все геоинформационные системы с учетом архитектурных принципов построения подразделяются на
Все геоинформационные системы с учетом архитектурных принципов построения подразделяются на
ГИС системы разрабатываются с целью решения научных и прикладных задач по мониторингу экологических ситуаций, рациональному использованию природных ресурсов, а также для инфраструктурного проектирования, городского и регионального планирования, для принятия оперативных мер в условиях чрезвычайных ситуаций др.
Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам :
По функциональным возможностям:
— полнофункциональные ГИС общего назначения;
специализированные ГИС ориентированы на решение конкретной задачи в какой либо предметной области;
информационно-справочные системы для домашнего и информационно-справочного пользования.
Функциональные возможности ГИС определяются также архитектурным принципом их построения:
открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).
По пространственному (территориальному) охвату:
локальные (в том числе муниципальные).
По проблемно-тематической ориентации:
экологические и природопользовательские;
отраслевые (водных ресурсов, лесопользования, геологические, туризма и т.д.);
По способу организации географических данных:
Геоинформационные системы и «облачные» технологии
Классификация ГИС, функциональность и cредства поддержки
Многообразие существующих ГИС-решений укладывается в различные виды классификаций ГИС [Цветков В.Я., 1998; ДеМерс Майкл Н., 1999; Сырецкий Г.А., 2007].
ГИС различаются предметной областью информационного моделирования — городские или муниципальные (Urban GIS — UGIS), природоохранные (Environmental GIS), производственные (Manufacturing Facilities GIS — MFGIS) и т.д. Проблемная ориентация ГИС определяется решаемыми в ней научными и прикладными задачами — инвентаризация ресурсов (кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений.
Интегрированные ГИС (Integrated GIS — IGIS) совмещают функциональные возможности ГИС и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.
Масштабно-независимые ГИС (Multiscale GIS — MSGIS) основаны на множественных представлениях пространственных объектов (Multiscale Representation), обеспечивая графическое или картографическое вопроизведение данных на любом уровне масштабирования на основе того набора данных, который обеспечивает наибольшее пространственное разрешение. Пространственно-временные ГИС (Spatio-temporal GIS — STGIS) оперируют пространственно-временными данными.
Реализация геоинформационных проектов (GIS Project), включает обычные этапы жизненного цикла:
Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС являются предметом изучения быстро развивающейся ветви информатики — геоинформатики.
В истории развития ГИС геоинформатика выделяет четыре основных периода:
Указанные этапы развития предъявляли всё новые требования к функциональности различных ГИС, однако эти требования сложились в общих чертах на третьем этапе в 80-х 90-х годах. Отметим сразу, что ГИС — это не просто географическая карта, перенесенная на компьютер. Геоинформационные системы хранят информацию в виде наборов тематических электронных слоев, которые можно объединять по любому требуемому признаку. Поэтому технологии ГИС интегрируют в себе операции для работы со слоями, базами данных, средствами анализа и визуализации слоев, содержащих требуемые данные в нужных сочетаниях.
Например, строительство крупного супермаркета в мегаполисе требует совместного анализа данных, указанных на рис. 5.5. Трансформация (объединение, расщепление, масштабирование и т.д.) слоев и конвертирование данных из одного формата в другой производится методами математической картографии и управления данными в базе данных ГИС (рис. 5.6).
Функциональные возможности ГИС
В ГИС в целом выполняется пять основных функциональных процедур с данными: ввод, манипулирование, управление, запрос и анализ, визуализацию [Андрианов В., 1999].
Ввод данных. Географические данные (числа, текст, изображения) для использования в ГИС вводятся в векторном или растровом виде, если такие данные уже существуют в подходящем цифровом формате, либо предварительно оцифровываются с помощью диджитайзера или сканера. Каждый элемент или объект изображения имеет координатную привязку. Тем самым, любые свойства и характеристики реальных объектов (моделей) или их элементов «привязаны» к местоположению объекта в координатной сетке. При этом всегда следует иметь в виду, что технологии оцифровки или занесения данных в конкретный тематический слой, а также наложение и сведение слоев могут сопровождаться значительными ошибками, которые в дальнейшем приведут к заметным искажениям картографических данных и визуализации результата (рис. 5.7).
