Токамак что это такое

Токамак

Термин «токамак» был предложен И. Н. Головиным в 1955-1956 гг.
Это аббревиатура слов ТОк, КАмера, МАгнитная Катушка, обозначающих основные элементы устройства.

Магнитное поле служит для удержания высокотемпературной плазмы (1) в тороидальной вакуумной камере (2), ограждая плазму от контакта со стенками камеры.
В токамаке магнитное поле складывается из поля катушек (3) и поля (4) тока (5), текущего непосредственно по плазме в тороидальном направлении (тороидального тока).
Поле тока перпендикулярно направлению самого тока и полю катушек.
Оно закручивает силовые линии магнитного поля по винту, и в итоге они образуют набор вложенных друг в друга тороидальных поверхностей.
Такая магнитная конфигурация обеспечивает равновесие плазмы в токамаке, устраняя тороидальный дрейф заряженных частиц плазмы.
Отдельная заряженная частица может удерживаться в токамаке бесконечно долго; т. е. токамак является идеальной ловушкой.
Потери плазмы в устройстве определяются переноса процессами, связанными со столкновениями частиц и турбулентностью плазмы.
Обмотки (6) служат для создания вертикального поля, обеспечивающего удержание плазменного шнура в целом, и позволяют контролировать форму его сечения.

Отличительная черта токамака – присутствие электрического тока.
Для его создания применяется принцип обычного трансформатора с индуктором (7).
Первичной обмоткой трансформатора служит центральный соленоид (8), а вторичной, одновитковой обмоткой – собственно плазма.
Ток в токмаке создает необходимую для удержания плазмы компоненту магнитного поля и нагревает плазму.
Благодаря такому сочетанию удержания и нагрева токамак занял лидирующее место среди других систем магнитного УТС, таких как стеллараторы, открытые ловушки, пинчи, пинчи с обращенным полем и др.
Однако ток может служить и причиной неустойчивостей плазмы, наиболее опасная из которых – неустойчивость срыва, приводящая к выбросу плазмы на стенку и прекращению разряда в токамаке.
Задача длительного поддержания тока – главная трудность в обеспечении стационарной работы токамака.

Источник

Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте

Российская наука сегодня шагнула вперед. Все благодаря новой термоядерной установке токамак, аналогов которой в мире нет. Она первая за последние 20 лет. А запустили ее в рамках Года науки в Курчатовском институте. Размеры компактные, но мощность запредельная. И перспективы для энергетики тоже.

«Здесь прохладно, а вот в камере, так сказать, горячо. Когда мы ее полностью нагреем — 100 миллионов градусов», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко.

Температура в 10 раз больше, чем в центре Солнца, и задачи космического масштаба — запустить термоядерные реакции, которые происходят в недрах звезд.

Звезда по имени токамак – рукотворное Солнце на поверхности на Земле. Эта установка дает надежду на светлое будущее – термоядерный синтез может обеспечить человечество чистой энергией на тысячелетия вперед. И запуск российской установки — большой шаг на этом пути.

Токамак Т-15 МД размером с небольшой дачный домик полностью спроектировали и построили в России за 10 лет. Подобный термоядерный реактор должен помочь заменить атомные электростанции и работать на безопасном и доступном топливе – дейтерии и тритии.

«Энергия колоссальная. На несколько порядков больше, чем сжигание нефти или газа того же количества, в десятки тысяч раз», — сообщил научный руководитель комплекса термоядерной энергетики и плазменных технологий НИЦ «Курчатовский институт» Петр Хвостенко.

Еще в 50-х годах прошлого века советские ученые придумали установку в форме тора, или бублика, где разогретую плазму удерживает магнитное поле. Тогда и родился термин «токамак» (тороидальная камера с магнитной катушкой). Сегодня в работе с токамаками российские специалисты по-прежнему впереди планеты всей.

В термоядерном синтезе множество задач, которые никому не удается решить уже десятки лет. Глава правительства Михаил Мишустин дал старт большому проекту класса «Мегасайенс», который должен помочь выйти за рамки современных научных догм.

«Огромное событие не только для России, но и для всего мира. И, конечно, я сразу же хочу поздравить весь ваш дружный коллектив, который много лет работал над тем, чтобы продвинуться еще дальше. Появляется уникальная инфраструктура для научных исследований, для того, чтобы, как говорят ученые, управляемый термоядерный синтез все-таки создал неиссякаемый источник энергии», — сказал премьер Михаил Мишустин.

