То же что и кислородное голодание кроссворд
Гипоксия головного мозга
Гипоксия или кислородное голодание является одним из важнейших элементов в развитии огромного комплекса самых разных заболеваний и патологических состояний. Именно ей принадлежит одна из важнейших ролей в возникновении повреждения клеток, тканей и органов при многих болезнях и она же сопровождает гибель организма вне зависимости от характера провоцирующих ее причин. При этом наиболее чувствительная к кислородному голоданию нервная ткань. Поэтому гипоксии, а точнее предотвращению ее наступления и борьбе с ней отводится большая роль в современной медицине.
Что такое гипоксия головного мозга
Под понятием гипоксия подразумевают кислородную недостаточность, что чаще называют кислородным голоданием. То есть это состояние организма, которое возникает на фоне недостаточного его снабжения кислородом или нарушения его поступления к клеткам и тканям в результате действия тех или иных факторов. В ее основе лежит недостаточное энергетическое обеспечение постоянно протекающих в организме превращений. Ведь не зря человеческое тело сравнивают с большой, сложной химической лабораторией.
В организме энергия образуется из фосфорных соединений, для синтеза которых требуется кислород. В норме процессы биологического окисления удовлетворяют потребности организма и обеспечивают тот объем энергии, который необходим для поддержания функциональной активности органов и тканей, обновления клеток и т. д. Поэтому при нарушении этого баланса из-за недостаточного поступления кислорода, нарушения его транспортировки и использования тканями возникает энергетический дефицит. Это приводит к разным по характеру функциональным и морфологическим нарушениям, в том числе к гибели ткани.
Наиболее чувствительны к недостатку кислорода нервные клетки, а также сердца, почек и печени.
В зависимости от того, что стало причиной наступления гипоксии, темпа ее прогрессирования, продолжительности сохранения и ряда других факторов, выделяют несколько степеней:
Это определяет выраженность происходящих в организме изменений, характер возникающих вторичных нарушений, компенсаторных и приспособительных реакций. Но при истощении возможностей организма недополучающие кислород клетки погибают. А поскольку первым от него страдает головной мозг, это чревато необратимыми изменениями в его структуре и функционировании, а в тяжелых случаях и летальным исходом.
Виды и причины
Все гипоксии делят на острые и хронические. Первые развиваются менее чем за 2 часа, вторые же сохраняются неделями или даже годами. Иногда выделяют молниеносные формы, когда организм испытывает кислородную недостаточность в течение нескольких минут или менее. Они являются наиболее опасными и становятся следствием вдыхания лишенных кислорода газов, например, метана, гелия, азота и пр. Также иногда выделяют подострую форму кислородной недостаточности. Она сохраняется несколько часов.
Также гипоксии головного мозга классифицируют по этиологическому фактору, т. е. причине развития на:
Также выделяют смешанный тип, при котором наблюдается сочетание 2 или более видов гипоксии.
Определение того, что спровоцировало кислородное голодание и соответственно снижение интенсивности процессов биологического окисления, развитие дефицита энергии для обеспечения полноценного протекания жизненных процессов, имеет большое значение для подбора наиболее эффективной тактики лечения.
Экзогенные
Экзогенные гипоксии обусловлены действием внешних факторов, сопровождающихся снижением парциального давления кислорода во вдыхаемом воздухе. Подобное характерно в основном для:
В таких случаях наблюдается так называемая гипоксемия. Под этим термином подразумевают снижение концентрации кислорода в крови и степень насыщения им гемоглобина. На этом фоне может развиваться компенсаторная гипервентиляция легких, обусловленная непроизвольным увеличением частоты дыхательных движений, и снижение концентрации углекислого газа в крови (гипокапния). Это приводит к снижению качества кровоснабжения головного мозга и сердца.
