нормативных документах на металлопродукцию.
В случае применения металлопродукции после термообработки, отличающейся от состояния поставки, испытания проводят на образцах, изготовленных из заготовок, подвергнутых такой же термообработке и дополнительному провоцирующему нагреву.
Стали и сплавы, подвергнутые повторной термообработке, отличной от провоцирующего нагрева, рассматривают как новую партию металла.
Сварные соединения, наплавленный металл и металл шва провоцирующему нагреву не подвергают.
Стали, применяемые в нагартованном или полунагартованном состоянии, испытывают на образцах без провоцирующего нагрева.
Допускается вместо испытания образцов с провоцирующим нагревом испытывать стали и сплавы на сварных образцах.
При контроле сварных соединений для оборудования, которое в процессе изготовления подвергают термической обработке, испытания проводят на сварных образцах, подвергнутых такой же термической обработке.
3.7 Подготовка образцов к испытаниям
При испытании методом ДУ окалину до шлифовки удаляют только химическим травлением или механическим способом.
Химическое травление образцов из сталей аустенитного, аустенитно-ферритного и аустенитно-мартенситного классов, а также сплавов на железоникелевой основе проводят при температуре (20 ± 5) °С в растворе:
Образцы травят до полного удаления окалины. После травления образцы тщательно промывают водой. На образцах после травления не должно наблюдаться растравливания границ зерен и/или точечной коррозии.
Допускается проводить химическое травление в других растворах и при других режимах, обеспечивающих полное удаление окалины.
При разногласиях в результатах испытаний травление проводят только в растворах, перечисленных выше.
Шероховатость поверхности образцов Ra перед испытанием должна быть не более 0,8 мкм по ГОСТ 2789. До указанной шероховатости доводят поверхности, контролируемые при изгибе образцов, испытываемых по методам АМУ, АМУФ, ВУ, В, и всю поверхность образцов, испытываемых по методу ДУ. Требуемая шероховатость поверхности достигается полированием или шлифованием, при этом перегрев поверхности не допускается.
4 Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической меди. Метод АМУ
Образцы сталей выдерживают в кипящем водном растворе сернокислой меди и серной кислоты в присутствии металлической меди (стружка).
Метод применяют для контроля сталей:
— ферритного класса марок 08Х17Т, 15Х25Т, 01-015Х18Т-ВИ, 01Х18М2Т-ВИ, 01Х25ТБЮ-ВИ;
— аустенитно-фсрритного класса марок 08Х22Н6Т, 08Х21Н6М2Т, 08Х18Г8Н2Т, 02Х24Н6М2;
— аустенитного класса марок 09Х16Н15М3Б; 03Х16Н15М3Б, 10Х17Н13М2Т, 10Х17Н13М3Т, 08Х17Н13М2Т, 08Х17Н15М3Т, 12Х18Н9, 12Х18Н9Т, 04Х18Н10, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н10Е, 06Х18Н11, 03Х18Н11, 03Х18Н12, 08Х18Н12Т, 12Х18Н12Т, 08Х18Н12Б, 03Х17Н14М3.
4.2 Реактивы и растворы
воду дистиллированную по ГОСТ 6709;
К (1000 ± 3) см 3 воды добавляют сернокислую медь (50 ± 0,1) г, небольшими порциями серную кислоту (250 ± 3) см 3 и до загрузки образцов в колбу с раствором добавляют медную стружку в количестве, обеспечивающем всесторонний контакт с образцами и отсутствие контакта между образцами.
4.3 Проведение испытаний
4.3.1 Испытания проводят в стеклянной колбе с обратным холодильником.
Допускается загрузка образцов одной и той же марки стали в несколько рядов при условии, что ряды образцов, между которыми должна находиться медная стружка, не будут соприкасаться друг с другом.
Загрузка образцов различных марок сталей в одну и ту же колбу не допускается.
Реакционный сосуд с раствором и образцами для испытания нагревают и непрерывно кипятят, не допуская нагрева холодильника.
4.3.3 При вынужденном перерыве в испытаниях, при условии отсутствия испарения раствора, образцы могут оставаться в растворе до 48 ч.