На этой установке российские ученые будут проводить исследования, без которых невозможен запуск международного проекта ИТЭР. Самый большой в мире экспериментальный термоядерный реактор сейчас строится на юге Франции. На связь оттуда вышел генеральный директор проекта.

«В нашем международном проекте Россия играет ключевую роль, уже много лет вы являетесь ведущей мировой державой в технологиях токамака и синтеза. Я бы хотел дать наивысшую оценку качеству российского оборудования, поставляемого для ИТЭР», — сказал генеральный директор Международной организации ИТЭР Бернар Биго.

На совещании глава правительства обсудил с российскими учеными федеральную программу развития синхротронных и нейтронных исследований. До 2027 года на нее предусмотрено выделить 138 миллиардов рублей. В рамках программы Курчатовский институт создает по стране целую сеть мегаустановок нового уровня.

«Нам надо обновить, провести модернизацию созданной несколько десятилетий назад базы для производства. Россия была абсолютно самодостаточна. Мы производили все сами, все компоненты от начала до конца. И сейчас у нас это есть, но это требуется перевести на современный уровень», — отметил президент НИЦ «Курчатовский институт» Михаил Ковальчук.

План по модернизации прорабатывается, и глава правительства призвал ученых присоединиться к этой работе. Сами же подобные установки призваны сделать научные прорывы во всевозможных сферах: от медицины и сельского хозяйства до генетики и космоса.

«Чтобы мы могли восстанавливать, в том числе, производство компонентов, новых материалов, микроэлектроники — все это было реализовано. Не только придумано, но и сделано или растиражировано в нашу обычную жизнь», — подчеркнул Михаил Мишустин.

На встрече обсудили и внедрение в жизнь так называемых природоподобных технологий – Михаил Мишустин заявил, что поручит до 1 сентября разработать стратегию их развития в России.

Источник

Что такое Токамак? Просто о термоядерном реакторе

Можете ли вы представить себе мир, в котором не нужны никакие дополнительные источники энергии? Мир, в котором не надо будет задумываться о том, как экономить энергию. Она будет если и не бесплатной, то очень дешевой. А теперь представьте Солнце, которое каждую секунду вырабатывает столько энергии, сколько человечество не израсходовало за всю свою историю и не израсходует еще долго. Как же мы можем реализовать получение энергии Солнца на нашей планете? Оказывается, уже более 60 лет существуют технологии, которые способны обеспечить нас почти неисчерпаемыми источниками энергии за минимальные деньги и с использованием почти бесплатного топлива. Резонный вопрос: почему мы не пользуемся такой возможностью?

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Внутри этой камеры температура поднимается до нескольких миллионов градусов Цельсия.

Что такое токамак

Само слово ”токамак” ничего не обозначает — это просто сокращение, которое потом стало полноценным словом. Его используют не только в России, но и за рубежом, так как именно в нашей стране эту штуку придумали и именно у нас они долгое время активно развивались.

Суть токамака сводится к тому, чтобы создать магнитное поле, в котором будет протекать реакция термоядерного синтеза. Так как температура такой реакции не просто высокая, а буквально запредельная (несколько миллионов градусов Цельсия), ее нельзя проводить просто внутри какой-то камеры — она расплавится задолго до достижения рабочей температуры.

Такая температура достигается из-за того, что внутри токамака вещество находится в четвертом агрегатном состоянии, которое достигается при таких высоких температурах. Такое состояние называется плазма.

Кто изобрел токамак

Первым, кто предложил использовать термоядерный синтез, в том числе и для промышленных целей, был советский физик О.А. Лаврентьев. Сделал он это в своей работе 1950 года. Именно с его работы началось изучение способов использования термоядерного синтеза.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

О.А. Лаврентьев также является отцом водородной бомбы.

Спустя год другие физики — А.Д. Сахаров и И.Е. Тамм — развили идею и сказали, что термоядерная реакция должна поддерживаться внутри замкнутой камеры тороидальной формы.

Тор (тороид) — представляет собой объемную фигуру, получающуюся в результате вращения кольца вокруг центра вращения. Грубыми примерами тора могут служить пончик, бублик или велосипедная камера, вынутая из колеса.

Термин для обозначение токамака был предложен учеником академика Курчатова — И.Н. Головиным. Правда, в его варианте это должен был быть ”Токамаг” (тороидальная камера магнитная), но позже стали использовать более благозвучное слово ”Токамак”.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

А.Д. Сахаров и И.Е. Тамм

Первый действующий токамак был построен в 1954 году, но до 1968 года они существовали только в СССР, так как мало кто верил в существование внутри камеры такой высокой температуры. Только после того, как в токамаке Т-3 в Институте атомной энергии им И.В. Курчатов побывали английские ученые и на своем оборудовании подтвердили существование температуры 11,6 миллиона градусов Цельсия, это привело к взрывному росту популярности и исследований в этом направлении в мире.