Дыхательная
Легочная, респираторная или дыхательная гипоксия развивается на фоне нарушения протекания газообмена в легких, что может возникать при:
Циркуляторная
Сердечно-сосудистая или циркуляторная гипоксия может развиваться при возникновении нарушений кровообращения. Это может быть результатом большой кровопотери, выраженного обезвоживания или же следствием развития патологий сердца или сосудов, в частности:
При циркуляторном типе наблюдается уменьшение минутного объема крови.
Гипоксия в таких случаях может быть как генерализованной, так и локальной. В последнем случае изменения будут наблюдаться только в том участке, который будет испытывать недостаток в притоке артериальной крови или затруднения с отведением венозной крови.
Одной из часто диагностируемых причин гипоксии головного мозга сосудистого происхождения является развитие вертебрального синдрома. В основе его возникновения лежат травмы и патологии позвоночника. Чаще всего это остеохондроз шейного отдела и его осложнения в виде протрузий и межпозвоночных грыж, сколиоз, кифоз, болезнь Бехтерева, миозит, спондилез. При их развитии происходят изменения в положении позвонков, толщине расположенных между ними дисков и в целом строении позвоночника. В результате страдают проходящие через боковые поверхности 6-ти шейных позвонков позвоночные артерии. Это приводит к развитию синдрома позвоночной артерии, который также может иметь и сосудистое происхождение. В обоих случаях это сопровождаться сужением просвета одной или обеих артерий, деформацией стенок, но в любом случае приводит к нарушению кровоснабжения и гипоксии отдельных частей головного мозга.
Это может проявляться самым разным образом, в том числе вегетативными расстройствами от головокружений до сложностей с поддержанием равновесия, поскольку позвоночные артерии в области затылочного проема объединяются в базиллярную артерию, которая обеспечивает 15—30% кровоснабжения головного мозга и спинного мозга на уровне шейного отдела позвоночника.
Кроме развития гипоксии, возникновение вертебрального синдрома может сопровождаться компрессией спинномозговых корешков, выходящих сквозь естественные отверстия в позвонках. В результате будут наблюдаться сильные боли, иногда носящие характер прострелов, как непосредственно в месте поражения, так и отдающие в руки, голову, область за грудиной и другие части тела, а также нарушения их чувствительности и подвижности.
Гемическая
Для этого типа гипоксии характерно уменьшение кислородной емкости крови, что наблюдается при:
Тканевая
Тканевая гипоксия возникает при нарушении способности тканей поглощать доставленный кровью кислород в результате снижения скорости протекания биологического окисления. Это может быть следствием:
Тканевая гипоксия может развиваться на фоне экзогенной, респираторной, циркуляторной или гемической гипоксии.
Симптомы гипоксии
Характер и выраженность возникающих симптомов напрямую зависят от:
Поэтому в каждом случае кислородное голодание может проявляться по-разному. При этом наличие определенных симптомов помогает определить его вид и сузить перечень заболеваний и состояний, которые могли спровоцировать его развитие. А потому благодаря проведению ряда диагностических процедур удается максимально быстро установить причину возникновения гипоксии и подобрать оптимальную тактику для ее устранения и предотвращения развития в будущем.
При любых признаках развития кислородной недостаточности нужно как можно скорее обратиться к врачу, а при симптомах острой гипоксии – вызвать бригаду скорой помощи.
При острой гипоксии головного мозга симптомы нарастают прогрессивно. Изначально человек впадает в возбужденное состояние и чувствует прилив энергии. Но это сопровождается нарушениями координации движений, шаткостью походки, покраснением или наоборот побледнением кожи, холодным потом. Если на этой стадии не принять меры и не восстановить нормальное поступление кислорода к клеткам головного мозга, наступает 2-я стадия – торможение. Из-за истощения запасов энергии, накопленной в виде гликогена, работа нервной системы замедляется, что приводит к возникновению головокружения, тошноты или даже рвоты. Также наблюдается снижение остроты зрения, причем нередко пациенты жалуются на внезапное потемнение в глазах, что может закончиться обмороком. При отсутствии медицинской помощи развиваются необратимые изменения ЦНС, что приводит к коме и отказу жизненно важных органов.