Средства манипулирования представляют собой различные способы выделения, группировку и преобразования данных, например, приведение всей геоинформации к единому масштабу и проекции на определенный тематический слой для удобства совместной обработки. Для хранения, структурирования и управления данными в ГИС чаще всего используются реляционные базы данных с элементами OLAP-технологий (On Line Analytical Processing) и технологий создания отчетов (Report Creation).
Запрос и анализ можно выполнять на разных уровнях сложности — от самых простых вопросов: где находится объект и каковы его описательные свойства — до поисков и компиляции данных по сложным шаблонам и сценариям вида «А что если. «. В современных ГИС имеются развитые средства анализа взаимной близости и наложения объектов, принадлежащим разным тематическим слоям.
Первый инструмент связан с выделением буферных зон вокруг заданных объектов по комбинации различных параметров (например: «Выделить населенные пункты, расположенные не далее двух километров от конкретного аэропорта» или «Рассчитать зоны поражения при аварии на АЭС и выделить населенные пункты, попадающие в эти зоны»). Второй позволяет рассчитывать пересечение, объединение, исключение и другие сочетания двух и более распределенных объектов (оверлейные операции) при сведении слоёв (рис. 5.6).
Визуализация. Результаты различных операций можно просто отображать на экране или же создавать (рисовать) новые объекты с любыми наборами атрибутивных характеристик. Развитые средства и способы визуализации позволяют ГИС легко управлять отображением данных. Традиционным результатом обработки, анализа и отображения пространственных географических данных является карта, которая дополняется отчетными документами, рельефными цветными изображениями реальных и смоделированных объектов, фотографиями, таблицами, диаграммами, видео клипами развития ситуации и другими мультимедийными средствами.
Кроме указанных базовых операций, современные ГИС имеют достаточно много специальных групп функций, реализующих пользовательские задачи: прокладку оптимального маршрута, поиск кратчайших расстояний, расчетные задачи пространственной статистики, создание моделей геологических структур, морских и воздушных течений и т. д.
Модели географических данных. Для графического представления географических данных, описывающих реальные объекты и их модели в ГИС, используются электронные карты и тематические описания. Параметры местоположения объектов и их отношений есть пространственные (метрические) данные, параметры временных и тематических свойств — атрибутивная (описательная) информация.
В основе моделей данных в ГИС лежит классификатор объектов карты. Он определяет состав и содержание метрических, семантических, тематических, динамических свойств объекта и их изобразительных средств. Система условных обозначений формируется с использованием палитры красок, текстуры линий и заливок, шаблонов знаков и шрифтов. В современных ГИС реализована технология послойного графического представления информации, она соответствует представлению координатных моделей в топологической форме (представление объектов и их связей в виде графа). Атрибутивная информация отображается на слое электронной карты числами, символами и их совокупностями — надписями. Связь координатных и атрибутивных данных устанавливается в БД через соответствующие идентификаторы (по умолчанию или через пользовательский интерфейс). Для представления географических объектов применяются растровые и векторные модели.
Растровая модель — отображение участков поверхности суши и океанов в виде дискретного набора элементов, составляющих нужную картину. Такие элементы называются пикселами (Picture Element), они образуют отображение тематического слоя электронной карты на экране монитора. Каждый пиксел занимает некоторую малую площадь в виде прямоугольника, имеет координаты центра (X,Y) в плоскости слоя карты, связанные с координатами точек географического объекта, и описание его свойств (яркость, цвет и плотность тона), соответствующих аналогичным свойствам объекта.
Растровые цифровые изображения могут быть получены непосредственно при цифровом фотографировании земной поверхности со спутников, либо при обработке аэрокосмических фотографий методами цифрового сканирования с использованием диджитайзеров. Такие изображения хороши для зрительного восприятия и удобны для многоаспектной обработки. Однако они занимают много места в памяти вычислительных устройств и плохо масштабируются — при многократном и многоразовом изменении масштаба, сжатии и дешифровке четкость изображений сильно ухудшается. Поэтому в тех случаях, где заранее оговаривается необходимость масштабирования изображений без потери четкости, применяется технология векторной графики.
Векторная модель — это структурно заданное графическое изображение пространственного объекта. Положение точек объекта задается координатами конца вектора (x,y,z) и описанием свойств этой точки. Отображение объекта задается совокупностью векторов. Так как конец вектора (точка) не имеет площади, то при многократном увеличении или уменьшении изображения объекта (масштабировании) искажения не происходит (рис. 5.8). Векторная графика оперирует точечными, линейными (дуги и контуры) и площадными (полигонными) моделями пространственных объектов.
Допустимы следующие формы векторной модели данных:
Формирование топологии заключается в определении положения точек и узлов в выбранной системе координат на плоскости или в пространстве (для рельефных изображений) и цифровое кодирование взаимосвязей между точечными, линейными и площадными географическими объектами. В настоящее время применяются объектно-ориентированные модели баз географических данных (например, ArcGIS компании ESRI), формирующие классы объектов, классы отношений, геометрические сети и послойную топологию.
Геоинформационные системы (ГИС)
ГИС используют для решения научных и прикладных задач инфраструктурного проектирования, городского и регионального планирования, рацион
ГИС появились в 1960 гг при появлении технологий обработки информации в СУБД и визуализации графических данных в САПР, автоматизированного производства карт, управления сетями.
Назначение ГИС определяется решаемыми в ней задачами (научными и прикладными), такими как инвентаризация ресурсов, управление и планирование, поддержка принятия решений.
Этапы создания ГИС:
предпроектные исследования, в тч изучение требований пользователя и функциональные возможности используемого ПО,
технико-экономическое обоснование (ТЭО)
системное проектирование ГИС, включая стадию пилот-проекта, разработку ГИС;
тестирование ГИС на небольшом территориальном фрагменте или тестовом участке или создание опытного образца,
эксплуатация и обслуживание ГИС.
Источники данных для создания ГИС:
данные дистанционного зондирования (ДДЗ): в тч, получаемые с космических аппаратов и спутников материалы, Изображения получают и передают на Землю с носителей съемочной аппаратуры, размещенных на разных орбитах. Полученные снимки отличаются разным уровнем обзорности и детальности отображения объектов природной среды в нескольких диапазонах спектра (видимый и ближний инфракрасный, тепловой инфракрасный и радиодиапазон), что позволяет решать широкий спектр экологических задач. К методам дистанционного зондирования относятся также аэро- и наземные съемки, и другие неконтактные методы, например гидроакустические съемки рельефа морского дна. Материалы таких съемок обеспечивают получение как количественной, так и качественной информации о различных объектах природной среды;
результаты геодезических измерений на местности, выполняемые нивелирами, теодолитами, электронными тахеометрами, GPS приемниками и др;
данные государственных статистических служб по самым разным отраслям народного хозяйства, а также данные стационарных измерительных постов наблюдений (гидрологические и метеорологические данные, сведения о загрязнении окружающей среды и пр).
литературные данные (справочные издания, книги, монографии и статьи, содержащие разнообразные сведения по отдельным типам географических объектов). В ГИС редко используется только один вид данных, чаще всего это сочетание разнообразных данных на какую-либо территорию.
Эффективное использование ГИС для решения разнообразных пространственно-локализованных задач требует от пользователя достаточного объема знаний о геодезических системах координат, картографических проекциях и других элементах математической основы карт ГИС, знаний о методах получения по карте различной информации, математических и других методов использования этой информации для решения пространственно-локализованных задач ГИС.
Научные, технические, технологические и прикладные аспекты проектирования, создания и использования ГИС изучаются геоинформатикой.
Данные, собираемые в геоинформатике, выделяют в особый класс данных, называемых геоданными.
Геоданные описывают объекты через их положение в пространстве непосредственно (например, координатами) или косвенно (например, связями).
В целом следует выделить следующие технологии сбора данных в геоинформатике:
воздушная съемка, которая включает аэросъемку, съемку с мининосителей;
глобальная система позиционирования (GPS);
космическая съемка, которая является одним из важнейших источников данных для ГИС при проведении природоресурсных исследований, экологического мониторинга, оценки сельскохозяйственных и лесных угодий и т. д.;
карты или картографическая информация, которая является основой построения цифровых моделей ГИС;
данные, поступающие через всемирную сеть Internet;
наземная фотограмметрическая съемка служит источником информации для ГИС при анализе городских ситуаций, экологического мониторинга за деформацией и осадками;
цифровая фотограмметрическая съемка основана на использовании цифровых фотограмметрических камер, которые позволяют выводить информацию в цифровом виде непосредственно на компьютер;
видеосъемка, как источник данных для ГИС, используется в основном для целей мониторинга;
документы, включая архивные таблицы и каталоги координат, служат основным источником данных для ввода в ГИС так называемой предметной или тематической информации, к которой относятся экономические, статистические, социологические и другие виды данных;
геодезические методы (автоматизированные и не автоматизированные) используются для уточнения координатных данных,
источником данных для ГИС являются также результаты обработки в других ГИС;
фотографии, рисунки, чертежи, схемы, видеоизображения и звуки;
статистические таблицы и текстовые описания, технические данные;
почтовые адреса, телефонные книги и справочники;
геодезические, экологические и любые другие сведения.
ГИС используют для решения научных и прикладных задач инфраструктурного проектирования, городского и регионального планирования, рационального использования природных ресурсов, мониторинга экологических ситуаций, принятия оперативных мер в условиях ЧС и тд.
ГИС классифицируются по следующим признакам:
1. По функциональным возможностям:
полнофункциональные ГИС общего назначения;
специализированные ГИС, ориентированные на решение конкретной задачи в какой либо предметной области;
информационно-справочные системы для домашнего и информационно-справочного пользования. Функциональные возможности ГИС определяются также архитектурным принципом их построения:
2.По пространственному (территориальному) охвату ГИС подразделяются на глобальные (планетарные), общенациональные, региональные, локальные (в том числе муниципальные).
Структура ГИС включает комплекс технических средств (КТС) и программное обеспечение (ПО), информационное обеспечение (ИО).
Рабочая станция используется для управления работой ГИС и выполнения процессов обработки данных, основанных на вычислительных и логических операциях.
Ввод данных реализуется с помощью разных технических средств и методов: непосредственно с клавиатуры, с помощью дигитайзера или сканера, через внешние компьютерные системы. Пространственные данные могут быть получены с электронных геодезических приборов, с помощью дигитайзера или сканера, либо с использованием фотограмметрических приборов.
Базовое ПО включает операционные системы (ОС), программные среды, сетевое программное обеспечение, системы управления базами данных, и модули управления средствами ввода и вывода данных, систему визуализации данных и модули для выполнения пространственного анализа.
Многослойная организация электронной карты, при наличии гибкого механизма управления слоями, позволяет объединить и отобразить гораздо большее количество информации, чем на обычной карте.
Информация, представленная в виде отдельных слоев, и их совместный анализ в разных комбинациях позволяет получать дополнительную информацию в виде производных слоев с их картографическим отображением (в виде изолинейных карт, совмещенных карт различных показателей и тд).
ГИС-технология объединяет разрозненные данные в единый вид, что упрощает принятие управленческих решений информационного обеспечения на различных уровнях планирования и получать, анализировать и принимать решения в науке, управлении хозяйствовании.
Рынок ГИС, отличающихся по функциональным возможностям, требованиям к КТС, ПО и ИО, довольно развит.
Все геоинформационные системы с учетом архитектурных принципов построения подразделяются на
Считается, что географические или пространственные данные составляют более половины объема всей циркулирующей информации, используемой организациями, занимающимися разными видами деятельности, в которых необходим учет пространственного размещения объектов. ГИС ориентирована на обеспечение возможности принятия оптимальных управленческих решений на основе анализа пространственных данных.
· Что находится в заданной области?
· Где находится область, удовлетворяющая заданному набору условий?
Современные ГИС расширили использование карт за счет хранения графических данных в виде отдельных тематических слоев, а качественных и количественных характеристик составляющих их объектов в виде баз данных. Такая организация данных при наличии гибких механизмов управления ими, обеспечивает принципиально новые аналитические возможности.
Конкретизируя термины «данные», «информация», «знания», применительно к оперированию ими в информационной системе, можно отметить, что, имея много общего, эти понятия различаются по своей сути.
Применительно к ГИС под информацией понимается совокупность сведений, определяющих меру наших знаний об объекте.
В таком контексте знания можно рассматривать как результат интерпретации информации. Наиболее общее определение: знание – результат познания действительности, получивший подтверждение в практике. Научное знание отличается своей систематичностью, обоснованностью и высокой степенью структуризации.
Информационные системы можно рассматривать как эффективный инструмент получения знаний.
В настоящее время на рынке программных продуктов представлено несколько видов систем, работающих с пространственно распределенной информацией, к ним в частности, относятся системы автоматизированного проектирования, автоматизированного картографирования и ГИС. ГИС по сравнению с другими автоматизированными системами обладают развитыми средствами анализа пространственных данных.
Большинство современных ГИС осуществляют комплексную обработку информации, используя ниже приведенные функции:
1. Ввод и редактирование данных;
2. Поддержка моделей пространственных данных;
3. Хранение информации;
4. Преобразование систем координат и трансформация картографических проекций;
6. Измерительные операции;
7. Полигональные операции;
8. Операции пространственного анализа;
9. Различные виды пространственного моделирования;
10. Цифровое моделирование рельефа и анализ поверхностей;
11. Вывод результатов в разных формах.
ГИС системы разрабатываются с целью решения научных и прикладных задач по мониторингу экологических ситуаций, рациональному использованию природных ресурсов, а также для инфраструктурного проектирования, городского и регионального планирования, для принятия оперативных мер в условиях чрезвычайных ситуаций др.
Множество задач, возникающих в жизни, привело к созданию различных ГИС, которые могут классифицироваться по следующим признакам :
По функциональным возможностям:
— полнофункциональные ГИС общего назначения;
— специализированные ГИС ориентированы на решение конкретной задачи в какой либо предметной области;
— информационно-справочные системы для домашнего и информационно-справочного пользования.
Функциональные возможности ГИС определяются также архитектурным принципом их построения:
— открытые системы отличаются легкостью приспособления, возможностями расширения, так как могут быть достроены самим пользователем при помощи специального аппарата (встроенных языков программирования).
По пространственному (территориальному) охвату :
— локальные (в том числе муниципальные).
По проблемно-тематической ориентации :
— экологические и природопользовательские ;
— отраслевые (водных ресурсов, лесопользования, геологические, туризма и т.д.);
По способу организации географических данных:
В качестве источников данных для формирования ГИС служат:
— картографические материалы (топографические и общегеографические карты, карты административно-территориального деления, кадастровые планы и др.). Сведения, получаемые с карт, имеют территориальную привязку, поэтому их удобно использовать в качестве базового слоя ГИС. Если нет цифровых карт на исследуемую территорию, тогда графические оригиналы карт преобразуются в цифровой вид.