Продолжительность испытаний определяют как суммарное количество часов кипения.
4.4.1 По окончании испытаний для обнаружения МКК образцы изгибают на угол 90° ± 5° по ГОСТ 14019.
Радиус закругления оправки выбирают в зависимости от толщины образцов, класса стали и вида металлопродукции, из которой изготовлены образцы (таблица 3 ).
Аустенитные стали и сплавы
Аустенитно-мартенситные и ферритные стали
Лист, сортовой прокат, трубная заготовка, поковка, трубы
Не более толщины образца
Не более трех толщин образца
Не более трех толщин образца
Отливки, сварные соединения, наплавленный металл, металл шва
Не более двух толщин
Не более трех толщин образца
Не более трех толщин образца
где D — наружный диаметр трубы, мм;
S — толщина стенки трубы, мм.
При сплющивании образцов аустенитно-ферритных или ферритных сталей расстояние Н, мм, определяют по формуле
Внутреннюю поверхность колец и патрубков контролируют металлографическим методом. Допускается для аустенитных сталей контроль внутренней поверхности колец осуществлять отбортовкой до диаметра, определяемого по формуле
Сварные образцы после испытаний в растворе изгибают:
Изгиб проводят таким образом, чтобы сварной шов, обращенный к рабочей среде, находился на внешней стороне образца. Если неизвестна сторона шва, обращенная к рабочей среде, то на внешней стороне образца должен находиться шов, подвергавшийся максимальному числу нагревов.
4.5.1 Определение наличия МКК с помощью изгиба образца
Отсутствие трещин на образцах, изогнутых после испытания, за исключением продольных трещин и трещин непосредственно на кромках, свидетельствует о стойкости стали или сплава к МКК.
Наличие трещин на образцах, изогнутых после испытания, и отсутствие трещин на изогнутых таким же образом контрольных образцах свидетельствует о склонности стали к МКК.
Если при изгибе контрольные образцы ломаются или на них обнаруживают трещины, или же невозможен изгиб образца из-за его размеров (3.4), следует провести металлографические исследования образцов после испытания.
4.5.2 Металлографический метод определения МКК
Для выявления МКК металлографическим методом из неизогнутого участка образца, прошедшего испытания, вырезают шлиф таким образом, чтобы плоскость реза была перпендикулярна к контролируемой поверхности образца. При вырезании шлифа из сварного образца линия реза должна проходить перпендикулярно к сварному шву и плоскость реза должна включать металл шва, зону термического влияния и основной металл.
Плоскость реза должна быть плоскостью шлифа.
Способ изготовления шлифа должен обеспечить отсутствие завала кромок и заусенцев.
Травление проводят лишь до слабого выявления границ зерен.
Шлиф просматривают со стороны контролируемой поверхности образца.
Определяют максимальную глубину разрушения, выявленную в шести полях зрения. В эти поля зрения должны быть включены участки с наибольшей глубиной МКК.
5 Испытание образцов в растворе серной кислоты и сернокислой меди в присутствии металлической меди и фтористого натрия или фтористого калия. Метод АМУФ
Метод является ускоренным по сравнению с методом АМУ.
В случае разногласий в оценке качества металла испытания проводят методом АМУ.
5.2 Реактивы и растворы
5.2.1 Для проведения испытаний применяют реактивы по 4.2.1 с дополнениями:
5.2.2 Раствор для испытаний: в (1000 ± 3) см 3 воды растворяют (50 ± 0,1) г сернокислой меди, (128,0 ± 0,1) г фтористого натрия, затем небольшими порциями (для предотвращения разогрева раствора) добавляют (250 ± 1) см 3 серной кислоты. Допускается вместо фтористого натрия добавлять (177,0 ± 0,1) г фтористого калия.
Приготовление и хранение раствора следует проводить в полиэтиленовой посуде.
5.3 Проведение испытаний и оценка результатов
5.3.1 Всю подготовительную работу и испытания проводят в вытяжном шкафу в полиэтиленовом сосуде.