Также кислородное голодание может проявляться:
При молниеносной гипоксии может немедленно наступать остановка сердца и прекращение жизненно важных функций.
Проявления хронического кислородного голодания
Хроническая гипоксия часто становится следствием длительно сохраняющейся недостаточности кровообращения, в частности в позвоночных артериях, нарушения дыхания. Она диагностируется намного чаще других форм кислородной недостаточности и не требует срочных реанимационных мероприятий. В таком случае значительно важнее установить причину ее развития и воздействовать на нее. Для этой формы характерны:
При кислородном голодании, возникшем в результате вертебрального синдрома с вовлечением в патологический процесс одной или обеих позвоночных артерий, наблюдаются:
Эти симптомы могут возникать периодически и носить острый характер или присутствовать практически постоянно.
Одной из главных опасностей гипоксии любого типа является возникновение в коре головного мозга функциональных и структурных изменений, так как именно нервная ткань наиболее чувствительна к кислородному голоданию. При тяжелой гипоксии развиваются судороги и кома.
Диагностика
Для определения наличия и степени выраженности кислородного голодания врач оценивает состояние пациента и характер имеющихся симптомов. В первую очередь он обращает внимание на наличие одышки, учащение сердцебиения, наличие признаков поражения головного мозга и характер возникших неврологических расстройств, измеряет артериальное давление и оценивает работу сердца. Уже на основании этих факторов можно диагностировать наличие гипоксии и немедленно принять меры для ее ликвидации во избежание развития нежелательных, а нередко и необратимых последствий.
Точно установить наличие гипоксии головного мозга за считаные секунды можно с помощью пульсоксиметра. Этот компактный прибор надевается на палец больного и показывает уровень сатурации, т. е. насыщения крови кислородом, а также частоту сердцебиения. В норме сатурация выше 95%.
Параллельно с проведением лечения гипоксии проводится диагностика причин ее развития, если их не удалось установить в ходе первичного опроса и осмотра пациента. С этой целью назначаются:
При наличии подозрений на развитие заболеваний позвоночника проводится рентген и МРТ шейного отдела, УЗИ сосудов шеи с допплерографией.
Важно точно определить причины гипоксии головного мозга и воздействовать непосредственно на них. В противном случае первоначальное заболевание будет прогрессировать, а состояние пациента ухудшаться. В результате резко увеличивается вероятность развития осложнений и необратимых изменений в тканях.
Лечение гипоксии головного мозга
Характер терапии зависит от выраженности гипоксии и причины ее развития. В наиболее легких случаях, когда она является следствием дефицита кислорода во вдыхаемом воздухе, достаточно вывести человека из душного помещения, спуститься с высоты, подняться с глубины и т. д. При развитии эндогенной гипоксии головного мозга лечение подирается индивидуально. Если наблюдается средняя степень кислородной недостаточности, для предотвращения ухудшений состояния могут вводиться нейролептики, кортикостероиды и другие средства экстренной помощи. Также проводится оксигенотерапия для быстрого восстановления нормального количества кислорода в организме.
Дальнейшее лечение разрабатывается в зависимости от формы гипоксии. Так:
В тяжелых случаях лечение осуществляется в стационаре с проведением оксигенотерапии или подключением пациента к аппарату ИВЛ.
Таким образом, гипоксия головного мозга представляет собой опасное состояние, которое может привести к тяжелым последствиям или даже смертельному исходу. Чаще встречается хроническая гипоксия, которая может сохраняться годами. Но прогноз всегда лучше при начале лечения на самых ранних стадиях развития заболевания. Поэтому не стоит игнорировать его проявления. Лучше сразу записаться на консультацию к неврологу и либо полностью развеять свои сомнения, либо начать соответствующее ситуации лечение и избежать нежелательных последствий для здоровья.
