закон вебера фехнера устанавливает что
Закон ощущений Фехнера в психологии простыми словами с примерами
Практикующий психолог, гештальт-терапевт. Закончила Тольяттинский Государ.
В 19 веке появилась новая наука – психофизиология. Если раньше ученые искали, где в теле человека спрятана душа, то теперь они желали раскрыть все особенности восприятия мира человеком через биологию. Именно в 19 веке были открыты законы из общей психологии, которые лежат в основе ВУЗовского обучения психологов и сегодня.
Густав Теодор Фехнер
Ученый родился в Польше, в 1901 году в семье пастора, однако во взрослом возрасте считал себя атеистом. Поступив в университет в Лейпциге, прослушал курс лекций Э.Г. Вебера, одного из первых практиков психофизиологической науки.
Вдохновленный новым направлением естествознания, Фехнер остался заниматься наукой, а к 1834 году стал профессором физики. Его стремление изучать восприятие человеком мира основывалось на философии Шиллинга, которая утверждала, что есть «светлая» реальность, и она имеет приоритет над материальной истинной.
Для Фехнера даже небесные тела были одушевленными, а, значит, обладающими своим восприятием действительности. Основываясь на трудах своего учителя, Фехнер исследует вопрос: почему изменения реальных физических величин человек воспринимает неверно. В ходе этого исследования и родился известнейший постулат Фехнера.
Суть закона Фехнера
Суть «основного психофизиологического закона восприятия» — интенсивность ощущения чего-либо прямо пропорциональна логарифму интенсивности раздражителя. И эта зависимость характерна для любого раздражителя: свет, вес, звук, температура и т.п.
Основной психофизический закон Фехнера-Вебера
Куда проще понять суть закона на практических примерах.
Если люстра состоит из 2 лампочек и к ним добавить еще одну, человеку будет казаться, что стало значительно ярче. А если ту же лампочку добавить к люстре из 15 лампочек, для человека субъективное восприятие света вообще может не измениться. Или если добавить в сум немного перца, ты это сразу почувствуешь. А вот посыпь перец чили черным перцем – хуже уже не сделать.
Возвращаясь к вопросу о лампочках: как несколько раз усилить освещение помещения, чтобы человек субъективно ощущал, что свет изменяется одинаково?
Ответ прост: увеличивать число лампочек не арифметически, добавляя по одной, а геометрически. Для человека разница в освещении между двумя и четырьмя лампочками такая же, как между четырьмя и восемью.
Эксперименты
Исследования Фехнера очень легко проверить даже в домашних условиях, для этого нужен набор гирек. Человеку на вытянутую руку кладутся гирьки, глаза человека завязаны, так что понять, что вес изменился, он может только основываясь на ощущениях.
Сначала можно положить на руку гирьку 50г и затем добавлять постепенно вес, пока испытуемые не скажет, что вес изменился. Разницу между первым и вторым весом записать.
Вторая часть эксперимента: положить человек на руку сначала гирьку в 300г и постепенно добавлять еще вес. Во втором случае необходимый для появления ощущения изменения вес будет в несколько раз больше. Согласно закону Фехнера, разница будет в 6 раз.
Тот же фокус повторяется при восприятии яркости цвета на карточке. Увеличение яркости слабого цвета человек заметит быстрее, чем яркого. Для этого эксперимента существуют и компьютерные программы, где в момент изменения цвета человек должен нажать на кнопку, а время считает система.
Giphy
Эксперименты со вкусом вообще просты: сделать более соленым пересоленое блюдо сложнее и потребуется больше соли, чем при досоле несоленого блюда.
Психологические выводы
На основе закона Фехнера стали изучаться верхний и нижний пороги чувствительности человека. Это индивидуальные величины, но сам факт их наличия подтверждает, что закон Фехнера имеет место быть.
Нижний порог чувствительности – это минимальная интенсивность раздражителя, которую ощущает человек. Например, слабый запах человек не ощутит, и только концентрация в воздухе определенного числа молекул позволят человеку отметить наличие запаха.
Верхний порог – это максимальная интенсивность, после которой человек перестает ощущать различия, или ощущает их неадекватно. Например, на улице настолько холодно, что субъективно человек перестает различать разницу температур. Неадекватные ощущения часто связывают с болевым порогом. Слишком громкий звук в какой-то момент начнет делать больно ушам, и уже ни о каком адекватном восприятии сигнала речи быть не может.
Применение закона
Древнегреческий ученый Гиппархом, не имея специального оборудования, оценивал яркость звезд «на глаз» от 1 до 6.
Фото автора Pavel Danilyuk: Pexels
Конечно, сегодня его оценки полностью пересмотрены, но ученые заметили: если даже в Древней Греции ученый использовал поправку на ошибку субъективного восприятия, так что даже тогда люди использовали знания о явлении, описанном Фехнером.
Знание закона пригодилось и маркетологам. Считается, что люди склонны искать, где сэкономить большой процент на покупках, даже если они совсем небольшие и в рублях сумма будет незначительной. При этом намного реже людей стремятся найти небольшую скидку на дорогие товары, хотя разница в рублях будет намного выше.