— данные дистанционного зондирования (ДДЗ) все шире используются для формирования баз данных ГИС. К ДДЗ, прежде всего, относят материалы, получаемые с космических носителей. Для дистанционного зондирования применяют разнообразные технологии получения изображений и передачи их на Землю, носители съемочной аппаратуры (космические аппараты и спутники) размещают на разных орбитах, оснащают разной аппаратурой. Благодаря этому получают снимки, отличающиеся разным уровнем обзорности и детальности отображения объектов природной среды в разных диапазонах спектра (видимый и ближний инфракрасный, тепловой инфракрасный и радиодиапазон). Все это обуславливает широкий спектр экологических задач, решаемых с применением ДДЗ.
— материалы полевых изысканий территорий, включают данные топографических, инженерно-геодезических изысканий, кадастровой съемки, геодезические измерения природных объектов, выполняемые нивелирами, теодолитами, электронными тахеометрами, GPS приемниками, а также результаты обследования территорий с применением геоботанических и других методов, например, исследования по перемещению животных, анализ почв и др.
— статистические данные содержат данные государственных статистических служб по самым разным отраслям народного хозяйства, а также данные стационарных измерительных постов наблюдений (гидрологические и метеорологические данные, сведения о загрязнении окружающей среды и т. д)).
— литературные данные (справочные издания, книги, монографии и статьи, содержащие разнообразные сведения по отдельным типам географических объектов).
В ГИС редко используется только один вид данных, чаще всего это сочетание разнообразных данных на какую-либо территорию.
Основные компоненты ГИС
К основным компонентам ГИС относят : техническое, программное, информационное обеспечение. Требования к компонентам ГИС определяются, в первую очередь, пользователем, перед которым стоит конкретная задача (учет природных ресурсов, либо управление инфраструктурой города), которая должна быть решена для определенной территории, отличающейся природными условиями и степенью ее освоения.
Техническое обеспечение – это комплекс аппаратных средств, применяемых при функционировании ГИС: рабочая станция или персональный компьютер (ПК), устройства ввода-вывода информации, устройства обработки и хранения данных, средства телекоммуникации.
Рабочая станция или ПК являются ядром любой информационной системы и предназначены для управления работой ГИС и выполнения процессов обработки данных, основанных на вычислительных или логических операциях. Современные ГИС способны оперативно обрабатывать огромные массивы информации и визуализировать результаты.
Ввод данных реализуется с помощью разных технических средств и методов: непосредственно с клавиатуры, с помощью дигитайзера или сканера, через внешние компьютерные системы. Пространственные данные могут быть получены электронными геодезическими приборами, непосредственно с помощью дигитайзера и сканера, либо по результатам обработки снимков на аналитических фотограмметрических приборах или цифровых фотограмметрических станциях.
Устройства для обработки и хранения данных сконцентрированы в системном блоке, включающем в себя центральный процессор, оперативную память, внешние запоминающие устройства и пользовательский интерфейс.
Устройства вывода данных должны обеспечивать наглядное представление результатов, прежде всего на мониторе, а также в виде графических оригиналов, получаемых на принтере или плоттере (графопостроителе), кроме того, обязательна реализация экспорта данных во внешние системы.
Программное обеспечение
Программное обеспечение – совокупность программных средств, реализующих функциональные возможностей ГИС, и программных документов, необходимых при их эксплуатации.
Структурно программное обеспечение ГИС включает базовые и прикладные программные средства.
Прикладные программные средства предназначены для решения специализированных задач в конкретной предметной области и реализуются в виде отдельных приложений и утилит.
Информационн SHAPE \* MERGEFORMAT ое обеспечение
Инфраструктура пространственных данных определяется нормативно-правовыми документами, механизмами организации и интеграции пространственных данных, а также их доступность разным пользователям. Инфраструктура пространственных данных включает три необходимых компонента: базовую пространственную информацию, стандартизацию пространственных данных, базы метаданных и механизм обмена данными.