Кислород имеет значение: роль гипоксии в патогенезе риносинусита
Эпителий дыхательных путей – первый защитный барьер против факторов окружающей среды. В данной статье рассмотрены патогенетические механизмы нарушения работы этого барьера, приводящие к развитию синуситов.
Авторы Hyung-Ju Cho и Chang-Hoon Kim. Впервые опубликовано 02/2018 в журнале BMB Reports. Оригинал статьи доступен по ссылке.
Введение
Эпителий дыхательных путей представляет собой первую линию защиты от факторов окружающей среды, выступая в качестве механического барьера наряду с мукоцилиарным транспортом (MЦT) как составляющая врожденного иммунитета (1). Для поддержания этой физиологической роли необходимо постоянное производство энергии, которое обеспечивается адекватной оксигенацией (2). Некоторые патологические состояния могут привести к снижению уровня кислорода в эпителии дыхательных путей. При хронических заболеваниях дыхательных путей, таких как синусит, аллергический ринит, астма и хроническая обструктивная болезнь легких, снижение количества кислорода может происходить из-за патологических изменений в микрососудистых структурах или из-за увеличения метаболических потребностей (3). Эти заболевания обычно сопровождаются такими патологическими явлениями, как инфильтрация воспалительными клетками, реорганизация тканей или гиперсекреция слизи (4).
Хронический синусит является одним из заболеваний верхних дыхательных путей, связанных с гипоксией. Слизистая оболочка пазух состоит из ресничного столбчатого эпителия и бокаловидных клеток. Реснички эпителиальных клеток играют важную роль в транспортировке слизи из пазухи через соустье и поддержании нормального физиологического состояния гайморовых пазух. Нормальный мукоцилиарный транспорт необходим для поддержания врожденной защиты дыхательных путей, и показано, что при риносинусите происходит снижение эффективности мукоцилиарного транспорта. Дефект мукоцилиарного транспорта может развиться из-за изменений вязкости слизи или воздействия токсинов (5). Гипоксия является еще одним потенциальным фактором развития синусита, и в данном обзоре рассмотрен патогенез синусита, связанного с гипоксией.
Cвязанная с гипоксией гиперсекреция слизи, опосредованная HIF-1α
Механическая непроходимость пазухи снижает концентрацию кислорода внутри нее, что приводит к синуситу (6). Гиперплазия бокаловидных клеток является одним из основных гистопатологических изменений при хроническом риносинусите (7). В гипоксических условиях гипоксически-индуцируемый фактор-1 (HIF-1) необходим для транскрипционной экспрессии эритропоэтина (8), фактора роста эндотелия сосудов (VEGF) (9), гемоксигеназы-1 (10) и трансферрина (11). HIF-1 состоит из гетеродимера, α и β-субъединиц (12), и активация HIF-1α служит проводником для сигнального пути ERK (extracellular signal-regulated kinase) (13). Хотя гипоксия является эффективным стимулятором воспаления (4), роль гипоксии в перепроизводстве слизи и связанных с этим механизмах не доказана однозначно. Элемент гипоксия-ответ (HRE — hypoxia-response element) обычно присутствует в проксимальном промоторе и включает в себя один или несколько участков связывания HIF-1 (14). Мутация в локусе HRE инактивирует транскрипционный ответ на гипоксию (15, 16). Промоторная область гена MUC5AC включает в себя последовательность, аналогичную HRE (17, 18). Поэтому мы провели исследование промоторной области гена MUC5AC, чтобы понять механизм действия индуцированного гипоксией гена MUC5AC в эпителии дыхательных путей. В основном мы использовали первичные человеческие назальные эпителиальные (HNE) клетки, которые были культивированы и дифференцированы в воздушно-жидкой системе, в экспериментах in vitro (19). В гипоксическом состоянии клетки HNE индуцировали экспрессию мРНК MUC5AC и белка MUC5AC (20). Было также зафиксировано повышение экспрессии HIF-1α в клетке HNE, вызванное гипоксией, и эксперимент с уменьшением или усилением функции подтвердил роль HIF-1α в экспрессии MUC5AC в гипоксической среде. Чтобы определить степень связывания ДНК HIF-1α с промотором MUC5AC при гипоксии, мы провели анализ иммунопреципитации хроматина (ChIP). Было показано, что регуляторная область HRE промотора MUC5AC играет важную роль в увеличении транскрипционной активности MUC5AC, вызванной гипоксией (20). Иммуногистохимическое окрашивание продемонстрировало значительную экспрессию MUC5AC и HIF-1α в эпителии слизистой оболочки пазухи. Эти данные свидетельствуют о том, что гипоксическое состояние в пазухе связано с синуситом через избыточное производство MUC5AC посредством HIF-1α-опосредованного механизма.
Эпителиальный барьер при гипоксии: VEGF-опосредованный механизм
Было изучено несколько аспектов патофизиологии повреждения эпителия. Было продемонстрировано, что гипоксия способствует разрушению эпителиального барьера посредством VEGFR-1 (рецептор фактора роста эндотелия сосудов — 1) в эпителии сетчатки (21). Действие IL-13 (интерлейкина — 13) приводит к нарушению плотного соединения в бронхиальном эпителии (22). Риновирусная инфекция является фундаментальным предрасполагающим фактором для последующей бактериальной инвазии, диссоциируя белки плотных контактов zona occludens-1 (23). Насколько нам известно, это первый отчет, который разъясняет роль оси гипоксия-HIF-VEGF в регуляции эпителиальной парацеллюлярной проницаемости в эпителии дыхательных путей.
Нарушение функции эпителиального барьера является важным гистологическим изменением, имеющим клиническое значение. Этот факт дает возможность разработки новых терапевтических средств для улучшения функции эпителиальных барьеров при различных заболеваниях дыхательных путей. Уязвимость к адгезии или инвазии патогенов может быть увеличена из-за повышенной проницаемости эпителиального барьера. Мы также подтвердили, что в гипоксических условиях бактериальная проницаемость назального эпителия растет по сравнению с проницаемостью при нормоксии.
Эпителиальный барьер при гипоксии: механизм, опосредованный белками плотных контактов
Функцию эпителиального барьера поддерживают плотные и адгезивные контакты. Плотные контакты находятся в апикальной зоне клеток и отделяют просвет, находящийся апикальнее, от базолатеральных структур. ZO-1 представляет собой компонент плотного контакта, который присутствует в верхней части эпителия (33). Адгезивные контакты также важны для межклеточной связи, поскольку они предоставляют сайт для стыковки сигнальных молекул (34, 35). Основным компонентом адгезивного контакта является E-кадгерин — трансмембранный белок, который образует кальций-зависимые гемофильные межклеточные связи между эпителиальными клетками (36). В слизистой оболочке носа человека вирусная инфекция приводит к нарушениям в комплексах плотных и адгезивных контактов, особенно ZO-1. Было показано, что это способствует увеличению интраназальной инокуляции бактерий у мышей (23). При аллергии в слизистой оболочке носа происходит снижение уровня мРНК ZO-1 (37). Снижение уровня ZO-1 в совокупности с повышением уровня E-кадгерина наблюдалось и в эпителии назального полипа (38). Следовательно, изменения уровня ZO-1 или E-кадгерина могут привести к нарушению эпителиального барьера при различных патологических состояниях (39).
Чтобы доказать влияние гипоксии на барьерную функцию, мы исследовали влияние гипоксии на уровни экспрессии ZO-1 и E-кадгерина (40). После 8 часов в гипоксических условиях экспрессия ZO-1 и E-кадгерина значительно уменьшалась. Факт нарушения эпителиального барьера было также подтвержден при измерении TEER. Уменьшенная экспрессия ZO-1 и E-кадгерина была также выявлена при хроническом синусите в эпителии пазух, который подвержен значительному влиянию гипоксии. Таким образом, гипоксия приводит к даунрегуляции молекул плотных контактов и увеличению TEER, что указывает на нарушение нормальной барьерной функции носового эпителия.
Воспаление при гипоксии: HMGB-1 опосредованный механизм
Амфотерин (HMGB1 — high-mobility group protein B1) представляет собой белок небольшого размера, который действует как шаперон ДНК. Амфотерин выделяется во внеклеточное пространство либо активно, либо пассивно. Высвобождение амфотерина после провоспалительной стимуляции является активным процессом. Его же высвобождение после апоптоза и некроза — пассивный процесс.
Амфотерин, который высвобождается во внеклеточное пространство, связывается с толл-подобным рецептором (TLR) 2 или TLR 4 и рецептором конечных продуктов гликирования (RAGE). Это приводит к активации провоспалительных сигнальных путей (41-43). Функция амфотерина, который перемещается из ядра в цитоплазму, зависит от посттрансляционных модификаций (фосфорилирования, ацетилирования и окисления). Важную роль в этом процессе играют активные формы кислорода (ROS — reactive oxygen species) (41, 42, 44, 45). Недавно мы сообщали об обнаружении повышенного количества амфотерина в назальном лаваже пациентов с хроническим риносинуситом (46). Существует вероятность того, что при гипоксии амфотерин может переместиться из ядра в цитоплазму и высвободиться во внеклеточное пространство. Тогда он будет служить характерным маркером повреждения ткани, связанного с гипоксией (47, 48). Поэтому мы исследовали роль амфотерина в прогрессировании воспалительных заболеваний верхних дыхательных путей в гипоксических условиях. Гипоксия индуцирует перемещение амфотерина из ядра во внеклеточное пространство клеток RPMI 2650 (среда для культур клеток и тканей) и клеток HNE (human nasal epithelial). Иммунофлуоресцентный анализ (ELISA и western blotting) выявил увеличение концентрации амфотерина в цитоплазме при гипоксии и в супернатанте клеток HNE (49). Гипоксия увеличивает локальный окислительно-восстановительный потенциал из-за изменений в производстве ROS (50). Производство ROS зависит от содержания кислорода: умеренная степень гипоксии стимулирует продукцию ROS, но тяжелая гипоксия ее ингибирует (50). Изменения концентрации кислорода по-разному влияют на окислительно-восстановительный потенциал структуры амфотерина, изменяя таким образом его функцию. В наших экспериментальных условиях гипоксия значительно повысила количество ROS. Это подтверждалось тем, что предварительное введение акцептора ROS, N-ацетилцистеина (NAC), подавляло индуцированный гипоксией рост концентрации ROS. Иммунофлуоресцентный анализ показал снижение перемещения амфотерина в цитоплазму, что подразумевает зависимость амфотерина от увеличения количества ROS.
Также был выявлен факт внеклеточной секреции амфотерина. Предварительная обработка ацетилцистеином уменьшала уровень амфотерина из собранных апикальных супернатантов при иммунофлюоресцентном анализе ELISA и western blotting (49). NADPH-оксидазы могут генерировать ROS и двойную оксидазу (DUOX) 1 и 2. Подтипы NADPH-оксидазных ферментов играют важную роль в производстве ROS при воспалении дыхательных путей (51). Нокдаун гена DUOX 2 с использованием короткой РНК, образующей шпильки, привел к (shDUOX2) снижению продукции ROS в клетках HNE, но при нокдауне гена DUOX 1 изменений не наблюдалось. Клетки HNE с внедренной shDUOX2 также демонстрировали снижение секреции амфотерина под воздействием гипоксии (49). Таким образом, очевидно, что именно DUOX2, а не DUOX1, играет важную роль в секреции амфотерина при гипоксии, и именно DUOX2 может приводить к ROS-активации TLR2 и TLR4 в эпителии верхних дыхательных путей (51).
Носовые выделения пациентов с хроническим риносинуситом могут содержать триптазу тучных клеток, эластазу нейтрофилов, эозинофильный катионный белок, метаболиты оксида азота, IL-1, IL-5 или IL-8, что предполагает, что эти молекулы участвуют в развитии хронического воспаления в верхних дыхательных путях (52-55). Амфотерин связывается с несколькими специфическими рецепторами клеточной поверхности, такими как RAGE или TLR, и действует как цитокиноподобный белок, индуцирующий хемотаксис и высвобождение цитокинов. Мы выявили амфотерин, TNF-α, IL-1β и IL-8 в носовых выделениях пациентов с хроническим риносинуситом и провели корреляционный анализ с использованием шкалы Ланда-Маккея — системы подсчета баллов, указывающую на тяжесть симптомов синусита.
TNF-α был обнаружен только у 21% пациентов, а IL-1β был обнаружен у 44% пациентов без корреляции с тяжестью симптомов (46). Впрочем, как амфотерин, так и IL-8 были обнаружены во всех пробах назальной жидкости у пациентов, и их уровень коррелировал с оценкой по шкале Ланда-Маккея. Интересно отметить, что уровень HMGB1 был связан и с уровнем IL-8 (46). Поэтому мы исследовали IL-8 в клетках HNE под гипоксией и обнаружили, что секреция IL-8 увеличивалась при гипоксии и снижалась при предварительной обработке ацетилцистеином. Это открытие позволяет предположить, что секреция IL-8 регулируется сигнальным механизмом ROS. Кроме того, введение рекомбинантного амфотерина (rHMGB1) млекопитающих индуцировало секрецию IL-8 в супернатантах культуры апикальных клеток. Применение анти-HMGB1 антительного блокатора для ингибирования функции секретируемого белка амфотерина прерывало производство IL-8 (49). Это наблюдение очень интересно, потому что амфотерин может быть связан с конкретными цитокинами, такими как IL-6, IL-8 и IL-33 в носовом эпителии (56, 57). Амфотерин также индуцирует высвобождение IL-1α, IL-1β, IL-6, IL-8 и TNF-α в макрофагах и TNF-α, IL-1β и IL-8 в нейтрофилах (58). В эндотелиальных клетках амфотерин может увеличить производство тканевого фактора — первоначального белка коагуляционного каскада, также участвующего в регуляции фибринолиза (59, 60).
Заключение
Анализ результатов вышеперечисленных исследований показал, что гипоксия играет важную роль в патогенезе воспаления верхних дыхательных путей, особенно при хроническом риносинусите (рис.1). HIF-1α является ключевым фактором гомеостаза кислорода в эпителии и опосредует избыточное производство MUC5AC. HIF-1α-опосредованная гиперэкспрессия VEGF и функциональные изменения белков контактов (ZO-1 и E-кадгерина) также являются важными аспектами, приводящими к нарушению эпителиального барьера при гипоксии. Кроме того, гипоксия индуцирует транслокацию амфотерина в цитоплазму и высвобождение IL-8 посредством ROS-зависимого механизма в эпителии дыхательных путей. Предполагается, что исследование патофизиологии гипоксии в эпителии дыхательных путей поможет в поиске новых путей лечения заболеваний верхних дыхательных путей.
Рис.1. Патофизиология гипоксия-индуцированного воспаления верхних дыхательных путей. При гипоксии HIF-1α служит ключевым фактором, опосредующим избыточную продукцию MUC5AC. Гипоксия стимулирует HIF-1α-зависимую гиперэкспрессию VEGF, приводящую к нарушению функции эпителиального барьера и функциональным изменениям белков связей (E-кадгерина и ZO-1). Кроме того, гипоксия индуцирует перемещение амфотерина (HMGB1) в цитоплазму и высвобождение IL-8 посредством ROS-зависимого механизма в эпителии дыхательных путей.
- То же что и инопланетянин 8 букв
- То же что и коррумпированный 9 букв