Главное, что помогает понять закон Фехнера: твое восприятие на абсолютно. Если слабые изменения в самом начале ты замечаешь, то затем восприятие притупляется. Чем больше у тебя денег, тем меньше ты замечаешь траты и удивляешься, куда делись средства. И объективно различать вкусовые особенности дорогих блюд в ресторанах ты вряд ли сможешь, не имея специальной подготовки и навыков.
Закон Вебера — Фехнера
Закон Вебера — Фехнера гласит о том, что сила звука увеличивается в геометрической прогрессии, а громкость — в арифметической. В этой статье вы узнаете, как расшифровывается формулировка психофизического закона, и как он был создан.
Согласно закону, интенсивность ощущений прямо пропорциональна логарифму интенсивности стимула. Его авторами являются специалист в области психологии Г. Фехнер и психофизиолог Э. Вебер. В ходе своих экспериментов Вебер пришел к выводу, что новый раздражитель принесет другие ощущения, если он будет по интенсивности отличаться от старого, воздействуя на величину, пропорциональную интенсивности первоначального раздражителя.
Стоит отметить, что фундаментальной основой для закона Вебера — Фехнера стали законы физика Бугера и Стивенса, имеющие тесную связь.
Как расшифровывается закон?
Чтобы лучше понять суть закона, надо рассмотреть пример. Так, если в комнате будет находиться 3 люстры с 2, 4 и 8 включенными лампочками, то каждая из люстр будет светиться одинаково ярче предыдущей. Чтобы у человека было ощущение, что яркость становится больше, количество ламп должно в разы увеличиваться. Например, если человек будет смотреть на люстру с десятью лампочками, а потом посмотрит сразу же на люстру с одиннадцатью включенными лампами, то практически ничего не заметит. В ходе наблюдений выявили, что человек способен реагировать не на любой раздражитель, а только на достаточно интенсивный.
Понятие порогов чувствительности
Если порог чувствительности слишком мал, действие раздражителя будет практически незаметно. Также стоит отметить, что если в чувствительности есть нижний показатель, то существует и верхний. Ощущение изменений происходит при нахождении между этими двумя показателями.
Если говорить о порогах чувствительности, то тут различие очевидно. Например, если взять в одну руку пустую сумку, а в другую — сумку с листом бумаги, человек этого абсолютно не заметит, так как лист весит мало. В данном случае происходит допороговое раздражение. Если же раздражитель имеет значительный вес, то раздражение можно назвать запороговым. Чем выше будет чувствительность, тем ниже эффект различения.
Закон Вебера — Фехнера имеет формулу: Y(ощущение) = k(константа) * S(стимул) и n(показатель степени функции). При этом показатель степени функции может изменяться в зависимости от ощущений.
Основным отличием сенсорной системы является умение замечать различия при одновременно или постепенно действующих раздражителях. Сенсорная адаптация бывает глобальной и селективной. Если при глобальной адаптации происходит снижение абсолютной и повышение дифференциальной чувствительности, то при селективной происходит постепенное привыкание к раздражителю. Селективная адаптация распространяется на всю нервную систему, снижая чувствительность.
То, как человек воспринимает различные раздражители, влияет на его понимание окружающей действительности. А восприятие во многом зависит от активности и эффективности работы мозга. Тренажеры Викиум помогают держать мозг в тонусе и развивать когнитивные функции.
Закон Вебера-Фехнера
Эрнест Вебер был немецким психофизиологом и анатомом, внесший не малый вклад в развитие знаний об органах чувств. Одним из таких вкладов является закон, открытый Вебером, а потом расширенный Фехнером «основным психофизическим законом».
Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения чего-либо прямо пропорциональна логарифму интенсивности раздражителя.
В своих работах Эрнест в 1834 году проследил зависимость ощущений нового раздражителя от ощущений предыдущего в связи с интенсивностью воздействия этих самых раздражителей. Он выполняется, когда интенсивность нового раздражителя будет отличаться от интенсивности предыдущего на величину, пропорциональную интенсивности предыдущего раздражителя.
Простыми словами если интенсивность какого-то ощущения высокая, то при малейших ее изменений, мы не почувствуем различие в ощущении. Также, если интенсивность ощущения низкая, то при малейших ее изменений, мы почувствуем различие ощущений. Эту зависимость можно описать тривиальной формулой:
По формуле видно, что по мере роста исходной интенсивности раздражителя возрастает величина необходимых изменений интенсивности.
Немного позже Густав Фехнер дополнил закон Вебера. Он доказал, что уровень ощущения пропорционален логарифму относительной величины интенсивности раздражителя. Его дополнение можно представить формулой:
k — некоторая константа, I — интенсивность раздражителя, I0 — интенсивность на нижнем пороге чувствительности, p — уровень ощущения.
По графику мы видим, что рост уровня ощущения замедляется при увеличении интенсивности.
Если вы находитесь в точке равной 10 и происходит крошечное изменение, допустим в точке 100, то разница ощущений 1 и 2 на ординат будет колоссальной. Но если теперь ваше раздражение равно 910, даже если произойдет то же изменение в весе, такое же воздействие в весе по ощущениям будет незаметным.
То есть то, как мы переживаем жизненные ситуации, описывается логарифмом!