Токамак и сейчас считается самым перспективным способом получения энергии термоядерного синтеза и изучения плазмы, как агрегатного состояния вещества.

Как работает токамак

Для создания внутри токамака магнитного поля, он составляется из секций, внутри которых намотаны катушки. Так как они идут по всей длине камеры и создают что-то вроде замкнутого тоннеля, получающееся магнитное поле называют тороидальным. Это и есть рабочая зона установки.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Перед началом работы из камеры токамака откачивают воздух, а вместо этого заполняют его смесью дейтерия и трития. Они и являются основой реакции термоядерного синтеза.

Преимущество использования этих двух элементов в том, что они очень дешевые. Дейтерий очень легко получается из воды, которой на нашей планете более чем достаточно, а тритий синтезируется пусть и чуть более сложным способом, но это тоже не является большой проблемой.

Когда камера заполнена, в ней создается вихревое электрическое поле, которое поддерживают плазму внутри камеры, а заодно разогревает ее, доводя до той самой температуры в несколько миллионов градусов.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Сейчас тут работают люди, а скоро будет 150 миллионов градусов.

Так как поле и нагрев создаются за счет увеличения тока в индукторе, а он не может увеличиваться бесконечно, время существования плазмы в стабильном состоянии пока не превышает нескольких секунд. Это и является главной причиной того, что мы пока не можем использовать токамаки в качестве источника промышленного получения энергии. Существую способы решения этой проблемы, в том числе с использованием микроволнового излучения, но пока работы в этом направлении еще ведутся.

Контакта стенок токамака с плазмой нет и поэтому они не плавятся, но они все равно испытывают серьезные нагрузки. Из-за этого стенки делаются из бериллия и нарезаются маленькими квадратными пластинками. Так им проще отводить тепло.

Впрочем, микроволновое излучение и так применяется внутри токамака, так как только электромагнитного поля недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции.

Обычная физика частиц четко говорит нам, что ядра с одинаковым зарядом отталкиваются друг от друга. Но при достижении сверхвысоких температур, они начинают вести себя иначе, образуя ядро гелия плюс один свободный нейтрон. Именно в этот момент и высвобождается огромное количество энергии. В обычных условиях она тратится на взаимодействие атомов между собой.

Самый большой термоядерный реактор

Конечно, можно сказать, что самый большой термоядерный реактор — это Солнце, но все это условно, есть звезды и побольше. Самый большой термоядерный реактор на Земле — это ”Международный экспериментальный термоядерный реактор” (ИТЭР или ITER). Он строится на юге Франции с 2007 года и, как и большой адронный коллайдер, является международным проектом.

Для того, чтобы описать его возможности, достаточно только сказать, что внутри него будет достигаться температура в 150 миллионов градусов Цельсия. Это в 10 раз больше, чем внутри солнечного ядра. Представить себе такие значения просто невозможно.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Кто строит токамак ITER.

Когда ИТЭР будет достроен (о чем мы обязательно расскажем в нашем новостном Telegram-канале), он станет основной изучения термоядерного синтеза для дальнейшего изучения этой реакции атомов, как потенциального источника энергии будущего.

Из интересных цифр ИТЭР можно отметить размер токамака, который составит 28 метров в диаметре и 28 метров в высоту. Проектная мощность составляет 0,5 ГВт (в 2,5 больше самого мощного из того, что есть сейчас). Магнитное поле составит 10 Тесла (магнитное поле Земли составляет 0,00005 Тесла).

Безопасна ли реакция термоядерного синтеза

Главным преимуществом реакции термоядерного синтеза, проходящей внутри токамака, является ее безопасность. Можно удивиться, как такое возможно при достижении таких высоких температур, но это действительно так.

Единственной опасностью является только то, что изотоп трития обладает небольшой радиоактивностью. Впрочем, она не такая высокая, чтобы переживать по этому поводу. Она существенно ниже, чем у топлива для атомной станции. Например, период полураспада уранового топлива составляет почти 5 миллиардов лет (то есть почти никогда), а трития — всего 12 лет. Да и используется его минимальное количество.

Всего 80 грамм смеси дейтерия и трития в токамаке выдают столько же энергии, сколько 1 000 тонн угля при сжигании. Вот и считайте.