6 Испытание образцов в растворе серной кислоты в присутствии сернокислого окисного железа. Метод ВУ
Образцы стали или сплава выдерживают в кипящем водном растворе сернокислого окисного железа и серной кислоты.
Метод применяют для контроля стали марки 03Х21Н21М4ГБ и сплавов на железоникелевой основе марок: 06ХН28МДТ, 03ХН28МДТ и ХН30МДБ.
6.2 Реактивы и растворы
Вода дистиллированная по ГОСТ 6709.
6.3 Проведение испытаний и оценка результатов
6.3.1 Испытания проводят в стеклянной колбе, снабженной обратным холодильником.
На дно реакционного сосуда укладывают бусы, стеклянные трубки или фарфоровые лодочки, поверх которых помещают образцы.
Совместная загрузка в колбу образцов сталей и сплавов различных марок не допускается.
6.3.2 Продолжительность выдержки в кипящем растворе должна составлять (48,0 ± 0,25) ч.
6.3.3 Кипячение проводят непрерывно, не допуская нагрева холодильника.
При вынужденном перерыве в испытаниях образцы могут оставаться в растворе не более 8 ч. Продолжительность испытаний подсчитывают как суммарное количество часов при кипении.
7 Испытание образцов в 65 %-ной азотной кислоте. Метод ДУ
Образцы выдерживают в кипящем водном растворе 65 %-ной азотной кислоты. Метод применяют для контроля сталей марок: 02Х18Н11, 03Х18Н11, 03Х18Н12, 03Х17Н14М3, 03Х24Н6АМ3, 02Х25Н22АМ2.
7.2 Реактивы и растворы
7.3 Проведение испытаний
7.3.1 Перед испытанием образцов измеряют их длину, ширину (или диаметр) и толщину не менее чем в 3 местах, погрешность измерений не должна превышать 0,1 мм.
Затем образцы обезжиривают органическим растворителем, промывают водой, просушивают и взвешивают на аналитических весах, погрешность измерения массы не должна превышать 0,1 мг.
Испытания проводят в стеклянной колбе с обратным холодильником.
На дно колбы кладут стеклянные бусы, трубки или фарфоровые лодочки, на которые помещают образцы.
Испытание проводят при слабом равномерном кипении, не допускается выпаривание раствора и выделение окислов азота бурого цвета, что определяют с помощью индикаторной бумаги, помещаемой на выходе в верхней части обратного холодильника. В случае выпаривания раствора следует добавлять 65 %-ную азотную кислоту до первоначального уровня.
7.3.2 Продолжительность испытаний составляет 240 ч, пять циклов по (48,00 ± 0,25) ч каждый со сменой раствора после каждого цикла.
Допускается по согласованию с потребителем для сталей марок 02X18Н11, 03Х18Н11 и 03Х18Н12 после третьего цикла дальнейшее испытание не проводить, если скорость коррозии во втором и третьем циклах не превышает 0,30 мм/год.
7.3.3 После каждого цикла испытаний (48 ч) образцы извлекают из колбы, промывают водой, просушивают, взвешивают и определяют скорость коррозии в каждом из циклов.
7.3.4 При вынужденном перерыве кипячения образцы извлекают из колбы, промывают и просушивают. Раствор используют для продолжения цикла.
7.4 Оценка результатов испытаний на МКК
7.4.3 В сомнительных случаях при оценке качества сварного соединения допускается проведение металлографического анализа.
Образцы считают не выдержавшими испытание, если средняя глубина растравливания околошовной зоны или зоны термического влияния, или металла шва не менее чем на 30 мкм больше основного металла.
8 Протокол испытаний
В протоколе испытаний следует указывать:
— марку стали, вид металлопродукции, из которой изготовлен образец, номер плавки;
— вид образца (основной металл, сварной образец, наплавленный металл, металл шва);
— режим термической обработки;
— образцы стойкие или склонные к МКК при испытании одним из методов: АМУ, АМУФ, В, ВУ или по методу, описанному в приложении Е ;
— скорость коррозии по методу ДУ в каждом из циклов и оценку стойкости к МКК.
ПРИЛОЖЕНИЕ А
Испытание образцов в растворе серной кислоты и цинкового порошка. Метод В
А.1 Сущность метода
Образцы выдерживают в кипящем водном растворе сернокислой меди и серной кислоты с добавлением цинкового порошка.
Метод применяется для контроля сплава 06ХН28МДТ и является менее надежным, чем метод ВУ.
А.2 Реактивы и растворы
Вода дистиллированная по ГОСТ 6709.
Порошок цинковый по ГОСТ 12601, класс А.
Раствор для испытания: в (1000 ± 3) см 3 воды растворяют (110,0 ± 0,2) г сернокислой меди, затем небольшими порциями добавляют (55,0 ± 0,3) см 3 серной кислоты.
А.3 Проведение испытания и оценка результатов
А.3.1 Испытания проводят в стеклянной колбе с обратным холодильником.
Продолжительность испытаний определяют как суммарное количество часов кипячения.
А.3.3 Обработку образцов после испытаний проводят по 4.3.4 настоящего стандарта.
А.3.4 Выявление межкристаллитной коррозии проводят по 4.4 и 4.5 настоящего стандарта.
ПРИЛОЖЕНИЕ Б
Анодное травление образцов в ингибированной серной кислоте. Метод Б
Б.1 Сущность метода
Сталь подвергают анодному травлению в водном растворе ингибированной серной кислоты.
Метод применяют для контроля изделий и деталей, изготовленных сваркой, горячей штамповкой и гибкой из стали марок: 12Х18Н9, 12Х18Н9Т, 04Х18Н10, 08Х18Н10, 12Х18Н10Т, 08Х18Н10Т, 03Х18Н11, 06Х18Н11, 08Х18Н12Т, 12Х18Н12Т и двухслойных сталей этих марок, для предварительной оценки стойкости к МКК металлопродукции, подлежащей контролю методами АМУ и АМУФ.
Металл сварного шва не контролируют этим методом.
Уротропин (СН2)6 N 4 по ГОСТ 1381 или другой ингибитор для серной кислоты, раствор с массовой долей (0,50 ± 0,05) %.
Вода дистиллированная по ГОСТ 6709.
Раствор для испытаний содержит (20 ± 1) см 3 раствора уротропина и (1000 ± 3) см 3 раствора серной кислоты.
Б.4 Проведение испытания и оценка результатов
Б.4.1 Поверхность участков, подлежащих контролю, шлифуют до шероховатости Ra ≤ 0,8 мкм. После шлифования контрольные участки обезжиривают органическими растворителями.
Допускается изготовлять сосуды из другого металла, коррозионно-стойкого в растворе для испытаний (Б.3).
Б.4.3 При испытании сварных изделий контролируют зону термического влияния около сварного шва. При этом анодное пятно наносят с таким расчетом, чтобы край пятна захватывал не более 1 мм ширины наплавленного металла.
В местах, подлежащих контролю, усиление шва удаляют.
Испытания проводят по обеим сторонам шва в шахматном порядке. При длине сварного шва до 2 м зону термического влияния контролируют не менее чем в четырех точках.
Б.4.4 Изделия, имеющие перекрещивающиеся и Т-образные швы, испытывают по зоне термического влияния во всех местах пересечения швов (рисунок Б.3 ).
По окончании испытаний ток выключают, сосуд и контрольную поверхность промывают водой, вытирают фильтровальной бумагой и протирают этиловым спиртом.
Б.5 Оценка результатов
Отсутствие сетки свидетельствует о стойкости металла к МКК.
При наличии сетки (рисунок Б.4 ) или растравливания выпавшей вторичной фазы (рисунок Б.5 ) требуется испытание образцов методами АМУ или АМУФ, т.к. в условиях травления (положительный потенциал) возможно растравление выпавших карбидов.