Могу поспорить, что при продаже дорогих вещей, компании умело используют этот закон, чтобы увеличить стоимость товара на столько, чтобы при этом цена не казалась разительно отличной от правды. При этом, вы постоянно можете замечать, что на многие товары существует скидка. Это очень заманчивый ход, для увеличения количества продаж товара. При этом компания на продажах ничего не теряет, ведь первоначальная стоимость продаваемого продукта куда меньше даже той цены товара, который идет уже со скидкой. Товар все равно многократно окупается.
Этот закон может применяться не только к ценам продуктов, а также к их качеству, ведь всегда пытаются сэкономить на качестве так, что бы на результате работы продукта это не сказалось. Например компания Dairy Milk использовала Закон Вебера, чтобы уменьшить расходу на шоколад Cadbury. В 2012 году плитка молочного шоколада уменьшилась с 49 грамм до 45 оставаясь на цене 59 p. Ключевым моментом здесь является вес, если вес был уменьшен до 40 грамм (на основании результатов Вебера — вам нужно изменить 8-10%, чтобы почувствовать разницу) потребитель почувствовал бы изменение. Cadbury умно уменьшил вес до 45 грамм, чтобы потребители не почувствовали разницу.
Так же довольно часто, а то и всегда этот закон используют судьи при назначении тюремного срока. К примеру 6 месяцев заключения будут по ощущениям, как 6 месяцев заключения. Ощущение между 6 месяцами и 2 годами тюрьмы довольно велики, но сила ощущений между 2 годами и 2 годами и 3 месяцами не особо отличается по ощущениям от 2 лет.
Спасибо за внимание.
И сейчас мы ищем людей, которые помогли бы нам в популяризации науки.
Вопросы задавайте в комментариях.
Тайна снежинок (Veritasium)
Какие тайны скрывает процесс образования снежинок, обеспечивающий такое широкое разнообразие форм и сложность узора? Как выращивать снежинки в лабораторных условиях, влияя всего на два параметра: температуру и влажность, чтобы приблизиться к пониманию того, как работает формообразование кристаллов льда?
Проблема простых-близнецов – Алексей Савватеев | Научпоп
В чём заключается одна из самых древних проблем «школьной» математики? Почему она называется «простые-близнецы» и как формулируется? Что утверждает теорема о распределении простых чисел в натуральном ряду? Как продвинулась в этой области современная математика и на какие вопросы ещё предстоит найти ответы математикам будущего?
Рассказывает Алексей Савватеев, математик и матэкономист, доктор физико-математических наук, научный руководитель Кавказского Математического Центра АГУ, ректор Университета Дмитрия Пожарского, профессор МФТИ, научный руководитель ЦДПО РЭШ, ведущий научный сотрудник ЦЭМИ РАН, популяризатор математики среди детей и взрослых.
Ответ на пост «Правда ли, что сосудосуживающие препараты вызывают привыкание?»
Правда ли, что сосудосуживающие препараты вызывают привыкание?
И многие врачи, и пациенты уверены, что слишком долгий приём сосудосуживающих спреев и капель ведёт к привыканию. Мы решили проверить, имеет ли эта идея под собой медицинское обоснование.
(Спойлер для ЛЛ: да, вызывают привыкание. Вплоть до необходимости хирургического вмешательства)
Контекст. О таком побочном эффекте препаратов пишут специализированные СМИ, сайты отоларингологических клиник и сами пациенты. Последние жалуются, что длительный приём сосудосуживающих препаратов вызывает такую зависимость, что для нормального носового дыхания им требуется в десять, а то и большее число раз превышать рекомендованную суточную дозу. Многие также сообщают о психологической зависимости от препаратов, вынуждающей их идти за спреем или каплями в аптеку даже посреди ночи.
Все сосудосуживающие препараты содержат одно из следующих веществ либо их комбинацию: нафазолин, оксиметазолин, ксилометазолин, фенилэфрин. В этом материале мы не будем использовать торговые названия спреев и капель, а ограничимся лишь их действующим веществом. Чтобы соотнести конкретный спрей для носа с одним из них, достаточно обратиться к разделу «Действующее вещество» в бумажной инструкции или изучить информацию о препарате, например, на сайте «Справочник лекарственных препаратов Видаль». Сосудосуживающие препараты в широком смысле называются деконгестантами. По статистике, до 30% взрослых и до 40% детей испытывают регулярные проблемы с носовым дыханием и прибегают к использованию деконгестантов.
Носовые раковины пронизаны большим количеством капилляров и венозных сосудистых мешочков. Такой объём циркулирующей крови необходим для согревания и увлажнения вдыхаемого воздуха. Соответственно, при возникновении отёка вследствие заболевания или аллергии носовое дыхание значительно затрудняется. Введение местных сосудосуживающих, как понятно из их названия, сужает просвет сосудов, уменьшает объём слизистой и делает носовые ходы более свободными для вдоха и выдоха. В России препараты сосудосуживающей группы относятся к безрецептурным лекарственным средствам, что делает их препаратами первого выбора в лечении различных простуд и снятии симптомов аллергических заболеваний.