Почему энергию не получают из термоядерного синтеза

Несмотря на всю перспективность технологии и то, что о ней заговорили уже более 70 лет назад, пока не получается добиться промышленной работы таких устройств. До сих пор в них есть, что дорабатывать. Например, возможность продолжительной работы и дальнейшее повышение температуры плазмы.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Только представьте себе, как это маленькое солнце будет обеспечивать нас энергией в будущем.

Когда эта проблема будет решена, мы получим на Земле небольшой кусочек Солнца, и тогда можно будет говорить, что мы достигли совершенства в выработке энергии. Конечно, могут изобрести и другие еще более эффективные способы получения энергии, но именно термоядерный синтез сейчас может изменить очень многое. Самое главное, что мы получим не только возможность не выключать свет ради экономии.

Главным плюсом перехода на такой источник энергии является то, что когда вся энергия будет добываться именно из термоядерного синтеза, мы максимально снизим воздействие на нашу планету. Нам будет не нужно ископаемое топливо, мы обойдемся без атомных станций, а заодно пересядем на электрический транспорт и сможем существенно продлить жизнь нашей планете. Может, и улетать никуда не придется.

Источник

Термоядерный гигантизм В 2020-х годах заработает самый мощный в мире токамак

Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта. «Лента.ру» посетила презентацию ИТЭР и поговорила с одним из участников проекта.

ИТЭР (ITER, International Thermonuclear Experimental Reactor — Международный термоядерный экспериментальный реактор) — проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Вид на стройплощадку токамака сверху, полученный 29 апреля 2014 года

Фото: LESENECHAL/ PPV-AIX.COM

Об ИТЭР

Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения — вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа — JET — объем равен ста кубическим метрам.

Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров — под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Токамак JET из Оксфордшира в Великобритании с внешним радиусом 2,96 метра позволяет разогревать плазму объемом до ста кубических метров

В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек — в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина — около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.

Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.

Токамак

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Фото: Nobel Foundation

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (тороидальная камера с магнитными катушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода — дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Фото: НИЦ «Курчатовский институт»/ nrcki.ru

Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.

Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом, и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.

Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные из которых находятся в Европе, Японии, США и России.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Основные участники проекта: ЕС, Индия, Китай, Республика Корея, Россия, США и Япония

Изображение: Rfassbind/ wikipedia.org

Управление ИТЭР

В 1985 году Евгений Велихов предложил Михаилу Горбачеву объединить усилия США и СССР в области термоядерной энергетики и начать работу над созданием международного термоядерного реактора на основе токамака. В 1988 начались первые проектные работы, и уже в 1992 году было подписано международное соглашение о разработке технического проекта реактора ИТЭР. Полная стоимость на этапе разработки проекта составила около двух миллиардов долларов. Участие России и США в финансировании этого этапа составило примерно по 17 процентов; остальная часть была поделена примерно поровну между ЕС и Японией.

Сейчас основными учредителями ИТЭР являются Евросоюз, Индия, Китай, Южная Корея, Россия, США и Япония. В проекте прямо или косвенно заняты около 35 стран, составляющие более половины населения земного шара. По квоте России с 1994 года в проекте ИТЭР участвует и Казахстан. Ученые планируют уже в 2020 году начать эксперименты на ИТЭР. Однако начало работ часто откладывается; к настоящему времени запаздывание оценивается в два-три года.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

После подписания соглашения о ИТЭР 24 октября 2007 года

Фото: ИТЭР/ iterrf.ru

Где что находится

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Расположение Карадаша отмечено красной точкой, расстояние до ближайшего грузового порта — более ста километров

В самом начале проекта между Японией и Францией шла борьба за возможность размещения установок ИТЭР на своих территориях. В результате победила Франция: в 2005 году было принято решение о строительстве реактора на юге страны, в 60 километрах от Марселя в исследовательском центре Карадаш. Комплекс занимает общую площадь около 180 гектаров. На ней размещены установки реактора, системы энергообеспечения, газохранилище, водонасосная станция, градирня, административные и другие здания. В 2007 году началось строительство комплекса и закладка фундамента, а совсем недавно, 19 марта 2014 года, произведена заливка бетона для установки для получения трития.