ПРИЛОЖЕНИЕ В
Размеры образцов
Толщина плоских или диаметр цилиндрических образцов для методов
Листовой прокат толщиной не более 10 мм
Листовой прокат толщиной св. 0,1 мм
Двухслойный листовой прокат
Толщина равна толщине коррозионного слоя
Проволока и сортовой прокат диаметром или толщиной не более 10 мм
Толщина равна толщине металлопродукции
Кольцевые сварные соединения труб толщиной до 5 мм и св. 5 мм
Толщина равна толщине металлопродукции. Допускается доведение толщины до 3 мм
Сварные соединения листового, сортового проката и отливок
Сортовой прокат и трубные заготовки диаметром св. 10 мм
Трубы бесшовные диаметром до 5 мм
Толщина равна толщине металлопродукции
Трубы бесшовные диаметром до 10 мм
Толщина равна толщине металлопродукции 3)
Толщина равна толщине металлопродукции
Сварные соединения двухслойного листового проката
3) Допускается доведение толщины или диаметра образца для ферритных, аустенитно-мартенситных, аустенитно-ферритных сталей до 3 мм.
ПРИЛОЖЕНИЕ Г
Реактивы и режимы травления шлифов для выявления межкристаллитной коррозии
Марка стали и сплава
Реактив и режим травления
12Х18Н9, 12Х18Н9Т, 04Х18Н10, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т, 12Х18Н10Е, 03Х18Н11, 06Х18Н11, 03Х18Н12, 08Х18Н12Т, 12Х18Н12Т, 08Х18Н12Б, 02Х18Н11
Химическое травление в смеси:
03Х16Н15М3, 08Х16Н15М3Б, 09Х16Н15М3Б, 03Х17Н14М3, 08Х17Н13М2Т, 08Х17Н15М3Б, 10Х17Н13М2Т, 10Х17Н13М3Т, 08Х17Н15М3Т, 02Х25Н22АМ2
Химическое травление в растворе:
(50 ± 0,1) см 3 воды. Температура кипения.
Электролитическое травление в растворе:
(8,50 ± 0,05) г/дм 3 лимонной кислоты по ГОСТ 3652, (8,50 ± 0,05) г/дм 3 сернокислого аммония по ГОСТ 3769. Температура кипения. Плотность тока (1,0 + 0,2) · 10 4 А/м 2
20Х13Н4Г9, 08Х18Г8Н2Т, 10Х14Г14Т, 12Х17Г9АН4, 07Х21Г7АН5, 03Х21Н21М4ГБ, 06ХН28МДТ, 03ХН28МДТ, ХН30МДБ, 10Х14Г14Н3, 10Х14Г14Н4Т, 10Х14АГ15
Химическое травление в растворе:
(50 ± 1) см 3 воды. Температура кипения.
Электролитическое травление в растворе:
09Х15Н80, 07Х16Н6, 09Х17Н7Ю, 09Х17Н7Ю1, 08Х17Н5М3
Электролитическое травление в растворе:
Электролитическое травление в растворе:
08Х22Н6Т, 08Х21Н6М2Т, 03Х24Н6АМ3
Химическое травление в растворе:
(50,0 ± 0,1) см 3 воды. Температура кипения.
Электролитическое травление в растворе:
08Х17Т, 15Х25Т, 01-015Х18Т-ВИ, 01Х18М2Т-ВИ, 01Х25ТБЮ-ВИ
Химическое травление в растворе:
(50 ± 1) см 3 воды. Температура кипения
ПРИЛОЖЕНИЕ Д
Определение стойкости к межкристаллитной коррозии нержавеющих сталей.
Часть 1. Аустенитные и ферритно-аустенитные (двухфазные) нержавеющие стали. Коррозионные испытания в азотной кислоте путем определения потери массы (испытания по Хью) (ИСО 3651-1:1998)
Д.1 Область применения
Метод применяют для определения стойкости к межкристаллитной коррозии (МКК) путем испытания в азотной кислоте с измерением потери массы проката, поковок, труб и литья аустенитных и ферритно-аустенитных (двухфазных) сталей, предназначенных для использования в сильно окислительных средах (например, в концентрированной азотной кислоте). Испытания по методу Хью не следует применять для сталей, содержащих молибден, если стали не предназначены для использования в качестве материала для оборудования, работающего с азотной кислотой.
Результаты испытания на МКК по методу Хью являются показательными только для определения стойкости стали к МКК в указанных средах и не могут быть использованы для определения стойкости стали к другим видам коррозионных разрушений (общей коррозии, питтинга, коррозионного растрескивания и т.д.).
Д.2 Назначение испытаний
Д.2.1 Испытания на МКК проводят с целью обнаружения коррозионного воздействия среды на границы зерен, обусловленного одной или несколькими причинами:
— выпадением по границам зерен карбидов хрома;
— выпадением интерметаллических соединений, таких как σ-фаза, в сталях, содержащих молибден;
— сегрегацией на границах зерен загрязняющих элементов.
Оценку результатов испытаний (например, максимально допустимая скорость коррозии) проводят по договоренности между потребителем и изготовителем.
Д.3 Применение метода
Д.3.1 Методом Хью контролируют аустенитные стали повышенной коррозионной стойкости к МКК, предназначенные для сильно окислительных сред. Контроль образцов сталей осуществляют после провоцирующей термообработки.
Образцы тонких листов не подвергают провоцирующему нагреву, поскольку в процессе изготовления оборудования тонкие листы быстро охлаждаются.
Д.4.1 Провоцирующему нагреву перед испытанием на МКК подвергают стабилизированные и низкоуглеродистые (С = 0,03 %) стали. С этой целью образец выдерживают 30 мин при температуре (70 ± 10) °С с последующим быстрым охлаждением в воде.
Д.4.2 Продолжительность повышения температуры не должна превышать 10 мин.
Другие режимы провоцирующего нагрева возможны лишь по договоренности с заказчиком.
Сварные образцы не подвергают провоцирующему нагреву.
Д.5 Коррозионные испытания
Д.5.1 Сущность метода
Д.5.2.1 Образец для исследования, взятый от обработанного давлением металла, должен иметь больший размер в направлении прокатки. Из обработанного давлением проката и литья вырезку образца следует проводить как можно ближе к поверхности проката. Размеры образца определяют в зависимости от взвешивающего устройства и объема используемого раствора.
Длина образца должна не менее чем в два раза превышать его ширину, а общая площадь поверхности сторон образца, перпендикулярных к направлению проката или волокнам образца, должна быть менее 15 % общей площади поверхности образца. При сравнительных испытаниях отношение общей площади поверхности образца к общей площади поверхности частей образца должно быть постоянным.
Образцы для испытаний следует обработать механически по всей поверхности путем зачистки поверхности абразивом № 120 на бумаге или ткани, не содержащим железа.
При такой обработке необходимо быть заранее уверенными, что она не вызывает МКК.
Перед погружением в коррозионный раствор образцы должны быть очищены растворителем, не содержащим ионов хлора.
Д.6.2 Держатели для образцов обычно изготовляют из стекла.
Д.6.3 Нагревательное устройство должно обеспечивать непрерывное кипение раствора.
Раствором для испытаний должен быть (65 ± 0,2) %-ный (по массе) водный раствор азотной кислоты ( ρ 20 = 1,40 г/см 3 ).
Применять следует продукт ч.д.а., содержащий суммарный твердый осадок ≤ 0,05 г/1000 г, а каждой из возможных добавок в количестве:
свинец ( Pb ) ≤ 0,005 г/1000 г;
железо ( Fe ) ≤ 0,014 г/1000 г;
марганец ( Mn ) (отрицательная реакция);
мышьяк ( As ) ≤ 0,001 г/1000 г;
Обычно только один образец помещают в колбу.
Однако допускается загружать несколько образцов в одну колбу при условии, что все образцы одной марки стали и изолированы друг от друга не менее чем на 0,5 см. Повышенная коррозия одного из образцов может повысить скорость коррозии остальных образцов, испытываемых вместе с ним.
Д.9 Обработка результатов
Эффект воздействия раствора азотной кислоты определяют измерением потери массы каждого образца после каждого цикла и за все циклы испытаний.
Скорость коррозии K 1 , г/м 2 · ч, или K 2 , мм/год, определяют по формулам:
(Д.1)
(Д.2)
где m — средняя потеря массы после каждого цикла или за все циклы испытаний, г;
S — первоначальная поверхность образца для испытаний, см 2 ;
Д.10 Протокол испытаний
Протокол испытаний должен содержать:
— используемые типы холодильников;
— средние скорости коррозии;
— ситуации, способные влиять на результаты.
Приводят обычно средние результаты испытаний.
Результаты испытаний, в зависимости от требования заказчика, представляют либо средней скоростью коррозии, либо скоростью коррозии в каждом из циклов.
ПРИЛОЖЕНИЕ Е
Определение стойкости к межкристаллитной коррозии нержавеющих сталей.
Часть 2. Ферритные, аустенитные и ферритно-аустенитные (двухфазные) нержавеющие стали. Коррозионные испытания в средах, содержащих серную кислоту (ИСО 3651-2:1998)
Е.1 Область применения
Настоящий стандарт устанавливает методы определения стойкости к межкристаллитной коррозии (МКК) ферритных, аустенитных и ферритно-аустенитных (двухфазных) нержавеющих сталей, выпускаемых в виде литья, проката, поковок и труб, предназначенных для слабоокислительных сред (например серной и фосфорной кислот).
На стойкость к МКК проверяют либо низкоуглеродистые стали с содержанием углерода не более 0,03 %, либо стабилизированные стали. Металл контролируют после провоцирующего нагрева или после сварки. Тонкий лист незначительной толщины при достаточно быстрой скорости охлаждения контролируют в состоянии поставки, не подвергая предварительному провоцирующему нагреву.
Е.2 Назначение испытаний
Испытания на межкристаллитную коррозию проводят с целью обнаружения преимущественного воздействия среды на границы зерен, обусловленного объединением границ зерен хромом в результате выпадения одной или нескольких богатых хромом фаз: карбидов хрома, σ-фазы или других интерметаллических фаз.
В зависимости от химического состава контролируемого металла (дополнение к приложению Е ) применяют один из методов контроля МКК с использованием растворов серной кислоты:
Е.3 Провоцирующий нагрев
Е.3.1 Для проверки стойкости к МКК необходимо провести провоцирующий нагрев стабилизированных сталей и сталей с низким содержанием углерода. Для этого образцы, предназначенные для испытания, выдерживают в течение 30 мин при температуре нагрева Т1 (700 ± 10) °С с последующим охлаждением в воде (режим Т1) или в течение 10 мин при температуре Т2 (650 ± 10) °С с последующим охлаждением в воде (режим Т2).
Указанные выше провоцирующие режимы нагрева применяют к аустенитным и двухфазным ферритно-аустенитным сталям.
Продолжительность повышения температуры до заданного значения не должна превышать 10 мин.
По договоренности с заказчиком возможны другие условия провоцирующего нагрева.
Тип провоцирующего нагрева указывают в нормативных документах на металлопродукцию. Если не указан режим провоцирующего нагрева, следует использовать режим Т1.
Е.3.2 Сварку образцов для испытаний можно применять как альтернативу провоцирующему нагреву (по договоренности между заинтересованными сторонами).
Е.4 Коррозионные испытания
Е.4.1 Сущность метода
Трубы диаметром до 6,0 см (диаметр труб должен быть меньше отверстия сосуда с раствором для испытаний) вместо испытания на изгиб расплющивают.
Образцы указанных размеров подвергают изгибу.
Е.4.3 Подготовка образцов для испытаний
Образец следует для удаления окалины обрабатывать механически в продольном направлении со всех сторон, острие края обрабатывают абразивом № 120. Во время механической обработки следует избегать перегрева образцов.
Образец, поверхность которого свободна от окислов и предварительно не подвергалась обработке для очистки от накипи или окалины, погружают полностью не более чем на 1 ч в раствор: 50 объемов соляной кислоты ( ρ 20 = 1,19 г/см 3 ), 5 объемов азотной кислоты ( ρ 20 = 1,40 г/см 3 ), 50 объемов воды при температуре раствора от 50 °С до 60 °С или в раствор: 50 объемов соляной кислоты и 50 объемов воды при температуре окружающей среды.
В случае химической подготовки поверхности образца необходимо быть уверенным, что МКК не появится в процессе обработки образца. Для этого после обработки проводят микрообследование для каждой марки стали.
Образцы должны быть обезжирены любым подходящим и не содержащим хлора растворителем, очищены и высушены перед погружением в коррозионную среду.
Е.5.1 Колба Эрленмеера вместимостью 1000 см 3 или другая аналогичная колба с холодильником, имеющим не менее чем четыре шарика.
Е.5.2 Держатель для образцов обычно из стекла (для метода С).
Е.5.3 Нагревательное устройство, обеспечивающее кипение раствора.
Е.6 Методы испытаний
Е.6.1 Метод А: испытание в 16 %-ной серной кислоте с сульфатом меди (метод Монипени-Штрауса)
Е.6.1.1 Раствор для коррозионных испытаний
Для приготовления раствора следует использовать реактивы ч.д.а.
Е.6.2 Метод В: испытание в 35 %-ной серной кислоте с сульфатом меди
Е.6.2.1 Раствор для испытаний готовят из реактивов ч.д.а.: 250 см 3 серной кислоты (ρ20 = 1,84 г/см 3 ) осторожно добавляют к 750 см 3 дистиллированной воды. Растворяют 110 г пятиводного сульфата меди ( II ) в теплом растворе.
Е.6.3 Метод С: испытание в 49 %-ной серной кислоте с сульфатом железа ( III )
Е.6.3.1 Раствор для коррозионных испытаний
Раствор для испытаний готовят из реактивов ч.д.а.: 280 см 3 серной кислоты (ρ20 = 1,84 г/см 3 ) осторожно добавляют к 720 см 3 дистиллированной воды. Растворяют 25 г сульфата железа ( III ) [ F е2( S О4)3 · 9Н2О], содержащего примерно 75 % сульфата железа в теплом растворе.
Е.6.3.2 Проведение испытаний
Е.6.3.3 Испытания на изгиб
Цилиндрические и плоские образцы после коррозионных испытаний подвергают испытанию на изгиб (угол изгиба 90°) на оправке, радиус которой равен толщине образца. Образцы литых изделий испытывают на оправке, радиус которой в два раза превышает толщину образца для испытаний.
Трубы наружным диаметром до 60 мм исследуют после расплющивания. Расстояние между пластинами Н, мм, после нагрузки вычисляют по формуле
(Е.1)
Сварные трубы с продольным швом имеют максимальное напряжение при изгибе поперек шва (рисунок Е.2 ).
Выпуклую поверхность изогнутого образца, прошедшего испытания, осматривают невооруженным глазом или при небольшом увеличении (не более 10 х ).
В случае получения сомнительных результатов испытаний на изгиб (угол изгиба 90°) подвергают изгибу второй образец, подготовленный по вышеуказанной методике, но не подвергнутый коррозионному испытанию.
Сравнительный анализ обоих образцов позволяет определить, являются ли трещины результатом МКК.
Е.8 Протокол испытаний
Протокол испытаний должен содержать:
— используемый метод со ссылкой на настоящий стандарт;
— метод подготовки образцов (механический или химический);
— сортамент образцов для испытаний;
— случайности, которые могут влиять на результаты испытаний.
ДОПОЛНЕНИЕ К ПРИЛОЖЕНИЮ Е
Перечень сталей, подлежащих контролю указанными методами
Применение метода зависит от свойств и агрессивности среды. Следующие примеры даны для информации. Только один метод может быть использован для каждой марки стали.
— аустенитные стали, содержащие более 16 % Cr и до 3 % Mo ;
— аустенитные стали, содержащие более 17 % Cr и более 3 % Mo ;
— аустенитные стали, содержащие более 25 % Cr и более 2 % Mo ;
— ферритные стали, содержащие более 25 % Cr и более 2 % Mo ;
Ключевые слова: стали, сплавы, межкристаллитная коррозия, методы испытаний, коррозионная стойкость.