В случае долгосрочного и значительного превышения дозы сосудосуживающих спреев и капель у пациента развивается медикаментозный ринит. Термин принят как в русскоязычном, так и в англоязычном поле, при этом отсутствует в МКБ-10 и не планируется ко вводу в МКБ-11. Так как медикаментозный ринит сопровождается атрофией, то есть омертвением слизистой, чаще всего его кодируют как «атрофический ринит». Сама по себе атрофия — истончение слизистой — приводит к ещё большей заложенности носа, следовательно, пациенту требуется постоянно повышать дозу для достижения всё более короткого периода нормализации носового дыхания. Помимо возникновения медикаментозного ринита, превышение дозировок сосудосуживающих препаратов может приводить к таким осложнениям, как тромбозы ветвей артерии сетчатки, желудочковая аритмия, предобморочные состояния и даже инсульты.
Хотя диагноз медикаментозного ринита и отсутствует в МКБ, существует достаточно исследований, доказывающих его существование и прямую связь со злоупотреблением деконгестантами. Ещё в 1996 году учёные набрали группу здоровых добровольцев: одна часть из них получала на протяжении месяца спрей с оксиметазолином, другая — с хлоридом бензалкония (антимикробным препаратом без сосудосуживающего эффекта), а третья — плацебо. Через 28 дней использования спреев первая группа показала значительное ухудшение состояния слизистой, а также выше оценила субъективную заложенность носа и проблемы с носовым дыханием.
Другая группа исследователей собрала образцы тканей носовых раковин у 22 пациентов, пользующихся ксилометазолином на регулярной основе, и сравнила с десятью образцами тканей людей, не использовавших сосудосуживающие препараты с этим действующим веществом. Во всех 22 образцах была выявлена плоскоклеточная метаплазия — структурное изменение, характеризующееся замещением реснитчатого эпителия многослойным плоским эпителием. То есть один тип клеток буквально погиб и был заменён другим, не предназначенным для обеспечения функций дыхания.
Проблема медикаментозного ринита достаточно распространена: согласно статистике, от 1% до 9% всех обращений в отоларингологические клиники связаны с медикаментозным ринитом. При этом, отмечают специалисты, цифры точно ниже реального количества имеющих зависимость от капель, так как многие пациенты не считают подобную зависимость проблемой, требующей обращения к специалисту.
При этом есть и хорошие новости — медикаментозный ринит полностью излечим и обратим. Для избавления от зависимости используется как консервативное лечение кортикостероидными и антигистаминными препаратами, так и хирургическое — например, вазотомия, рассечение сосудов, и конхотомия, иссечение части поражённой слизистой оболочки механически или методом лазерной или криодеструкции. Оперативное лечение проводится по выбору пациента под местной или общей анестезией, во многих случаях — амбулаторно, то есть госпитализация не требуется. Хирургическое вмешательство обеспечивает долговременную нормализацию носового дыхания при условии отказа от злоупотребления сосудосуживающими препаратами.
Таким образом, превышение суточных доз сосудосуживающих препаратов или приём, превышающий по длительности рекомендованный, действительно приводит к формированию зависимости от препарата, определяемой как субъективно пациентом, так и объективно врачом при исследовании структуры тканей носовых раковин. Такие патологические изменения именуются медикаментозным ринитом. Однако они обратимы, существуют эффективные терапевтические способы лечения, а в сложных случаях оправдано хирургическое вмешательство, значительно облегчающее жизнь пациенту.
Ещё нас можно читать в Телеграме, в Фейсбуке и в Вконтакте. Традиционно уточняю, что в сообществах отсутствуют спам, реклама и пропаганда чего-либо (за исключением здравого смысла), а в день обычно публикуем не больше двух постов.
Правдива ли история про английских лучников, средний палец и происхождение выражения f#ck you?
В соцсетях можно встретить забавную историю о том, что происхождение известного жеста и не менее распространённого ругательства берёт начало от битвы при Азенкуре, состоявшейся в 1415 году. Мы проверили, так ли это на самом деле.
(Спойлер для ЛЛ: неправда)
Современные учёные придерживаются мнения, что демонстрация среднего пальца приобрела своё символическое значение задолго до Столетней войны. По словам антрополога Десмонда Морриса, «это один из самых древних из известных нам жестов». Специалист уверен, что он происходит из первобытных времён, а его символика довольно проста: средний палец — пенис, сжатые пальцы — тестикулы.
Использование подобного жеста можно встретить уже в античные времена. Так, в сочинениях Диогена Лаэртского упоминается история, связанная с Диогеном Синопским — якобы тот указал на Демосфена именно средним пальцем со словами:
«Вот вам правитель афинского народа». Там же описан другой эпизод: «Большинство людей, говорил он (Диоген Синопский. — Прим. ред.), отстоит от сумасшествия на один только палец: если человек будет вытягивать средний палец, его сочтут сумасшедшим, а если указательный, то не сочтут».
Жест сохранился и в Древнем Риме. Например, в эпиграмме Марциала говорится:
«Смейся, Секстилий, над теми, кто называет тебя педерастом, и показывай им средний палец».
В другой его эпиграмме рассказывается о старике, который хвастается отменным здоровьем и демонстрирует врачам «неприличный» палец. Использование этого жеста в Древнем Риме описывает и американский исследователь Энтони Корбелл.
Но вернемся к Столетней войне. Современные историки, занимающиеся этим историческим периодом, не согласны с популярной в интернете байкой. Энн Карри, профессор Университета Саутгемптона и бывший вице-президент Королевского исторического общества, посвятила целую книгу битве при Азенкуре. В ней исследовательница пишет:
«Ни в одной хронике или историческом сочинении XVI века нет сообщений о том, что английские лучники показывали какие-либо жесты французам после битвы, чтобы продемонстрировать тем, что у них всё ещё есть пальцы. Нет никаких доказательств тому, что при захвате лучника тем или иным способом противник отрезал ему пальцы».
Схожую оценку даёт и американский историк Джон Киган.
Возможный первоисточник популярной легенды — хроника XV века, написанная французом Жаном де Вавреном. В ней говорится, что в своей речи перед битвой английский король Генрих V якобы заявил:
«Французы хвастались, что они отрежут по три пальца с правой руки всех попавших в плен лучников, чтобы впоследствии ни один воин или конь не был убит с помощью их луков».
Подлинность этого утверждения весьма сомнительна — присутствие французского хрониста при выступлении английского короля в условиях войны представляется маловероятным.
Ещё нас можно читать в Телеграме, в Фейсбуке и в Вконтакте. Традиционно уточняю, что в сообществах отсутствуют спам, реклама и пропаганда чего-либо (за исключением здравого смысла), а в день обычно публикуем не больше двух постов.
Аудиоверсии проверок в виде подкастов c «Коммерсантъ FM» доступны в Simplecast, «Яндекс.Подкасты», Apple Podcasts, «ЛитРес», Soundstream.
Молдавские учёные решили проблему, над которой 140 лет бились математики всего мира
Два математика из Молдовы первыми в мире решили алгебраическую проблему, над которой 140 лет размышляли великие ученые мира. Об этом на этой неделе сообщил Технический университет Молдовы (UTM).
«Доктор физико-математических наук Михаил Попа и доктор математических наук Виктор Прикоп первыми в мире нашли решение знаменитой проблемы центра и фокуса, поставленной выдающимся французским математиком Анри Пуанкаре, над которой великие математики мира размышляли более века», — говорится на сайте университета.
Этой проблеме посвятили тысячи работ математики из Франции, России, Беларуссии, Китая, Великобритании, Канады, США и других стран мира. Только в Молдове число работ, посвященных проблеме Пуанкаре, приближается к сотне, отметили в UTM.
Профессор университета Михаил Попа, основатель научной школы алгебры Ли и дифференциальных систем, предложил собственное решение проблемы центра и фокуса, которое привело его к результату, ставшему открытием.
Во время исследований к профессору присоединился его ученик Виктор Прикоп. Вместе они усовершенствовали первоначальную гипотезу в монографии «Проблема центра и фокуса. Алгебраические решения и гипотезы».
Работа была переведена на английский язык и представлена для издания в несколько зарубежных издательств. В итоге лучшие условия предложил издательский дом «Taylor & Francis Group», расположенный в Великобритании и специализирующийся на публикациях научной литературы и журналов.
Где-то всплакнул Гриша Перельман.
Панорама, да не та. И с такими лицами не шутят.
Они улетели и не вернутся никогда. Вояджеры
Проект «Вояджер» – один из самых масштабных и успешных космических проектов, созданных человечеством. Ученые до сих пор изучают данные, собранные в рамках миссии, а аппарат «Вояджер-1» является самым отдаленным объектом, который создал человек.
Но обо всем по порядку:
В середине 60-х годов в своей работе о гравитационных маневрах и полетах к дальним планетам один никому не известный студент-интерн указал на удачное сближение сразу четырех планет: Юпитера, Сатурна, Урана и Нептуна. Таким событием, конечно же, заинтересовались ученые из NASA, и уже в 1969 году был готов проект по запуску 4 автономных космических аппаратов, которые смогли бы максимально близко подлететь к планетам и изучить все их разом. Но финансирование урезали – денег хватило только на 2. Аппараты отправили в космос 20 августа и 5 сентября 1977 года, назвав проект «Вояджер» (с англ. «Путешественник») буквально за несколько дней до старта.
Чего только не было на борту Вояджеров: и камеры в высоком разрешении с разным углом обзора, и спектрометры с многочисленными настройками, детекторы плазмы, космических лучей, волн всяческих… В общем, вооружили их до зубов и на все случаи жизни.
К борту каждого из аппаратов был прикреплен диск с посланием внеземным цивилизациям. На пластинке записаны приветствия на разных языках, звуки Земли, классическая музыка, изображения земных пейзажей и многое другое. До сих пор не утихают споры о целесообразности и безопасности таких посланий. Делались они с твердой верой во внеземной разум или чтобы «увековечить» себя во Вселенной – не ясно. На эту тему у меня есть отдельный пост «Золотое послание Вояджера».
В чем же значимость проекта?
Программа «Вояджер» создавалась для исследования Юпитера и Сатурна, о которых в то время было известно очень мало, а так же для исследования спутников этих планет. Но миссия не ограничилась только этим. Сбор данных начался уже через несколько дней после старта. Выйдя в открытый космос и встав на свой курс, «Вояджер-1» передал на Землю первую свою фотографию: Земля и Луна с расстояния 11 млн км.
К концу года оба аппарата вошли в Пояс астероидов и там, в бескрайней космической пустыне, «Вояджер-1» обогнал своего собрата, навсегда взяв лидерство в этой гонке. Ученые знали, что это произойдет, из-за этого «Вояджер-2» нарекли вторым номером, несмотря на то, что запустили его первым. В январе 1979 года «Вояджер-1» стал сближаться с Юпитером. Каждый день в одно и то же время аппарат делал несколько фотографий планеты, а ученые сложили из них занимательный «кинофильм». На нем видно как дуют ветра в атмосфере, как рождаются смерчи-воронки и как крутится Большое красное пятно. На фото Юпитер с расстояния 33 млн км.
Пролетая мимо Юпитера, «Вояджер-1» сделал примерно 19 тысяч снимков гигантской планеты и ее спутников, большинство из которых были удачными и четкими. Американский физик Эдвард Стоун сказал: «У нас набралось открытий почти на десятилетие вперед, за этот короткий двухнедельный период». Уже улетая от Юпитера, аппарат сделал финальные фото одного из спутников (Ио). Фильтр постобработки удалил белое пятно около поверхности, распознав в нем бесполезный шум, а вот ученые увидели совершенно иное – облако вулканического пепла. Это открытие просто взорвало научный мир! Впервые ученые увидели извержение вулкана вне Земли.
«Вояджер-2» тоже не отставал. Вслед за своим «напарником» он продолжил изучать атмосферу Сатурна, систему его колец, а так же пролетел на бреющем полете мимо Энцелада – спутника Сатурна. На этом месте пути двух «братьев» разошлись. В 1981 году «Вояджер-2» круто поменял траекторию, направившись к Урану и Нептуну. Уже в 1986 году аппарат передал на Землю тысячи снимков Урана. Кстати, для этого на Земле пришлось модернизировать принимающие антенны, ведь расстояние до аппарата стремительно увеличивалось.
До 1986 года ученые знали про Уран лишь то, что он вращается на боку, у него есть 9 колец и 5 спутников. Уже первые снимки аппарата позволили открыть еще 2 кольца, а количество известных спутников увеличилось в 3 раза. При этом кольца были значительно моложе самой планеты. Вероятнее всего, Уран разрушил часть своих спутников приливными силами.
На очереди был Нептун и пока «Вояджер-2» летел к этой далекой планете, на нашей Земле вовсю проходила подготовка для приема слабеющего с каждым днем сигнала. Ранее модернизированные антенны приходилось дорабатывать вновь, причем существенно. Для лучшего приема антенны в разных частях света (Калифорния, Испания, Автралия) связали в одну единую сеть, а их диаметр расширили.
Нептун был последней планетой, с которой должен был встретиться Вояджер-2. Было решено пройти невероятно близко рядом с планетой — всего в 5 тыс. км от его поверхности (это было менее трех минут полета при скорости аппарата). Ювелирная работа, что сказать. Все маневры были заложены в аппарат заранее, ведь сигнал от Нептуна до Земли идет больше 4 часов! За это время «Вояджер-2» преодолеет свыше 200 тысяч километров и любая команда, направленная учеными, станет бесполезной. В декабре 1989 года камеры «Вояджера-2» были отключены навсегда. Позже были произведены несколько корректировок курса. На сегодняшний день часть приборов находится в рабочем состоянии. Ученые прогнозируют, что энергии батареи хватит до 2025 года.
В это же время «Вояджер-1», закончивший свою миссию, удалялся прочь от Солнца со скоростью 17 км/с. В феврале 1990 года Вояджер делает совместное фото всех планет Солнечной системы, среди которых есть и Земля. Фото, сделанное с расстояния 6 миллиардов километров, до сих пор остается самым удаленным снимком нашей планеты. Астрофизик и популяризатор науки Карл Саган много лет просил руководство проекта сделать это фото. С его легкой руки оно получило название «Бледно-голубая точка» (Pale Blue Dot). Снимок облетел весь мир и стал философским символом хрупкости нашего мира. Мира, который мы называем домом.
Сам Карл Саган сказал про этот снимок:
«Взгляните еще раз на эту точку. Это здесь. Это наш дом. Это мы. Все, кого вы любите, все, кого вы знаете, все, о ком вы когда-либо слышали, все когда-либо существовавшие люди прожили свои жизни на ней. Множество наших наслаждений и страданий, тысячи самоуверенных религий, идеологий и экономических доктрин, каждый охотник и собиратель, каждый герой и трус, каждый созидатель и разрушитель цивилизаций, каждый король и крестьянин, каждая влюбленная пара, каждая мать и каждый отец, каждый способный ребенок, изобретатель и путешественник, каждый преподаватель этики, каждый лживый политик, каждая «суперзвезда», каждый «величайший лидер», каждый святой и грешник в истории нашего вида жили здесь — на соринке, подвешенной в солнечном луче».
На сегодняшний день оба Вояджера удаляются прочь из Солнечной системы. Они уже пересекли гелиопаузу и вышли в межзвездное пространство. «Вояджер-1» остается самым удаленным рукотворным объектом. Расстояние до него 23 млрд километров (154 расстояния между Землей и Солнцем) и оно увеличивается каждую секунду! В 2027 году он должен удалиться от нас на один световой день. После 2030 года оба аппарата перейдут в режим радиомаяков из-за нехватки мощности, а к 2040 году умолкнут навсегда. Через 300 лет они приблизятся к внутренней границе облака Оорта, а после этого отправятся вечно странствовать по галактике Млечный путь.
Посмотреть за Вояджерами в реальном времени можно здесь.
Понравилась статья? Ставьте лайк и подписывайтесь, если еще не с нами.
Космос – это интересно!
Иррациональные число «Пи»
Вы знали, что математика, это не просто мир постоянных чисел, непонятных выражений и формул? Что это не однотонное полотно серых, или черных букв, которые сливаются в предложения и тексты?
Наука, это интересно! Как-то раз, я залез в пучины интернета, в поисках чего-нибудь интересного, я не знал куда движусь, и каждый шаг удивлял меня. В результате путешествия стало греческое иррациональное число «Пи» (π).
В следующей визуализации процесс был очень похож на предыдущий, просто цифры, или точки, были изображены на краях изображения у виде кругов. Чем больше точка, тем более большой диаметр у круга.
Фиолетовые большие круги представляют собой девятки, которые в одном десятичном ряду повторяются шесть (6) раз. Это как раз те точки именуемые «точками Фейнмана», которые говорят, что: повторение происходит намного раньше, чем предсказывает вероятность.
Так-же это число, можно сказать «вхоже» в любую формулу, ведь хоть при описании окружности, хоть при повторении биения сердца, или орбиты Земли вокруг солнца, оно работает! Это удивительно!
Последовательность цифр числа Пи (π) кажется случайной, но это и обозначает, что любая цифра начиная от 0, до 9, имеет равные шансы появится в одном десятичном ряду.. но действительно ли это так?
На иллюстрации выше, Вы можете видеть ещё одну из визуализаций этого загадочного числа. И вроде как исходя из работ астронома и аналитика Надие Бремера, где он изобразил, как число Пи (π) преодолевает барьеры 100, 1000, 10 000 и 100 000 тысяч цифр, можна сделать вывод, что оно случайно.
Но что скажет человек, глядя на эту же мозаику но уже с другого расстояния? Допустим метров 100. То же самое, ведь число бесконечно. Куда двигаться как увидеть то, что заполняет собой всё, и субъект, находящийся даже в любой точке этого пространства, всё время в объекте, и ничего не видит?
Если сходу показать эти картинки, для многих людей они будут, и останутся просто картинками, но на самом деле, это визуализация того, как цифры могут «поместится» в графическом пространстве, и мощный инструмент для понимания математических закономерностей, правил.
Что такое наука и какие задачи она должна решать? Существует ли музыкальная наука и какими могут быть результаты применения научного метода в этой сфере? Что такое микрохроматика и как она может изменить музыку будущего, расширить возможности её создания и восприятия?
Реставрирую шкаф
Работа не быстрая, поэтому фото до. Нашел в нем тайник, в тайнике фото.
Интересует, что за формула на доске?
Пока ответа не нашлось.
Шкаф в СПБ. Ещё была найдена карта Казани печать старая начало 20 века.
Что, если наш 4D мир станет пятимерным?
Краткая текстовая версия видео:
Мир, в котором мы живем, является четырехмерным. По крайней мере в макро масштабе. В нашем мире 3 пространственных измерения и одно временное. Трехмерность пространства значит, например, то, что мы можем в нем провести три взаимно перпендикулярных координатных осей расположенных под углом 90 градусов. В таком пространстве можно двигаться «влево-вправо», «вперед-назад» и «вверх-вниз».
В трехмерном пространстве мы можем завязать узел. В двумерном пространстве завязать узел невозможно. А еще в трехмерном пространстве стул может стоять только на трех ножках или больше, стул на двух ножках потеряет равновесие и упадет (Речь идет о ножках типа такого, как на фото).
А что будет, если мы добавим еще одно пространственное измерение? То есть представим себе пятимерный мир, 4 пространственных измерения и 1 временное?
В таком мире можно провести еще одну ось перпендикулярную к остальным трем осям под углом 90 градусов. В трехмерном пространстве сделать это невозможно и как-то точно визуализировать я это не могу, так что включайте фантазию.
В пятимерном мире так же добавятся новые направления движения, которые называют «ана-ката», получается: «влево-вправо», «вперед-назад», «вверх-вниз» и «ана»-«ката». Представить себе направление движения ана и ката мы не можем, так же как существо в двумерном мире не может представить себе направления вверх и вниз.
В таком мире можно завязать двумерную сферу на узел, в нашем мире сделать это невозможно, показать, соответственно, тоже нельзя. Ну и стул с тремя ножками не сможет стоять в мире с 4 пространственными измерениями, чтобы он был устойчив потребуется 4 или больше ножек.
Ну хорошо, я понимаю, вы вряд ли Вы читаете это, чтобы узнать о узлах и ножках стула, Вас интересует, что будет с нашим миром, если внезапно в него добавить еще одно измерение, вот так по щелчку пальца «тыц» и добавили еще одно пространственное измерение и вот ты уже в 5 измерении, что с тобой будет?
Если коротко то… умрешь конечно же. А еще Земля станет приплюснутой. Сейчас расскажу как именно умрешь и почему земля станет приплюснутой.
Есть такой закон – закон обратных квадратов, и он тесно связан с размерностью пространства. Возьмем для примера светящий фонарь, интенсивность света в таком случае убывает согласно закону обратных квадратов.
Объект, перемещенный на расстояние в 2 раза большее от источника, получает только четверть той мощности, которую он получал в первоначальном положении. На расстоянии в 3 раза большее от источника – в 9 раз меньше мощности, на расстоянии в 4 раза большее от источника – 16 раз и так далее.
В законе всемирного тяготения сила гравитационного притяжения убывает тоже с квадратом расстояния. В два раза увеличиваем расстояние, сила притяжения уменьшается в 4 раза и так далее. Тоже самое с законом Кулона – сила притяжения или отталкивания заряженных частиц убывает с квадратом расстояния. В 5D мире закон обратных квадратов превращается в закон обратных кубов. Теперь интенсивность света будет падать не с квадратом расстояния, а с кубом расстояния. r^2 в законе Кулона и Законе всемирного тяготения превращается в r^3.
Это все полностью изменит химические элементы из которых мы состоим, некоторые атомы станут нестабильными, радиоактивными, другие наоборот, станут стабильными.
Например, в 5D мире магний был бы благородным газом, а не металлом, то есть некоторые элементы станут менее реактивными, другие более реактивными. Ионизация атомов будет осуществляться при значительно меньших энергиях, да и вообще агрегатное состояние различных элементов будет меняться не так, как в нашем мире, некоторые хим. элементы станут газообразны при комнатной температуре, некоторые затвердеют и такие вот вещи. Думаю, практически бессмысленно вспоминать биологические процессы, благодаря которым мы можем жить, ведь это все поменяется кардинально, мы мгновенно потеряем сознание и умрем, синтез белков, транспортировка различных аминокислот, нейромедиаторов, нервные импульсы, это все либо прекратится, либо изменится до неузнаваемости. Ну и конечно же спектры атомов изменятся, а это значит, что все резко поменяет цвет, что-то станет прозрачным, что-то непрозрачным, да и вообще привычные для нас источники света выглядели бы более тускло из-за r^3, с запахами та же история, правда уже некому будет смотреть и нюхать все это, ведь все живые существа погибнут.
Короче будет происходить полная жесть, что-то будет плавится, что-то превратится в газ, что-то затвердеет, некоторые вещества станут радиоактивными, привычные нам вещи потеряют свои свойства и перестанут работать так, как в нашем мире. Я напомню, что это все в мире, в котором 4 пространственных измерения и одно временное и в котором можно двигаться в направлении ана и ката. Но кроме дополнительного направления появятся также дополнительные степени свободы во вращении. В нашем мире ориентацию тела можно задать тремя углами, в быту это называется «наклон, подъём и поворот», в 5D мире надо представить себе еще 3 дополнительных степени свободы вращения перпендикулярные к 3 вышеупомянутым. Но по идее, на вращение Земли это не должно повлиять, момент импульса сохранится, ведь нужно, чтобы какая-то сила передала момент импульса Земле, чтобы она могла вращаться в какой-то непривычный для нас способ. Конечно Земля изменит свой привычный облик, из-за того, что свойства химических элементов изменятся, но из-за гравитации все должно также удерживаться вокруг центра масс, правда земля довольно быстро вращается, а так как гравитация в 5D мире у нас ослабевает с кубом расстояния, то земля сплюснется и формой будет напоминать что-то типа такого, как на картинке.
Но вообще, появится дополнительное направление, в котором могут двигаться частицы из которых состоит земля, планета начнет превращаться в гиперсферу, представить себе этот процесс, эти метаморфозы которые будут происходить, очень сложно.
Будут ли происходить термоядерные реакции на солнце, тут под вопросом, но изменения явно произойдут. Но вот что забавно – в пятимерном мире нет стабильных орбит. Вот, посмотрите на график, это моделирование классической задачи двух тел, оказывается, что устойчивых орбит в 5D мире нет, тела либо падают друг на друга, либо улетают в бесконечность, поэтому солнечная система, как и все другие системы, разрушится, некоторые тела упадут на другие тела, а некоторые улетят бороздить просторы галактики.
Казалось бы, следуя логике как с законом обратных квадратов, все квадраты в других уравнениях тоже надо заменить на кубы и получается, что формула эквивалентности массы и энергии в пятимерном пространстве будет работать как Е=мс в кубе, но нет, эта формула, как и множество других, не изменятся в пятимерном пространстве, она, как и множество других формул, не зависит от размерности пространства.
Но даже и без этого всего, мир в 5 мерном пространстве изменится настолько, что в нем не сможет существовать жизнь в том виде, в котором существует в четырехмерном пространстве. Вообще, оказывается, четырехмерный мир – самый простой из возможных и одновременно самый оптимальный для существования в нем жизни, стабильных орбит и химии, какой мы ее знаем.
Книга Кипа Торна, «Интерстеллар. Наука за кадром»