Реактор и топливо

В основе работы реактора ИТЭР лежит термоядерная реакция слияния изотопов водорода дейтерия и трития с образованием гелия с энергией 3,5 мегаэлектронвольт и высокоэнергетического нейтрона (14,1 мегаэлектронвольт). Для этого дейтерий-тритиевая смесь должна быть нагрета до температуры более ста миллионов градусов Цельсия, что в пять раз больше температуры Солнца. При этом смесь превращается в плазму из положительно заряженных ядер водорода и электронов. В такой разогретой плазме энергии дейтерия и трития достаточно, чтобы начались термоядерные реакции слияния с образованием гелия и нейтрона.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Термоядерная реакция синтеза гелия

Изображение: Wykis/ wikipedia.org

На один акт реакции выделяется энергия в 17,6 мегаэлектронвольт, которая включает в себя кинетическую энергию нейтрона и ядра гелия. Нейтрон из плазмы попадает в теплоноситель, которым окружена плазма, и его энергия движения переходит в тепловую энергию. Энергия гелия используется для поддержания стационарного температурного режима в плазме.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Макет комплекса ИТЭР 2010 года

Фото: O. Morand/ wikipedia.org

Дейтерий содержится в обычной воде; его ученые научились добывать сравнительно легко. В природном водороде содержится около 0,01 процента этого изотопа. С тритием сложнее — его почти нет на Земле. Однако, ученые планируют получать его в рамках проекта ИТЭР, используя реакции взаимодействия нейтрона с изотопами лития Li-6 и Li-7, который может быть введен в состав теплоносителя бланкета — оболочки, окружающей плазму. Продуктами такого взаимодействия являются гелий, тритий и нейтрон (в случае изотопа Li-7).

Суммируя, можно сказать, что топливом для реактора ИТЭР являются дейтерий и литий. При этом содержание дейтерия в воде океана практически не ограничены, а лития в земной коре почти в 200 раз больше, чем урана; при использовании дейтерия, содержащегося в бутылке воды, выделится столько же энергии, сколько при сжигании бочки бензина: калорийность термоядерного топлива в миллион раз выше любого из современных неядерных источников энергии.

Параметры реактора

Для энергетической выгоды реактор должен функционировать со значением параметра Q, большего пяти. Этот параметр показывает соотношение высвобождаемой в процессе реакции энергии к энергии, затраченной на создание и нагрев плазмы. Кроме того, необходим нагрев плазмы до температуры, большей ста миллионов градусов Цельсия, и такая нагретая плазма в реакторе должна быть устойчивой более одной секунды.

Так, на установке TFTR в Нью-Джерси в США была осуществлена термоядерная реакция с мощностью около десяти мегаватт с импульсом длительностью 0,3 секунды. На установке JET в Великобритании была получена мощность 17 мегаватт с Q=0,6.

Токамак что это такое. Токамак что это такое фото. картинка Токамак что это такое. смотреть фото Токамак что это такое. смотреть картинку Токамак что это такое.

Схема реактора ИТЭР

В реакторе размерами 40 на 40 метров: 1 — центральный соленоид, 2 — катушки полоидального магнитного поля, 3 — катушка тороидального магнитного поля, 4 — вакуумная камера, 5 — криостат, 6 — дивертор.. Изображение: ИТЭР

В ИТЭР в первой фазе эксперимента планируется удержать плазму до тысячи секунд с Q более десяти при температуре около 150 миллионов градусов и выделяемой мощностью в 500 мегаватт. Во второй фазе ученые хотят перейти к непрерывному режиму работы токамака, и, в случае успеха, к первой коммерческой версии токамака DEMO. DEMO будет устроен существенно проще и не будет носить исследовательской нагрузки, а для его работы не потребуется значительного числа датчиков, так как необходимые параметры работы реактора будут отработаны уже на экспериментальном реакторе ИТЭР.

Участие России

Участие России в проекте ИТЭР в настоящее время составляет около десяти процентов. Это позволяет стране получать доступ ко всем технологиям проекта. Основной задачей, которая стоит перед Россией в рамках проекта, является производство сверхпроводящих магнитов, а также разнообразных диагностических датчиков и анализаторов структуры плазмы.

«Лента.ру» побеседовала с российским участником проекта ИТЭР Владимиром Аносовым, начальником группы в отделе экспериментальной физики токамаков ГНЦ РФ ТРИНИТИ.

На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты. поживем — увидим.

Проект скорее носит исследовательский характер?

Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то — Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше. Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

А чем занимается именно ваша группа в ИТЭР?

У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор — уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

В каких отраслях промышленности могут использоваться эти детекторы?

В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

Что именно делают детекторы, что они измеряют?

Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

Какие характеристики нейтронов они измеряют?

Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

У вас в лаборатории есть действующий реактор?

Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя — это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете — мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *